1. Trang chủ
  2. » Giáo án - Bài giảng

Đề thi chọn HSG cấp tỉnh môn Toán 9 năm 2018-2019 có đáp án - Sở GD&ĐT Sơn La

4 111 3

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 305,42 KB

Nội dung

Nhằm giúp các bạn học sinh có cơ hội đánh giá lại lực học của bản thân cũng như trau dồi kinh nghiệm ra đề của giáo viên. Mời các bạn và quý thầy cô cùng tham khảo Đề thi chọn HSG cấp tỉnh môn Toán 9 năm 2018-2019 có đáp án - Sở GD&ĐT Sơn La. Chúc các em thi tốt.

SỞ GIÁO DỤC ĐÀO TẠO SƠN LA ĐỀ CHÍNH THỨC KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH LỚP 9_THCS NĂM HỌC 2018-2019 MƠN TỐN Thời gian làm bài: 150 phút Năm học 2018-2019.Ngày thi 18/03/2019 Thời gian làm :150 phút Câu (3 điểm).Cho biểu thức A  6x  3x Tìm x nguyên để A nhận 3x  3x  3x   giá trị nguyên Câu (4 điểm) Cho phƣơng trình x2  2(m 1) x  3m   (1) a)Tìm m để phƣơng trình có hai nghiệm phân biệt x1;x thỏa mãn M  x12  x22  5x1x đạt giá trị nhỏ b)Xác định m để phƣơng trình có hai nghiệm phân biệt lớn Câu (4 điểm) 2x 13x  6 x  5x  2x  x   x3  2xy  12 y  b)Giải hệ phƣơng trình  2  y  x  12 a)Giải phƣơng trình Câu (6 điểm).Cho điểm A , B, C cố định nằm đƣờng thẳng d (B nằm A C) Vẽ đƣờng tròn tâm O thay đổi nhƣng qua B C (O không thuộc đƣờng thẳng d) Kẻ AM AN tiếp tuyến với đƣờng tròn tâm O M N Gọi I trung điểm BC, AO cắt MN H cắt đƣờng tròn điểm P Q (P nằm A O), BC cắt MN K Chứng minh điểm O, M, N, I nằm đƣờng tròn Chứng minh điểm K cố định đƣờng tròn tâm O thay đổi Gọi D trung điểm HQ, từ H kẻ đƣờng thẳng vng góc với MD cắt đƣờng thẳng MP E Chứng minh P trung điểm ME Câu (2 điểm) Cho hình vng ABCD 2019 đƣờng thẳng phân biệt thỏa mãn đƣờng thẳng cắt hai cạnh đối hình vng chia hình vng thành phần có tỉ số diện tích 0,5.Chứng minh 2019 đƣờng thẳng có 505 đƣờng thẳng đồng quy Câu (3 điểm).Cho biểu thức A  6x  3x Tìm x nguyên để A nhận 3x  3x  3x   giá trị nguyên Điều kiện x  Ta có A  6x  3x  Để A nguyên 3x  3x  3x  3x   x   3x     Vậy x  thỏa đề  3x   1  x   Câu (4 điểm) Cho phƣơng trình x2  2(m 1) x  3m   (1) m 1 m  a)Để phƣơng trình có hai nghiệm phân biệt x1;x  '  (m  1)(m  4)    Khi M  x12  x22  5x1x  ( x1 + x )2  3x1x 2 81 81 Vậy M đạt giá trị nhỏ  4(m2  2m  1)  9m   4m2  m    m       16 16  m b) Để phƣơng trình có hai nghiệm phân biệt lớn  '  (m  1)(m  4)   x1  x2   m    x1 x2   Câu (4 điểm) 2x 13x  6 x  5x  2x  x  2x 13x  13  13 ĐKXĐ: x  5x    x  Ta có ;x    Nhận thấy 2 x  5x  2x  x  x  không nghiệm phƣơng trình Khi x  Phƣơng trình cho a)Giải phƣơng trình   Đặt t  x  , ta đƣợc phƣơng trình biểu thị theo t 3 x x 5 x 1 x x 11 13    t  1; t  Với t   x    x  x   (vô nghiệm) x t  t 1 11 11 11  73  x    x  11x    x  Với t  (thỏa mãn) Vậy phƣơng trình x 11  73  cho có tập nghiệm S        13  x3  2xy  12 y   x  2 y  x  2 y Từ suy nghiệm hệ     2 2 2 8 y  x  12 8 y  x  12  y  x  12 b)Ta có  (-2;1) (2;-1) Câu (6 điểm).Cho điểm A , B, C cố định nằm đƣờng thẳng d (B nằm A C) Vẽ đƣờng tròn tâm O thay đổi nhƣng ln qua B C (O không thuộc đƣờng thẳng d) Kẻ AM AN tiếp tuyến với đƣờng tròn tâm O M N Gọi I trung điểm BC, AO cắt MN H cắt đƣờng tròn điểm P Q (P nằm A O), BC cắt MN K Chứng minh điểm O, M, N, I nằm đƣờng tròn Chứng minh điểm K cố định đƣờng tròn tâm O thay đổi Gọi D trung điểm HQ, từ H kẻ đƣờng thẳng vng góc với MD cắt đƣờng thẳng MP E Chứng minh P trung điểm ME M A H P B O Q D K I E N C d a)I trung điểm BC (Dây BC không qua O)  OI  BC  OIA = 900 Ta có OMA = 900 nên ANO = 900 Suy điểm O, M, N, I thuộc đƣờng tròn đƣờng kinh OA b)Gọi I trung điểm BC suy IO  BC ABN đồng dạng với ANC (Vì ANB  ACN , CAN chung) AB AN  AB.AC = AN2 ANO vuông N, đƣờng cao NH nên AH.AO =   AN AC AN2  AB.AC = AH.AO (1) AHK đồng dạng với AIO (g.g) AH AK Nên   AI  AK  AH  AO (2) AI AO AB  AC Từ (1) (2) suy AI.AK  AB.AC  AK  Ta có A, B, C cố định nên I cố AI định  AK không đổi Mà A cố định, K giao điểm BC MN nên K thuộc tia AB  K cố định (đpcm) ME MH  c)Ta có: MHE đồng dạng QDM (g.g)  MQ DQ MP MH MH MP ME      ME = PMH đồng dạng MQH (g.g)  MQ QH 2DQ MQ MQ MP  P trung điểm ME Câu (2 điểm) Cho hình vng ABCD 2019 đƣờng thẳng phân biệt thỏa mãn đƣờng thẳng cắt hai cạnh đối hình vng chia hình vng thành phần có tỉ số diện tích 0,5.Chứng minh 2019 đƣờng thẳng có 505 đƣờng thẳng đồng quy Gọi MN; EF đƣờng nối trung điểm hai cạnh đối hình vng (hình vẽ) Giả sử đƣờng thẳng d1 cắt cạnh AB A1 cắt MN I cắt cạnh CD B1 Ta có tứ giác AA1B1D BCB1A1 hình thang có MI, NI lần lƣợt đƣờng trung bình hai hình thang d1 A A1 E B K M I J N H D F B1 C AD  AA1  DB1  2IM IM Khi     (theo GT) SA1BCB1 2IN IN BC  A1B  B1C  MI 1 Suy  nên MI  MN điểm I cố định Lập luận tƣơng tự ta tìm đƣợc MN 3 điểm H; J; K cố định (hình vẽ) Có điểm cố định mà có 2019 đƣờng thẳng qua nên theo nguyên lý Đirichlet phải có 505 đƣờng thẳng đồng quy SAA1B1D ...  73  cho có tập nghiệm S        13  x3  2xy  12 y   x  2 y  x  2 y Từ suy nghiệm hệ     2 2 2 8 y  x  12 8 y  x  12  y  x  12 b)Ta có  (-2 ;1) (2 ;-1 ) Câu (6... H P B O Q D K I E N C d a)I trung điểm BC (Dây BC không qua O)  OI  BC  OIA = 90 0 Ta có OMA = 90 0 nên ANO = 90 0 Suy điểm O, M, N, I thuộc đƣờng tròn đƣờng kinh OA b)Gọi I trung điểm BC suy... điểm) Cho hình vng ABCD 20 19 đƣờng thẳng phân biệt thỏa mãn đƣờng thẳng cắt hai cạnh đối hình vng chia hình vng thành phần có tỉ số diện tích 0,5.Chứng minh 20 19 đƣờng thẳng có 505 đƣờng thẳng đồng

Ngày đăng: 08/01/2020, 10:29

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN