Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 16 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
16
Dung lượng
526,5 KB
Nội dung
Phép biến đổi tơng đơng áp dụng bất đẳng thức đểtìmcựctrị I - Phép biến đổi tơng đơng 1) Phơng pháp chung - Từ 1 BĐT ban đầu biến đổi tơng đơng về một BĐT luôn đúng ( hoặc ngợc lại) - Một số ví dụ; VD1; Cho a;b; c > 0 CMR ; a 3 + b 3 + abc ab (a + b + c) Lời giải: Ta có a 3 + b 3 + abc ab (a + b + c) a 3 + b 3 + abc a 2 b + ab 2 + abc (a+b)(a 2 _ab+b 2 ) ab (a+b) (a+b) (a-b) 2 0 Ta có: a; b; > 0 a + b > 0 (a - b) 2 0 a, b (a + b).(a - b) 2 0 (Luôn đúng) a, b > 0 a3 + b3 + abc ab (a+b+c) (ĐpCM) VD2: Cho a, b, c > 0 CM: ab bc ca a b c c a b + + + + Lời giải: Ta có ab bc ca a b c c a b + + + + a 2 b 2 + b 2 c 2 + c 2 a 2 abc (a + b + c) 2(a 2 b 2 + b 2 c 2 + c 2 a 2 ) 2 abc(a + b + c) (a 2 b 2 + b 2 c 2 - 2ab 2 c)+ (a 2 b 2 + a 2 c 2 - 2a 2 bc) + (b 2 c 2 + c 2 a 2 - 2abc 2 ) 0 b 2 (a - c) + a 2 (b - c) 2 + c 2 (a - b) 2 0 ( Luôn đúng do a ; b ; c > 0 ) Vậy bất đẳng thức đợc chứng minh. VD3: Cho a , b , c là độ dài 3 cạnh của Cm: Giáo án Đại số - Giáo viên: Nguyễn Phơng Hạnh a b c a c b 1 b c a c b a + + < Bài làm Đặt M = a b c a c b b c a c b a + + có M = a b b c c a b a c b a c + + 2 2 2 2 2 2 a b b c c a M ab bc ac = + + 2 2 2 2 2 2 1 M . ca cb ab ac bc ba abc = + + (Vì a; b; c > 0) ( ) ( ) 1 M . a c . b2 ac ab bc abc = + ( ) ( ) ( ) 1 M . a c . c b . b a abc = có c a b> a b c> b c a> a b . b c . c a a.b.c < ( ) ( ) ( ) 1 1 . a b b c c a .abc 2 abc abc M 1 < = < Vậy a b c c b 1 b c a a a + + < VD4 :Cho ab 1 CM: 1 1 2 (1) a2 1 b2 1 ab 1 + + + + Bài giải Ta có (1) 2 2 2 2 2 2 a b 2 2 ab 1 a b 1 a b + + + + + + 2 Giáo án Đại số - Giáo viên: Nguyễn Phơng Hạnh ( ) ( ) ( ) 2 2 2 2 2 2 a b 2 . ab 1 . a b a b 12 + + + + + + (Vì ab 1 ) 3 3 2 2 2 2 a b ab 2a b a b 2ab 0 + + ( ) ( ) 2 2 2 2 ab. a 2ab b a 2ab b 0 + + ( ) ( ) 2 ab 1 . a b 0 ( Luôn đúng n a 1 ) 2 1 1 2 b2 1 ab 1 a 1 + + + + Dấu = xảy ra a b ab 1 = = VD5:Cho a 1; b 1 ; c 1 CM: 3 3 3 1 1 1 3 1 abc a 1 b 1 c 1 + + + + + + Bài làm áp dụng kết quả ở ví dụ 4 ta có: ( ) 3 3 2 3 3 3 1 1 1 2 1 a 1 b 1 a b 1 a + = + + + + Tơng tự: 3 4 1 1 2 1 abc c 1 abc 1 + + + + 3 3 3 3 3 4 1 1 1 1 1 1 1 abc 1 a 1 b 1 c 1 a b abc 1 + + + + ữ ữ + + + + + + mà : ( ) ( ) 2 2 3 3 4 4 4 3 3 4 4 4 4 4 1 1 1 1 2 1 a b abc 1 1 a b 1 abc 2 4 2. 1 abc 1 a b c ữ + = + ữ ữ ữ + + ữ + + ữ = + + 3 3 3 1 1 1 1 4 1 abc 1 abc 1 a 1 b 1 c + + + + + + + + 3 3 3 1 1 1 3 1 abc 1 a 1 b 1 c + + + + + + 3 A C h a B a b c Giáo án Đại số - Giáo viên: Nguyễn Phơng Hạnh Dấu = xảy ra a = b = c = d VD6: Cho abc Với: A B C a b c b a c b c a a c b h h h h h h h h h h h h + + + + (ha ; hb ; hc lần lợt là các đờng cao hạ từ A; B; C xuống 3 cạnh của ) Bài làm: Gọi S là diện tích ABC a a 1 2S S a.h h 2 a = = tơng tự: b c 2S 2S h ; h b c = = (1) 2S 2S 2S 2S 2S 2S a b c b a c 2S 2S 2S 2S 2S 2 ab S b a c b + + + + 2 2 2 2 2 2 2 2 b c a a c b a b c b a c b c c a a b a c c b b a c(b a)(a b) c (b a) ab(b a) 0 (b a)(ac bc c ab) 0 (b a)(c b)(a c) 0 + + + + + + + + + + Lại có A B C a b c (Quan hệ cạnh góc trong ) ( ) ( ) ( ) b a 0 a c 0 b a c b a c 0 c b 0 Đpcm Dấu= xảy ra (=) a c a b c a = = = VD7 : CM: a 2 + b 2 + c 2 ab + bc + ca 4 Giáo án Đại số - Giáo viên: Nguyễn Phơng Hạnh Từ đó chứng minh: 8 8 8 3 3 3 a b c 1 1 1 a b c a .b .c + + + + Với a , b , c , > 0 Bài giải: a 2 + b 2 + c 2 ab + bc + ca (*) 2(a 2 + b 2 + c 2 ) - 2.(ab + bc + ca) 0 (=) (a - b) 2 + (b - c) 2 + (c - a) 2 0 ( luôn đúng ) Dấu = xảy ra (=) a = b = c Ta có : a 2 + b 2 + c 2 ab + bc + ca a 4 + b 4 + c 4 a 2 b 2 + b 2 c 2 + c 2 a 2 a 8 + b 8 + c 8 a 4 b 4 + b 4 c 4 + c 4 a 4 áp dụng (*) a 8 + b 8 + c 8 a 4 b 4 + b 4 c 4 + c 4 a 4 a 2 b 3 c 3 + a 3 b 2 c 3 + a 3 b 3 c 2 8 8 8 3 3 3 1 1 1 a b c a b c a b c + + + + ữ 8 8 8 3 3 3 a b c 1 1 1 a b c a b c + + + + Dấu đẳng thức xảy ra (=) a = b = c VD 8: Cho a ; b ; c là độ dài 3 cạnh của 1 ; p là nửa chu vi Cm: 1 1 1 1 1 1 2 p a p b p c a b c + + + + ữ Bài giải Từ bất đẳng thức 1 1 1 x y x y + + (x ; y không âm ; xy 0 ) (Dễ dàng CM đợc BĐT Côsi) Ta có: 1 1 4 4 p a p b 2p a b c + = 1 1 4 p b p c a 1 1 4 p c p a b + + Cộng từng vế của BĐT trên ta đợc: 5 Giáo án Đại số - Giáo viên: Nguyễn Phơng Hạnh 1 1 1 1 1 1 2 4 p a p b p c a b c + + + + ữ ữ 1 1 1 1 1 1 2 p a p b p c a b c + + + + ữ *Chú ý : Biến đổi ngợc lại ta sẽ đợc một bài C/m BĐT bằng cách biến đổi tơng đ- ơng thực sự. VD 9: Cho a> b > 0 ; m > n n N ; m N m m n n m m n n a b a b CM : a b a b > + + (*) Bài làm: ( ) ( ) ( ) ( ) ( ) ( ) m m n n n n m m m n m n m n m n n m n m n m m n m n n m n n m n m n (*) a b a b a b a b a .a a .b b .a b .b a .a a .b b .a b .b 2 a .b a .b 0 2.a .b a b 0 (1) + > + + > + > > Có a > b m n m 1 a b > (1) luôn đúng (*) luôn đúng Đpcm *Một số bài tập áp dụng: 1) Cho z y x 0 > C/m: ( ) ( ) 1 1 1 1 1 y x z x z (*) x z y x z + + + + + ữ ữ 2) Cho a , b , c là các số thực dơng thoả mãn abc = 1 CMR: ( ) ( ) ( ) 2 2 2 1 1 1 3 2 a b c b c a c a b + + + + + ( Chú ý BĐT Nesôlsit ) 6 Giáo án Đại số - Giáo viên: Nguyễn Phơng Hạnh x y z 3 y z x z x y 2 + + + + + 3) Nếu a, b, c là độ dài 3 cạnh của 1 CM: a(b - c) 2 + b(c - a) 2 + c(a + b) 2 > a 3 + b 3 + c 3 (*) 4) CM: ( ) ( ) 2 2 2 2 2 2 a b c d a c b d+ + + + + + 5) CM: ( ) ( ) ( ) ( ) ( ) ( ) a b d c a c b d a d b c ab bc cd da ac bd + + + + + + + + + + + + + (a, b, c, d 0) 6) CM: 2 2 2 2 a b c a b c 3 3 + + + + ữ 7) CM: a) a b c 1 (a,b,c 0) a b b c a c + + > > + + + b) 2 2 2 2 2 x x z y z (0 x y z) z x y z x + + < < < < < + + 8) Cho a, b, c 0 CMR: ( ) ( ) ( ) 2 2 2 a b c a b c a b c a b c 3abc+ + + + + II - áp dụngBĐTđểtìmcựctrị - Một số BĐT thờng gặp đểtìmcựctrị * BĐT Côsi: Cho n số không âm: a 1 , a 2 , a n ta có: (a 1 + a 2 + . + a n ) n 1 2 n n a a .a * BĐT Bunhiacôpxki: Cho 2 bộ số (a 1 , a 2 , .a n ) và (b 1 , b 2, , .b n ) Ta có: 7 Giáo án Đại số - Giáo viên: Nguyễn Phơng Hạnh ( ) ( ) ( ) 2 2 2 2 2 2 1 1 2 2 n n 1 2 n 1 n a b a b . a b a a . a b . b+ + + + + + + + Dấu = xảy ra 1 2 n 1 2 n a a a . b b b = = = * BĐTtrị tuyệt đối a b a b + + * BĐT trong tam giác Ta phải áp dụng linh hoạt các bất đẳng thức trên để có thể tìm đợc cựctrị Khi tìmcựctrị của các biểu thức ta nên xem xét các biểu thức phụ nh -A; 1 A ; A 2 . để bài toán thêm ngắn gọn * Sau đây ta xét một vài ví dụ cơ bản VD1: Tìm max có biểu thức: A = xyz (x+y) (y+z) (z+x) với x, y, z không âm và x+y+z=1 + Có một bạn giải nh sau: áp dụng BĐT: ( ) 2 a b 4ab+ Ta có: ( ) ( ) 2 4 x y z x y z 1+ + + = ( ) ( ) 2 4 x y x x y z 1+ + + = ( ) ( ) 2 4 x y y x y z 1+ + + = ( ) ( ) ( ) 64xyz x y y z z x 1 1 max A 64 + + + = *Chú ý: Lời giải trên là hoàn toàn sai lầm do cha tìm ra dấu bằng khi áp dụng BĐT. + Ta có lời giải hoàn chỉnh nh sau: áp dụngBĐT Côsi cho 3 số không âm ta có: 3 x y z 1 xyz (1) 3 27 + + = ữ 8 Giáo án Đại số - Giáo viên: Nguyễn Phơng Hạnh ( ) ( ) ( ) ( ) 3 2 x y z 8 x y y z z x (2) 3 27 + + + + + = ữ Nhân từng vế của (1) và (2) ta đợc ( ) ( ) ( ) 2 8 8 xy x y y z z x 729 27 + + + + = Dấu = xảy ra x = y = z = 1 3 ** Tơng tự ta dễ mắc phải sai lầm trong ví dụ sau - Tìm min của A = 2x +3y biết 2x 2 + 3y 2 5 Lời giải sai: Gọi B = 2x 2 + 3y 2 ta có B 5 Xét A + B = ( ) 2 2 1 5 5 2 x 1 3 y (1) 2 4 4 + + + ữ Mà B 5 B 5 Cộng từng vế của (1); (2) 25 A 4 *Chú ý : Sai lầm ở đây chính là ở chỗ ta cha xét dấu bằng ở cả hai BĐT * Một số bài tập cơ bản áp dụngBĐT Côsi: 1) Tìm min của ( ) x2 4x 4 A x 0 x + + = > ( ) ( ) 3 2 x 1 B x 0 x 1 5 C 0 x 1 1 x x + = > = + < < L ời giải: 2 x 4x 4 4 4 ) A x 4 4 2 x x x x A 8 A min 8 x 2 + + + = = + + + = = Tơng tự giải bài B,C +) 3 3 2 2 2 2 3 x 1 1 x x 1 x.x 3 B x 3 2 2 x x x 2.2x 3 4 + = = + = + + = 9 Giáo án Đại số - Giáo viên: Nguyễn Phơng Hạnh 3 3 3 B min B x 2 4 = = ( ) ( ) 5 1 x 5 1 x 1 5 x x ) C 5 5 2 2 2 5 1 x x 4 x x 1 x x 5 5 C min 5 2 5 x 4 + = + = + + + = + = + 2) Tìm max của A = (2x-1) (3-5x) ( ) 2 3 2 2 x B x 2 x C x 2 = + = + Bài giải ( ) ( ) ( ) 2 2 3 A 2x 1 3 5x 3x . 3 5x 5 2 2 1 5 2 1 1 1 . 5x 3 5x . . 5 4 2 5 4 4 40 1 11 A max A x 40 20 = = ữ + = = ữ = = Tơng tự chúng ta dễ dàng giả đợc phần B; C 3) Cho a, b, c > 1 Tìm min của 2 2 2 4a 5b 3c A a 1 b 1 c 1 = + + Xét: ( ) ( ) 2 2 4a 4a 4 4 4 4 a 1 a 1 a 1 a 1 4 4 a 1 8 a 1 + = = + + = + + áp dụngBĐT Côsi cho 2 số không âm 4 (a -1); 4 a 1 ta có: 10 . dụng bất đẳng thức để tìm cực trị I - Phép biến đổi tơng đơng 1) Phơng pháp chung - Từ 1 BĐT ban đầu biến đổi tơng đơng về một BĐT luôn đúng ( hoặc ngợc lại)