1. Trang chủ
  2. » Giáo Dục - Đào Tạo

PHAN 2 LUY THUA MU LOGARIT GIAI FULL

66 89 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 66
Dung lượng 1,32 MB

Nội dung

PHÂN DẠNG: ĐỀ THI BGD CÁC NĂM TÀI LIỆU LUYỆN THI NĂM – 2020 Chủ đề 2: LŨY THỪA - MŨ - LOGARIT MỨC ĐỘ NHẬN BIẾT Câu 1: (ĐỀ MINH HỌA GBD&ĐT NĂM 2017) Giải phương trình log ( x  1)  A x  63 Câu 2: B x  65 B y   13x ln13 C y   13x D y   13x ln13 (ĐỀ MINH HỌA GBD&ĐT NĂM 2017) Giải bất phương trình log  3x  1  A x  Câu 4: D x  82 (ĐỀ MINH HỌA GBD&ĐT NĂM 2017) Tính đạo hàm hàm số y  13x A y  x.13x 1 Câu 3: C x  80 B  x3 C x  D x  10 (ĐỀ THỬ NGHIỆM BGD&ĐT NĂM 2016-2017) Với số thực dương a, b Mệnh đề A ln  ab   ln a  ln b B ln  ab   ln a.ln b Câu 5: B x  x a  ln b  ln a b C x  D x  10 B y  ln10 x C y  x ln10 D y  10 ln x (ĐỀ THAM KHẢO BGD&ĐT NĂM 2016-2017) Tính giá trị biểu thức  P  74 2017  4 A P  Câu 8: D ln (ĐỀ THAM KHẢO BGD&ĐT NĂM 2016-2017) Tìm đạo hàm hàm số y  log x A y  Câu 7: a ln a  b ln b (ĐỀ THỬ NGHIỆM BGD&ĐT NĂM 2016-2017) Tìm nghiệm phương trình 3x1  27 A x  Câu 6: C ln 37  2016 B P   C P    D P    2016 (ĐỀ THAM KHẢO BGD&ĐT NĂM 2016-2017) Cho a số thực dương a  log a a Mệnh đề sau đúng? A P  Câu 9: B P  C P  D P  (MĐ 101 BGD&ĐT NĂM 2016-2017) Cho phương trình x  x1   Khi đặt t  x , ta phương trình đây? A 2t   Câu 10: | – CA B t  t   C 4t   D t  2t   (MĐ 101 BGD&ĐT NĂM 2016-2017) Cho a số thực dương khác Tính I  log a a CHIA SẺ CỘNG ĐỒNG - TÀI LIỆU THAM KHẢO PHÂN DẠNG: ĐỀ THI BGD CÁC NĂM TÀI LIỆU LUYỆN THI NĂM – 2020 A I  Câu 11: B I  D I  (MĐ 101 BGD&ĐT NĂM 2016-2017) Tìm tập xác định D hàm số y  ( x  1) A D  ( ;1) Câu 12: C I  2 B D  (1;  ) C D   D D   \ {1} (MĐ 102 BGD&ĐT NĂM 2016-2017) Cho a số thực dương khác Mệnh đề với số dương x, y ? Câu 13: A log a x  loga x  log a y y B log a x  loga x  log a y y C log a x  log a  x  y  y D log a x log a x  y log a y (MĐ 102 BGD&ĐT NĂM 2016-2017) Tìm nghiệm phương trình log 1  x   A x  4 Câu 14: B x  3 C x  D x  (MĐ 102 BGD&ĐT NĂM 2016-2017) Rút gọn biểu thức P  x x với x  A P  x Câu 15:  x  1 ln D P  x B y   x  1 ln C y  2x 1 D y  2x 1 (MĐ 102 BGD&ĐT NĂM 2016-2017) Cho log a b  loga c  Tính P  log a  b c3  A P  31 Câu 17: C P  x (MĐ 102 BGD&ĐT NĂM 2016-2017) Tính đạo hàm hàm số y  log  x  1 A y  Câu 16: B P  x B P  13 C P  30 D P  108 (MĐ 103 BGD&ĐT NĂM 2016-2017) Tìm nghiệm phương trình log 25  x  1  A x  6 B x  C x  D x  23  a2     Câu 18: (MĐ 103 BGD&ĐT NĂM 2016-2017) Cho a số thực dương khác Tính I  log a  A I  Câu 19: B I  C I   D I  2 (MĐ 104 BGD&ĐT NĂM 2017) Tìm nghiệm phương trình log  x  5  A x  21 B x  C x  11 D x  13 Câu 20: (MĐ 104 BGD&ĐT NĂM 2017) Cho a số thực dương tùy ý khác Mệnh đề đúng? | – CA CHIA SẺ CỘNG ĐỒNG - TÀI LIỆU THAM KHẢO PHÂN DẠNG: ĐỀ THI BGD CÁC NĂM TÀI LIỆU LUYỆN THI NĂM – 2020 A log a  log a Câu 21: B log a  log a C log a  log a D log a   log a 3 (MĐ 104 BGD&ĐT NĂM 2017) Tìm tập xác định D hàm số y   x  x   A D   B D   0;   C D   ; 1   2;   D D   \ 1;2 Câu 22: (MĐ 104 BGD&ĐT NĂM 2017) Tìm tất giá trị thực m để phương trình 3x  m có nghiệm thực A m  B m  C m  D m  Câu 23: (MĐ 101 BGD&ĐT NĂM 2017-2018) Với a số thực dương tùy ý, ln  5a   ln  3a  bằng: A ln  5a  ln  3a  B ln  2a  C ln D ln ln Câu 24: (MĐ 101 BGD&ĐT NĂM 2017-2018) Phương trình 22 x1  32 có nghiệm A x  B x  C x  D x  2 Câu 25: (MĐ 102 BGD&ĐT NĂM 2017-2018) Tập nghiệm phương trình log  x  1  A 3;3 Câu 26:  D  10; 10  B  log a C  log a D  log a (MĐ 103 BGD&ĐT NĂM 2017-2018) Với a số thực dương tùy ý, ln  7a   ln  3a  A Câu 28: C 3 (MĐ 102 BGD&ĐT NĂM 2017-2018) Với a số thực dương tùy ý, log  3a  bằng: A 3log3 a Câu 27: B 3 ln  a  ln  3a  B ln ln C ln D ln  4a  (ĐỀ THAM KHẢO BGD&ĐT NĂM 2018-2019) Với a b hai số thực dương tùy ý,   log ab A 2log a  log b Câu 29: B log a  log b C  log a  log b  D log a  log b (ĐỀ THAM KHẢO BGD&ĐT NĂM 2018-2019) Tập nghiệm phương trình log  x  x    A 0 B 0;1 C 1;0 D 1 Câu 30: (MĐ 101 BGD&ĐT NĂM 2018-2019)Với a số thực dương tùy, log a 1 A 2log5 a B  log5 a C  log a D log a 2 Câu 31: (MĐ 101 BGD&ĐT NĂM 2018-2019) Nghiệm phương trình 32 x1  27 | – CA CHIA SẺ CỘNG ĐỒNG - TÀI LIỆU THAM KHẢO PHÂN DẠNG: ĐỀ THI BGD CÁC NĂM TÀI LIỆU LUYỆN THI NĂM – 2020 A x  Câu 32: log a B D x   log a C  log5 a D 3log5 a (MĐ 102 BGD&ĐT NĂM 2018-2019) Nghiệm phương trình 32 x1  27 A x  Câu 34: C x  (MĐ 102 BGD&ĐT NĂM 2018-2019) Với a số thực dương tùy ý, log a A Câu 33: B x  B x  C x  D x  (MĐ 103 BGD&ĐT NĂM 2018-2019) Nghiệm phương trình 22 x1  A x  B x  C x  D x  Câu 35: (MĐ 104 BGD&ĐT NĂM 2018-2019) Nghiệm phương trình 22 x 1  32 17 A x  B x  C x  D x  2 Câu 36: (MĐ 104 BGD&ĐT NĂM 2018-2019) Với a số thực dương tùy ý, log3 a bằng? 1 A log a B  log3 a C log3 a D  log a 2 MỨC ĐỘ THÔNG HIỂU Câu 1: Câu 2: (ĐỀ MINH HỌA GBD&ĐT NĂM 2017) Tìm tập xác định D hàm số y  log  x  x  3 A D   ; 1   3;   B D   1;3 C D   ; 1   3;   D D   1;3 (ĐỀ MINH HỌA GBD&ĐT NĂM 2017) Cho hàm số f ( x )  x.7 x Khẳng định sau khẳng định sai? Câu 3: A f ( x)   x  x log  B f ( x )   x ln  x ln  C f ( x)   x log  x  D f ( x)    x log  (ĐỀ MINH HỌA GBD&ĐT NĂM 2017) Cho số thực dương a, b với a  Khẳng định sau khẳng định đúng? | – CA A log a2  ab   log a b B log a2  ab    log a b C log a2  ab   log a b D log a2  ab   1  log a b 2 CHIA SẺ CỘNG ĐỒNG - TÀI LIỆU THAM KHẢO PHÂN DẠNG: ĐỀ THI BGD CÁC NĂM TÀI LIỆU LUYỆN THI NĂM – 2020 Câu 4: (ĐỀ MINH HỌA GBD&ĐT NĂM 2017) Tính đạo hàm hàm số y  A y '  C y '  Câu 5:   x  1 ln B y '  22 x   x  1 ln 2x D y '  x 1 4x   x  1 ln 22 x   x  1 ln 2x (ĐỀ MINH HỌA GBD&ĐT NĂM 2017) Đặt a  log 3, b  log Hãy biểu diễn log 45 theo a b 2a  2ab a  2ab a  2ab B log 45  C log 45  D ab ab ab  b 2a  2ab log 45  ab  b (ĐỀ MINH HỌA GBD&ĐT NĂM 2017) Cho hai số thực a b , với  a  b Khẳng định khẳng định đúng? A log a b   logb a B  log a b  logb a C log b a  log a b  D log b a   log a b A log 45  Câu 6: Câu 7: (ĐỀ THỬ NGHIỆM BGD&ĐT NĂM 2016-2017) Tìm tập hợp tất giá trị thực tham số m để hàm số y  ln  x  1  mx  đồng biến khoảng  ;   A  ; 1 Câu 8: B  ; 1 C  1;1 D 1;   (ĐỀ THỬ NGHIỆM BGD&ĐT NĂM 2016-2017) Cho biểu thức P  x x x3 , với x  Mệnh đề đúng? A P  x Câu 9: B P  x 13 24 C P  x D P  x (ĐỀ THỬ NGHIỆM BGD&ĐT NĂM 2016-2017) Với số thực dương a, b Mệnh đề đúng? Câu 10:  2a  A log     3log a  log b  b   2a3  B log     log a  log b  b   2a  C log     3log a  log b  b   2a3  D log     log a  log b  b  (ĐỀ THỬ NGHIỆM BGD&ĐT NĂM 2016-2017) Tìm tập nghiệm S bất phương trình log  x  1  log  x  1 2 A S   2;   Câu 11: B S   ;  1  C S   ;  2  D S   1;2  (ĐỀ THỬ NGHIỆM BGD&ĐT NĂM 2016-2017) Tính đạo hàm hàm số   y = ln 1+ x +1 | – CA CHIA SẺ CỘNG ĐỒNG - TÀI LIỆU THAM KHẢO PHÂN DẠNG: ĐỀ THI BGD CÁC NĂM TÀI LIỆU LUYỆN THI NĂM – 2020 A y  C y   Câu 12:  x 1 1 x 1   x 1 1 x 1  B y   D y   1 x 1  x 1 1 x 1  (ĐỀ THỬ NGHIỆM BGD&ĐT NĂM 2016-2017) Cho ba số thực dương a, b, c khác Đồ thị hàm số y  a x , y  b x , y  c x cho hình vẽ bên Mệnh đề đúng? A a  b  c Câu 13: C b  c  a D c  a  b (ĐỀ THAM KHẢO BGD&ĐT NĂM 2016-2017) Tìm tập nghiệm S bất phương trình x1   A S  1;   Câu 14: B a  c  b B S   1;   C S   2;   D S   ;  (ĐỀ THAM KHẢO BGD&ĐT NĂM 2016-2017) Cho hàm số f  x   x ln x Một bốn đồ thị cho bốn phương án A, B, C, D đồ thị hàm số y  f   x  Tìm đồ thị đó? A Hình Câu 15: B Hình C Hình D Hình (ĐỀ THAM KHẢO BGD&ĐT NĂM 2016-2017) Tìm tập nghiệm S phương trình log  x  1  log  x  1  A S  3;3 | – CA B S  4 C S  3  D S   10; 10  CHIA SẺ CỘNG ĐỒNG - TÀI LIỆU THAM KHẢO PHÂN DẠNG: ĐỀ THI BGD CÁC NĂM TÀI LIỆU LUYỆN THI NĂM – 2020 Câu 16: (ĐỀ THAM KHẢO BGD&ĐT NĂM 2016-2017) Cho a, b số thực dương thỏa mãn a  , a  b log a b  Tính P  log A P  5  3 Câu 17: b a b a B P  1  C P  1  D P  5  3 (ĐỀ THAM KHẢO BGD&ĐT NĂM 2016-2017) Cho hàm số y  ln x , mệnh đề x đúng? A 2y  xy   Câu 18: x2 B y  xy  x2 C y  xy   x2 x2 D 2y  xy  (MĐ 101 BGD&ĐT NĂM 2016-2017) Với a, b số thực dương tùy ý a khác 1, đặt P  log a b  log a b Mệnh đề đúng? A P  9log a b Câu 19: Câu 20: B P  27 log a b C P  15log a b D P  log a b (MĐ 101 BGD&ĐT NĂM 2016-2017) Tìm tập xác định hàm số y  log A D   \ {  2} B D  ( ;  2)  [3;  ) C D  ( 2; 3) D D  ( ; 2)  (3;  ) x3 x2 (MĐ 101 BGD&ĐT NĂM 2016-2017) Tìm tập nghiệm S bất phương trình log 22 x  log x   Câu 21: A S  (; 2]  [16;  ) B S  [2;16] C S  (0; 2]  [16;  ) D S  ( ;1]  [4;  ) (MĐ 102 BGD&ĐT NĂM 2016-2017) Tìm tập nghiệm log S phương trình  x  1  log  x  1   A S     B S   5;   C S  3 D   13  S    Câu 22: (MĐ 103 BGD&ĐT NĂM 2016-2017) Tìm tập nghiệm S phương trình log3 (2 x  1)  log3 ( x  1)  A S  4 Câu 23: B S  3 C S  2 D S  1 (MĐ 103 BGD&ĐT NĂM 2016-2017) Cho hai hàm số y  a x , y  b x với a , b số thực dương khác , có đồ thị  C1   C2  hình bên Mệnh đề đúng? A  a  b  | – CA B  b   a CHIA SẺ CỘNG ĐỒNG - TÀI LIỆU THAM KHẢO PHÂN DẠNG: ĐỀ THI BGD CÁC NĂM TÀI LIỆU LUYỆN THI NĂM – 2020 C  a   b Câu 24: (MĐ 103 D  b  a  BGD&ĐT NĂM 2016-2017) log3 a  Cho log b  Tính I  2log  log  3a    log b2 A I  B I  C I  D I  Câu 25: (MĐ 103 BGD&ĐT NĂM 2016-2017) Rút gọn biểu thức Q  b : b với b  A Q  b Câu 26: B Q  b  4 C Q  b D Q  b (MĐ 103 BGD&ĐT NĂM 2016-2017) Với số thực dương a b thỏa mãn a  b  8ab , mệnh đề đúng? Câu 27: A log  a  b    log a  log b  B log  a  b    log a  log b C log  a  b   1  log a  log b  D log  a  b   (MĐ 104 BGD&ĐT NĂM 2017) Tìm tập xác định D hàm số y  log3  x  x  3  Câu 28:  log a  log b    A D   2;1  3;  B D  1;3 C D   ;1   3;   D D  ;    2;      (MĐ 104 BGD&ĐT NĂM 2017) Với a , b , x số thực dương thoả mãn log x  5log a  3log b Mệnh đề đúng? A x  3a  5b B x  5a  3b C x  a  b3 D x  a 5b3 Câu 29: (MĐ 104 BGD&ĐT NĂM 2017) Với số thực dương x , y tùy ý, đặt log x   , log y   Mệnh đề đúng?  x   A log 27        2   y   x   C log 27        2   y  Câu 30:  x  D log 27       y  (ĐỀ THAM KHẢO BGD&ĐT NĂM 2017-2018) Với a số thực dương bất kì, mệnh đề đúng? A log  3a   3log a Câu 31:  x  B log 27       y  B log a3  log a C log a3  3log a D log  3a   log a (ĐỀ THAM KHẢO BGD&ĐT NĂM 2017-2018) Tập nghiệm bất phương trình 2 x  x6 là: | – CA CHIA SẺ CỘNG ĐỒNG - TÀI LIỆU THAM KHẢO PHÂN DẠNG: ĐỀ THI BGD CÁC NĂM TÀI LIỆU LUYỆN THI NĂM – 2020 A 0; 6 Câu 32: B ; 6 C 0; 64 D 6;  (ĐỀ THAM KHẢO BGD&ĐT NĂM 2017-2018) Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% / tháng Biết khơng rút tiền ta khỏi ngân hàng sau tháng, số tiền lãi lập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền ( vốn ban đầu lãi) gần với số tiền đây, khoảng thời gian người khơng rút tiền lãi xuất không thay đổi? A 102.424.000 đồng Câu 33: B 102.423.000 đồng D 102.017.000 đồng (ĐỀ THAM KHẢO BGD&ĐT NĂM 2017-2018) Tổng giá trị tất nghiệm phương trình log x.log x.log 27 x.log 81 x  A Câu 34: C 102.016.000 đồng 82 B 80 C D (ĐỀ THAM KHẢO BGD&ĐT NĂM 2017-2018) Có giá trị nguyên dương tham số m để phương trình 16 x  2.12 x  ( m  2).9 x  có nghiệm dương? A B C D Câu 35: (MĐ 101 BGD&ĐT NĂM 2017-2018) Một người gửi tiết kiệm vào ngân hàng với lãi suất 7,5% / năm Biết khơng rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào vốn để tính lãi cho năm Hỏi sau năm người thu (cả số tiền gửi ban đầu lãi) gấp đôi số tiền gửi ban đầu, giả định khoảng thời gian lãi suất khơng thay đổi người khơng rút tiền ra? A 11 năm B năm C 10 năm D 12 năm Câu 36: (MĐ 101 BGD&ĐT NĂM 2017-2018) Gọi S tập hợp tất giá trị nguyên tham số m cho phương trình 16x  m.4x 1  5m2  45  có hai nghiệm phân biệt Hỏi S có phần tử? A 13 B C D Câu 37: (MĐ 102 BGD&ĐT NĂM 2017-2018) Một người gửi tiết kiệm vào ngân hàng với lãi suất 7, % /năm Biết không rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào vốn để tính lãi cho năm Hỏi sau năm người thu (cả số tiền gửi ban đầu lãi) gấp đôi số tiền gửi ban đầu, giả định khoảng thời gian lãi suất không thay đổi người khơng rút tiền ra? A 11 năm B 12 năm C năm D 10 năm Câu 38: (MĐ 103 BGD&ĐT NĂM 2017-2018) Tập nghiệm phương trình log ( x  7)  A { 15; 15} Câu 39: | – CA B {4;4} C 4 D 4 3 (MĐ 104 BGD&ĐT NĂM 2017-2018) Với a số thực dương tùy ý, log   a A  log a B  log a C D  log a log3 a CHIA SẺ CỘNG ĐỒNG - TÀI LIỆU THAM KHẢO PHÂN DẠNG: ĐỀ THI BGD CÁC NĂM TÀI LIỆU LUYỆN THI NĂM – 2020 Câu 40: Câu 41: (MĐ 104 BGD&ĐT NĂM 2017-2018) Phương trình 5 A x  B x  C x  2 3a B 2x 4a C 3a D 4a  27 A  ; 1 Câu 44: D x  (ĐỀ THAM KHẢO BGD&ĐT NĂM 2018-2019) Tập nghiệm bất phương trình 3x Câu 43:  125 có nghiệm (ĐỀ THAM KHẢO BGD&ĐT NĂM 2018-2019) Đặt log3  a , log16 27 A Câu 42: x1 B  3;   C  1;3  D  ; 1   3;   (ĐỀ THAM KHẢO BGD&ĐT NĂM 2018-2019) Hàm số f  x   log  x  x  có đạo hàm A f   x   ln x  2x B f   x   C f   x    x   ln D f   x   2 x  2x  x  x  ln 2  x  2 x  x  ln (ĐỀ THAM KHẢO BGD&ĐT NĂM 2018-2019) Tổng tất nghiệm phương trình log   3x    x A Câu 45: B 3 x ln B x 3 x 3 x C (2 x  3).2 x ln B có đạo hàm 3 x C 16 (MĐ 101 BGD&ĐT NĂM log3  x  1   log3  x  1 A x  Câu 48: 2 D ( x  x).2 x 3 x 1 (MĐ 101 BGD&ĐT NĂM 2018-2019) Cho a b hai số thực dương thỏa mãn a 4b  16 Giá trị 4log a  log b A Câu 47: D (MĐ 101 BGD&ĐT NĂM 2018-2019) Cho hàm số y  x A (2 x  3).2 x Câu 46: C (MĐ 2018-2019) B x  3 102 BGD&ĐT NĂM D Nghiệm C x  2018-2019) phương trình D x  Nghiệm phương trình log  x  1   log  x  1 A x  Câu 49: B x  2 C x  D x  (MĐ 102 BGD&ĐT NĂM 2018-2019) Cho a b hai số thực dương thoả mãn a b  32 Giá trị log a  log b A 10 | – CA B C 32 D CHIA SẺ CỘNG ĐỒNG - TÀI LIỆU THAM KHẢO PHÂN DẠNG: ĐỀ THI BGD CÁC NĂM TÀI LIỆU LUYỆN THI NĂM – 2020 Câu 20: (MĐ 103 BGD&ĐT NĂM 2017-2018) Gọi S tất giá trị nguyên tham số m cho phương trình 4x  m.2x1  2m2   có hai nghiệm phân biệt Hỏi S có phần tử A B C D Lời giải Chọn D Ta có: 4x  m.2x1  2m2    x  2m.2x  2m2   (1) Đặt t  x , t  Phương trình (1) thành: t  2m.t  2m   (2) Yêu cầu toán  (2) có nghiệm dương phânbiệt    m   m  2m    '       S   2m   m  P     2m    m   hoac m   2  10  m  5 Do m nguyên nên m  Vậy S có phần tử Câu 21: (MĐ 104 BGD&ĐT NĂM 2017-2018) Một người gửi tiết kiệm vào ngân hàng với lãi suất 6,1% / năm Biết không rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào vốn để tính lãi cho năm Hỏi sau năm người thu (cả số tiền gửi ban đầu lãi) gấp đôi số tiền gửi ban đầu, giả định khoảng thời gian lãi suất không thay đổi người khơng rút tiền ra? A 13 năm B 10 năm C 11 năm D 12 năm Lời giải Chọn D Gọi x số tiền gửi ban đầu N 6,1  6,1    Theo giả thiết x  x      1    100   100  N N 6,1     1    N  log1,061  11,  100  Vậy sau 12 năm người thu số tiền thỏa yêu cầu Câu 22: (MĐ 104 BGD&ĐT NĂM 2017-2018) Gọi S tập hợp tất giá trị nguyên tham số m cho phương trình x  m.3x 1  3m  75  có hai nghiệm phân biệt Hỏi S có phần tử? A B C 19 D Lời giải 52 | – CA CHIA SẺ CỘNG ĐỒNG - TÀI LIỆU THAM KHẢO PHÂN DẠNG: ĐỀ THI BGD CÁC NĂM TÀI LIỆU LUYỆN THI NĂM – 2020 Chọn B   x  m.3 x 1  3m  75  1  3x  3m.3x  3m  75  Đặt t  x ,  t   Phương trình trở thành: t  3mt  3m  75    1 có hai ngiệm phân biệt   có hai nghiệm dương phân biệt     300  3m  10  m  10    3m   m    m  10 3m  75   m  5     m  Do m nguyên nên m  6;7;8;9 Câu 23: (ĐỀ THAM KHẢO BGD&ĐT NĂM 2018-2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1% /tháng Ơng ta muốn hồn nợ cho ngân hàng theo cách: Sau tháng kể từ ngày vay, ơng bắt đầu hồn nợ, hai lần hoàn nợ liên tiếp cách tháng, số tiền hoàn nợ tháng ông A trả hết nợ sau năm kể từ ngày vay Biết tháng ngân hàng tính lãi số dư nợ thực tế tháng Hỏi số tiền tháng ơng ta cần trả cho ngân hàng gần với số tiền đây? A 2, 22 triệu đồng B 3, 03 triệu đồng C 2, 25 triệu đồng D 2, 20 triệu đồng Lời giải Chọn A Gọi x (triệu đồng) số tiền ông A phải trả cho ngân hàng tháng, r  0, 01 lãi suất hàng tháng Đặt q   r  1, 01 Số tiền ơng A nợ sau trả lần thứ là: T1  100 1  r   x  100q  x Số tiền ông A nợ sau trả lần thứ là: T2  T1q  x  100q  qx  x  100q   q  1 x Số tiền ơng A nợ sau trả lần thứ là: T3  T2 q  x  100q   q  1 x  q  x  100q3   q  q  1 x Số tiền ông A nợ sau trả lần thứ 60 (lần cuối) là: T60  100q 60   q 59  q 58   q  1 x  100q 60  q 60  x q 1 100q 60  q  1 Do sau năm ông A trả hết nợ nên T60   x   2, 22 q 60  53 | – CA CHIA SẺ CỘNG ĐỒNG - TÀI LIỆU THAM KHẢO PHÂN DẠNG: ĐỀ THI BGD CÁC NĂM TÀI LIỆU LUYỆN THI NĂM – 2020 Vậy số tiền mà ông A phải trả hàng tháng cho ngân hàng khoảng 2, 22 (triệu đồng) Câu 24: (MĐ 101 BGD&ĐT NĂM 2018-2019) Cho phương trình log x  log  x  1   log m ( m tham số thực) Có tất giá trị nguyên m để phương trình cho có nghiệm A B C D Vô số Lời giải Điều kiện: x  Phương trình tương đương với: log3 x  log  3x  1   log3 m  log3 Xét f  x   3x  3x 1  log m  m   f  x x x 3x  1 1  1  ; x   ;   ; f   x    0; x   ;   x x 3  3  Bảng biến thiên Để phương trình có nghiệm m   0;3  , suy có giá trị nguyên thỏa mãn Câu 25: (MĐ 102 BGD&ĐT NĂM 2018-2019) Cho phương trình log x  log  x  1   log m ( m tham số thực) Có tất giá trị ngun m để phương trình cho có nghiệm? A B C Vô số D Lời giải Chọn B Gọi log x  log  x  1   log m phương trình 1 Điều kiện xác định: x  x2      x   * 6 x     x    m   m   m  54 | – CA CHIA SẺ CỘNG ĐỒNG - TÀI LIỆU THAM KHẢO PHÂN DẠNG: ĐỀ THI BGD CÁC NĂM TÀI LIỆU LUYỆN THI NĂM – 2020 Với điều kiện  * thì: 1  log3 x  log3 m  log3  x  1  log  mx   log  x  1  mx  x    m   x  1   Với m  phương trình   trở thành: x  1: VN Vậy không nhận m  Với m     x   m6 Để phương trình 1 có nghiệm   1 6  m    0 m6 6  m  6 m m 0     m  m6 m6 Mà m nguyên nên m  1; 2;3;4;5 Câu 26: (MĐ 103 BGD&ĐT NĂM 2018-2019) Cho phương trình log x  log  x  1   log m ( m tham số thực) Có tất giá trị nguyên m để phương trình cho có nghiệm A Vơ số B C D Lời giải Chọn C Điều kiện: x  ,m  Phương trình tương đương với: log x  log3  x  1   log3 m  log3 Xét f  x   5x 1 5x 1  log3 m  m   f  x x x 5x 1 1  1  ; x   ;   ; f   x    0; x   ;   x x 5  5  Bảng biến thiên Để phương trình có nghiệm m   0;3  , suy có giá trị nguyên thỏa mãn 55 | – CA CHIA SẺ CỘNG ĐỒNG - TÀI LIỆU THAM KHẢO PHÂN DẠNG: ĐỀ THI BGD CÁC NĂM TÀI LIỆU LUYỆN THI NĂM – 2020 Câu 27: (MĐ 103 BGD&ĐT NĂM 2018-2019) Cho phương trình 2 log32 x  log3 x 1 5x  m  (m tham số thực) Có tất giá trị ngun dương m để phương trình cho có nghiệm phân biệt? A 123 B 125 C Vô số D 124 Lời giải Chọn A  x  Điều kiện:    x  log5 m x   log x      1 Phương trình   log x     x       x  log m  x  log m   TH1: Nếu m  x  log m  (loại) nên phương trình cho có nghiệm phân biệt TH2: Nếu m  phương trình cho có hai nghiệm phân biệt  log5 m   3  m  125 Do m    m  3;4;5; ;124 Vậy có tất 123 giá trị nguyên dương m thoả mãn yêu cầu toán Câu 28: (MĐ 104 BGD&ĐT NĂM 2018-2019) Cho phương trình log x  log  x  1   log m ( m tham số thực) Có tất giá trị nguyên m để phương trình cho có nghiệm? A B C Vô số D Lời giải Chọn B  x  ĐK:  Khi ta có: m  log x  log  x  1   log m  log m  log Xét hàm f  x    f  x  56 | – CA 4x 1 4x 1 (1)  m x x 4x 1 1  khoảng  ;   x 4   Ta có bảng biến thiên: x2 CHIA SẺ CỘNG ĐỒNG - TÀI LIỆU THAM KHẢO PHÂN DẠNG: ĐỀ THI BGD CÁC NĂM TÀI LIỆU LUYỆN THI NĂM – 2020 1  Dựa vào bảng biến thiên, phương trình f  x   m có nghiệm khoảng  ;   4  0 m  0  m   m  1; 2;3  phương trình cho có nghiệm  m   Vậy có giá trị nguyên m để phương trình cho có nghiệm m  1; 2;3 MỨC ĐỘ VẬN DỤNG CAO Câu 1: (MĐ 101 BGD&ĐT NĂM 2016-2017) Xét số thực dương x, y thỏa mãn  xy log  xy  x  y  Tìm giá trị nhỏ Pmin P  x  y x  2y A Pmin  11  19 B Pmin  11  19 C Pmin  18 11  29 D Pmin  11  3 Lời giải Chọn D Xét hàm số f  t   log3 t  t  t   f t     0, t   0;    t ln Suy hàm số f đồng biến  0;    log3  xy  3xy  x  y   log3 1  xy   log3  x  y    xy  1  x  y  xy  log3 1  xy   1  xy   log3  x  y   x  y  f  1  xy    f  x  y   1  xy   x  y y 3 x 3x  Mà y  nên 57 | – CA 3 x 0 0 x3 3x  CHIA SẺ CỘNG ĐỒNG - TÀI LIỆU THAM KHẢO PHÂN DẠNG: ĐỀ THI BGD CÁC NĂM TÀI LIỆU LUYỆN THI NĂM – 2020 P xy  x P   3 x 3x  11 3x   x   0;3   x Cho P      x   Nhìn vào BBT, ta có: Pmin  Câu 2: 11    0;3 11    0;3 11  (MĐ 102 BGD&ĐT NĂM 2016-2017) Xét số thực dương a, b thỏa mãn log  ab  2ab  a  b  Tìm giá trị nhỏ Pmin P  a  2b ab A Pmin  10  B Pmin  10  C Pmin  10  D Pmin  10  Lời giải Chọn A Điều kiện: ab  Ta có log  ab  2ab  a  b   log 2 1  ab    1  ab   log  a  b    a  b  * a b Xét hàm số y  f  t   log2 t  t khoảng  0; Ta có f   t     0, t  Suy hàm số f  t  đồng biến khoảng  0; t.ln b  Do  *  f  1  ab    f  a  b   1  ab   a  b  a  2b  1   b  a  2b  Do a  0, b  nên b   00b 2b  Khi đó: P  a  2b  b  b   2b Xét hàm số g (b)   2b khoảng  0;2 2b  2b   2  10 b   0;   5 g b      2b  1      2b  12 2  10   0;  b   58 | – CA CHIA SẺ CỘNG ĐỒNG - TÀI LIỆU THAM KHẢO PHÂN DẠNG: ĐỀ THI BGD CÁC NĂM TÀI LIỆU LUYỆN THI NĂM – 2020 Lập bảng biến thiên  10   10  Vậy Pmin  g      Câu 3: 9t Xét hàm số với m tham số thực f t    (MĐ 103 BGD&ĐT NĂM 2016-2017) 9t  m Gọi S tập hợp tất giá trị m cho f  x   f  y   với x, y thỏa mãn e x y  e  x  y  Tìm số phần tử S A B C Vô số D Lời giải Chọn D x e  e.x  ex y  e  x  y   x  y  Ta có nhận xét:  y e  e y ( Dấu ‘’=’’ xảy x  y  ) Do ta có: f ( x )  f ( y )   f ( x )  f (1  x )   9x 91 x  m x   m 91 x    1 x  m 91 x  m  m x  m 91 x  m   m x   m 91 x   m x  m 91 x  m  m4   m   Vậy có hai giá trị m thỏa mãn yêu cầu Câu 4: (MĐ 104 BGD&ĐT NĂM 2017) Xét số nguyên dương a , b cho phương trình a ln x  b ln x   có hai nghiệm phân biệt x1 , x2 phương trình 5log x  b log x  a  có hai nghiệm phân biệt x3 , x4 thỏa mãn x1 x2  x3 x4 Tính giá trị nhỏ S S  2a  3b A S  30 B S  25 C S  33 D S  17 Lời giải 59 | – CA CHIA SẺ CỘNG ĐỒNG - TÀI LIỆU THAM KHẢO PHÂN DẠNG: ĐỀ THI BGD CÁC NĂM TÀI LIỆU LUYỆN THI NĂM – 2020 Chọn A Điều kiện x  , điều kiện phương trình có nghiệm phân biệt b2  20a Đặt t  ln x, u  log x ta at  bt   (1) , 5t  bt  a  0(2) Ta thấy với nghiệm t có nghiệm x , u có x t1 t2 Ta có x1 x2  e e  e t1  t  b a  e , x3 x4  10 u1  u2  b  10 , lại có x1 x2  x3 x4  e  b a  10  b b b   ln10  a   a  ( a, b nguyên dương), suy b2  60  b  a ln10 Vậy S  2a  3b  2.3  3.8  30 ,suy S  30 đạt a  3, b   Câu 5: (MĐ 101 BGD&ĐT NĂM 2017-2018) Cho a  0, b0 thỏa mãn log a  b 1  9a  b  1  log ab 1  3a  2b  1  Giá trị a  2b A B C D Lời giải Chọn C a  , b  nên ta có log 3a 2b1  6ab  1  ; log 6ab1  3a  2b  1  Ta có 9a2  b2  6ab Dấu đẳng thức xảy a  3b Do đó, ta có: log a  b 1  9a  b  1  log ab 1  3a  2b  1  log 3a 2b1  6ab  1  log 6ab1  3a  2b  1  log 3a  2b1  6ab  1 log ab1  3a  2b  1  log 3a 2b1  3a  2b  1  Dấu đẳng thức xảy b  3a   log 3a 2b1  6ab  1  log ab1  3a  2b  1 b  3a  b  3a    (do log a 1 18a  1  ) 2 log a 1 18a  1  log18 a 1  9a  1 log a 1 18a  1   b  b  a    Suy a  2b    18a   9a  a   Câu 6: (MĐ 101 BGD&ĐT NĂM 2017-2018) Cho phương trình x  m  log  x  m  với m tham số Có giá trị nguyên m   20; 20  để phương trình cho có nghiệm? A 20 60 | – CA B 19 C D 21 CHIA SẺ CỘNG ĐỒNG - TÀI LIỆU THAM KHẢO PHÂN DẠNG: ĐỀ THI BGD CÁC NĂM TÀI LIỆU LUYỆN THI NĂM – 2020 Lời giải Chọn B Điều kiện: x  m  x  m  5t  x  x  5t  t 1 Đặt: t  log5  x  m    x 5  m  t Xét hàm số f  u   5u  u  f   u   5u ln   0, u   Do đó: 1  x  t  x  x  m  m  x  5x Xét hàm số f  x   x  x , x  m Do: 5x   m  x , suy phương trình có nghiệm thỏa điều kiện   f   x    x ln , f   x     5x ln   x  log    ln  Bảng biến thiên: x ∞ ≈ 0,295 + y' +∞ ≈ 0,917 y ∞ ∞   Dựa vào bảng biến thiên  m  0, 917   m  19;  18; ;  1 m 20;20 Vậy có 19 giá trị nguyên m thỏa ycbt Câu 7: (MĐ 102 BGD&ĐT NĂM 2017-2018) Cho phương trình x  m  log ( x  m ) với m tham số Có giá trị nguyên m   15;15  để phương trình cho có nghiệm? A 16 B C 14 D 15 Lời giải Chọn C Ta có: x  m  log  x  m   x  x  log ( x  m )  x  m (*) Xét hàm số f (t )  3t  t , với t   Có f' (t )  3t ln   0, t   nên hàm số f  t  đồng biến tập xác định Mặt khác phương trình (*) có dạng: f ( x)  f  log ( x  m)  Do ta có f ( x)  f  log ( x  m)   x  log ( x  m)  3x  x  m  3x  x   m   Xét hàm số g  x   3x  x , với x   Có g' ( x)  3x ln  , g' ( x)   x  log3    ln  Bảng biến thiên 61 | – CA CHIA SẺ CỘNG ĐỒNG - TÀI LIỆU THAM KHẢO PHÂN DẠNG: ĐỀ THI BGD CÁC NĂM TÀI LIỆU LUYỆN THI NĂM – 2020 Từ bảng biến thiên ta thấy giá trị tham số để phương trình có nghiệm là:       Vậy số giá trị nguyên m  15;15 để phương trình cho m    ;  g  log       ln      có nghiệm là:14 Câu 8: (MĐ 103 BGD&ĐT NĂM 2017-2018) Cho a  0, b  thỏa mãn log a 5b 1 16a  b  1  log 8ab 1  4a  5b  1  Giá trị a  2b A 27 Lời giải B C D 20 Chọn C Từ giả thiết suy log a 5b 1 16a  b  1  log8ab1  4a  5b  1  Áp dụng BĐT Cơsi ta có log a 5b 1 16a  b  1  log8ab 1  4a  5b  1  log a 5b 1 16a  b  1 log8ab 1  4a  5b  1  log ab1 16a  b  1 Mặt khác 16a  b    4a  b   8ab   8ab  1 a, b   , suy log ab1 16a  b  1  Khi log a 5b 1 16a  b  1  log 8ab 1  4a  5b  1  log  8ab  1  log 8ab 1  4a  5b  1   a 5 b 1 b  4a  log 24 a 1  32a  1  32a  24a a     b  a b  a   b  Vậy a  2b  Câu 9: 27 6 4 (MĐ 103 BGD&ĐT NĂM 2017-2018) Cho phương trình x  m  log  x  m  với m tham số Có giá trị nguyên m   25;25  để phương trình cho có nghiệm? A B 25 C 24 D 26 Lời giải 62 | – CA CHIA SẺ CỘNG ĐỒNG - TÀI LIỆU THAM KHẢO PHÂN DẠNG: ĐỀ THI BGD CÁC NĂM TÀI LIỆU LUYỆN THI NĂM – 2020 Chọn C ĐK: x  m 7 x  m  t Đặt t  log  x  m  ta có  t  x  x  7t  t 1 7  m  x Do hàm số f  u   7u  u đồng biến  , nên ta có 1  t  x Khi đó: 7x  m  x  m  x  7x Xét hàm số g  x   x  x  g   x    x ln   x   log  ln  Bảng biến thiên: Từ phương trình cho có nghiệm m  g   log  ln    0,856 (các nghiệm thỏa mãn điều kiện x  m  x  ) Do m nguyên thuộc khoảng  25; 25  , nên m  24; 16; ; 1 Câu 10: (MĐ 104 BGD&ĐT NĂM 2017-2018) Cho phương trình x  m  log  x  m  với m tham số Có giá trị nguyên m   18;18  để phương trình cho có nghiệm? A B 19 C 17 D 18 Lời giải Chọn C ĐK: x  m x 2  m  t Đặt t  log  x  m  ta có  t  x  x  2t  t 1 2  m  x Do hàm số f  u   2u  u đồng biến  , nên ta có 1  t  x Khi đó: 2x  m  x  m  x  2x Xét hàm số g  x   x  x  g   x    x ln   x   log  ln  Bảng biến thiên: 63 | – CA CHIA SẺ CỘNG ĐỒNG - TÀI LIỆU THAM KHẢO PHÂN DẠNG: ĐỀ THI BGD CÁC NĂM TÀI LIỆU LUYỆN THI NĂM – 2020 Từ phương trình cho có nghiệm m  g   log  ln    0,914 (các nghiệm thỏa mãn điều kiện x  m  x  ) Do m nguyên thuộc khoảng  18;18  , nên m  17; 16; ; 1 Câu 11: (MĐ 104 BGD&ĐT NĂM 2017-2018) Cho a  0, b0 thỏa mãn log a  2b 1  4a  b  1  log ab 1  2a  2b  1  Giá trị a  2b A 15 B C D Lời giải Chọn A Ta có 4a  b2  4ab , với a, b  Dấu ‘  ’ xảy b  2a 1 Khi  log a  2b 1  4a  b  1  log ab 1  2a  2b  1  log a 2b1  4ab  1  log ab 1  2a  2b  1 Mặt khác, theo bất đẳng thức Cauchy ta có log 2a  2b1  4ab  1  log ab1  2a  2b  1  Dấu ‘  ’ xảy log 2a  2b 1  4ab  1   4ab   2a  2b    Từ 1   ta có 8a  6a   a  Câu 12: 3 15 Suy b  Vậy a  2b  4 (MĐ 101 BGD&ĐT NĂM 2018-2019) Cho phương trình  4log 22 x  log x   x  m  ( m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có hai nghiệm phân biệt A 49 B 47 C Vô số D 48 Lời giải x  Điều kiện:   x  log m 64 | – CA CHIA SẺ CỘNG ĐỒNG - TÀI LIỆU THAM KHẢO PHÂN DẠNG: ĐỀ THI BGD CÁC NĂM TÀI LIỆU LUYỆN THI NĂM – 2020 Với m  , phương trình trở thành  4log 22 x  log x   x    log x    log x  log x    x   log x        x  (loai)  2 Phương trình có hai nghiệm Với m  , điều kiện phương trình x  log m x   log x    5  4log x  log x     Pt   x  log x    x      m  7 x  m 7 x  m   2  Do x   2, 26 không số nguyên, nên phương trình có nghiệm m   m  Vậy m  3; 4;5; ; 48 Suy có 46 giá trị m Do có tất 47 giá trị m Câu 13: (MĐ  2log 2 102 BGD&ĐT NĂM 2018-2019) Cho phương trình x  3log x   3x  m  ( m tham số thực) Có tất giá trị nguyên dương tham số m để phương trình cho có hai nghiệm phân biệt? A 79 B 80 C Vô số D 81 Lời giải Chọn A Xét phương trình  2log 22 x  3log x   3x  m  1 x  x  Điều kiện:  x  3  m   x  log3 m  m  0 x  log x     log x  3log x   1 Ta có 1    log x     x     3x  m   x  log m 3x  m   2  log m  0  m   Phương trình 1 có hai nghiệm phân biệt     log m    m  34   65 | – CA CHIA SẺ CỘNG ĐỒNG - TÀI LIỆU THAM KHẢO PHÂN DẠNG: ĐỀ THI BGD CÁC NĂM TÀI LIỆU LUYỆN THI NĂM – 2020 m  Do m nguyên dương    m  {3; 4;5;;80} Vậy có tất  80    79 giá trị m nguyên dương thỏa mãn đề Câu 14: (MĐ 104 BGD&ĐT NĂM 2018-2019) Cho phương trình  2log 22 x  log x  1 x  m  ( m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có hai nghiệm phân biệt A Vơ số B 62 C 63 D 64 Lời giải Chọn B  2log 2 x  log x  1 x  m  (*) x    x    x  m   x  log m    x    x  log m   4  m       2 log x  log x    x   x  2    1  2 Nếu m  phương trình (1) vơ nghiệm, phương trình (2) có hai nghiệm phân biệt Do m  thỏa Nếu m  phương trình (1) ln có nghiệm x  log4 m , nghiệm nghiệm (*) Do đó, (*) có hai nghiệm phân biệt phương trình (2) có nghiệm Với m  log  phương trình (2) có hai nghiệm nên ta loại trường hợp  Với m  x   0, 577 , log  0,79 nên ta loại nghiệm x   , (2) nghiệm x  Xét log4 m   m  64 Các giá trị m nguyên dương cần tìm thuộc tập S  1  3, 64  Vậy có tất 62 giá trị m “CON TÀU RẤT YÊN BÌNH KHI Ở BẾN ĐỖ, NHƯNG NĨ ĐƯỢC TẠO RA ĐỂ VƯƠN MÌNH NƠI BIỂN LỚN…” 66 | – CA CHIA SẺ CỘNG ĐỒNG - TÀI LIỆU THAM KHẢO ... phương trình 22 x1  A x  B x  C x  D x  2 Lời giải Chọn B Ta có 22 x1   22 x 1  23  x    x  Câu 35: (MĐ 104 BGD&ĐT NĂM 20 18 -20 19) Nghiệm phương trình 22 x 1  32 17 A x ... 5a  ln  3a  B ln  2a  C ln D ln ln Câu 24 : (MĐ 101 BGD&ĐT NĂM 20 17 -20 18) Phương trình 22 x1  32 có nghiệm A x  B x  C x  D x  2 Câu 25 : (MĐ 1 02 BGD&ĐT NĂM 20 17 -20 18) Tập nghiệm phương... ông A dùng để trả lương cho nhân viên năm lớn tỷ đồng? A Năm 20 23 Câu 12: B Năm 20 22 C Năm 20 21 D Năm 20 20 (MĐ 103 BGD&ĐT NĂM 20 16 -20 17) Tìm tất giá trị thực tham số m để hàm số y  log  x  x

Ngày đăng: 12/11/2019, 22:37

TỪ KHÓA LIÊN QUAN

w