1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài tập toán lớp 8 có lời giải

10 203 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 279,03 KB

Nội dung

ĐỀ CƯƠNG ĐẠI SỐ CẢ NĂM MỤC LỤC CHƯƠNG 1: PHÉP NHÂN VÀ PHÉP CHIA CÁC ĐA THỨC CHƯƠNG 2: PHÂN THỨC ĐẠI SỐ CHƯƠNG 3: PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN CHƯƠNG 4: BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN Trang Trang 17 Trang 31 Trang 42 Trang ĐỀ CƯƠNG ĐẠI SỐ CẢ NĂM CHƯƠNG 1: PHÉP NHÂN VÀ PHÉP CHIA CÁC ĐA THỨC BÀI NHÂN ĐƠN THỨC VỚI ĐA THỨC LÝ THUYẾT Chẳng khác nhân số với tổng: a ( b + c − d ) = ab + ac − ad A( B + C − D ) = AB + AC − AD * Quy tắc Muốn nhân đơn thức với đa thức, ta nhân đơn thức với hạng t c đa th ức r ồi c ộng tích với − 2xy x y − 2x y + 5xy3 Ví dụ: = −2xy x y + 2xy 2x y − 2xy 5xy ( ) = −2x y + 4x3 y − 10x y BÀI NHÂN ĐA THỨC VỚI ĐA THỨC LÝ THUYẾT Các phép tính với đa thức quy phép tính với đơn thức Quy tắc ( A − B)( C − D ) = AC − AD − BC + BD Muốn nhân đa thức với đa thức, ta nhân hạng t c đa th ức v ới t ừng h ạng t c đa thức cộng tích với * Lưu ý - Thu gọn hạng tử đồng dạng (nếu có) trước nhân sau nhân - Nếu phải nhân nhiều đa thức, lần nhân hai đa thức ( 2x − 3y)( 2x + 3y)( 3x + 4y)( 4x − 3y) Ví dụ: = ( 4x + 6xy − 6xy − 9y )(12x − 9xy + 16xy − 12y ) ( )( = 4x − 9y 12x + 7xy − 12y ) = 48x + 28x y − 48x y − 108x y − 63xy3 + 108y 4 2 = 48x + 28x y − 156x y − 63xy2 + 108y Nhân hai đa thức xếp Các bước thực hiện: - Đa thức viết đa thức kia, hai đa thức vi ết theo lũy th ừa gi ảm d ần ho ặc tăng d ần c biến - Kết phép nhân hạng tử đa thức thứ hai v ới đa th ức th ứ nh ất đ ược vi ết riêng dòng - Các đơn thức đồng dạng xếp vào cột * Lưu ý - Nếu đa thức có nhiều biến, ta chọn biến làm biến x ếp đa th ức theo bi ến - Với đa thức nhiều biến, trừ trường hợp đề định, người ta dùng cách nhân BÀI TẬP Bài Cho đơn thức Trang ĐỀ CƯƠNG ĐẠI SỐ CẢ NĂM A = − ax y Tính: A.B.C a) B = − a 3x ; C = −3y ; A.B C b) A = 2y − x; B = 3y − 2; C = 3x − Bài Cho đa thức: Tính: 6x A − 4x B − 2xC [ B−A+C ] a) b) Bài Thực phép tính: x (1 − 3x)( − 3x) − ( x − )( 3x + 5) a) 4x + 2x − 12x − 6x + 3x − b) x y − xy x y + x y + x y c) Bài Thực phép nhân hai cách: 5x − 3x3 + 4x − − 2x + − 6x a) 2x − 3x + 2x − − 5x − x − + 3x b) x − y − 2xy y − 2x y + x c) Bài Thu gọn tính giá trị biểu thức sau: x =2 A = x − x + − 2x + 3x + a) với 1 a = ;b = B = 4a − 2ab + b ( 2a + b ) b) với C = x + y x y + y3 − x + y y x = 1,5; y = −2 c) với Bài Chứng tỏ biểu thức sau: a) Không phụ thuộc vào biến x: ( 3x + )( 2x + 3) − ( 3x − 5)( 2x + 11) i) 3x − 2x + x + 2x + − 4x x − − 3x2 x + ii) b) Không phụ thuộc vào biến x, y: ( x − 1) x + y − x − y ( x − 2) − x ( x + 2y ) + 3( y − 5) i) x y + x − − 6x 2xy + − 3x y 2x − 4y2 ii) c) Không phụ thuộc vào biến y: ( x + 2xy + 4y2 )( x − 2y) − 6 12 − 43 y    ( )( ( ) )( ) ( )( ( )( ( ) ) )( ( ) )( ( ) ) ( )( ( ) ( ) )( ( ( ) ) ( ) ( ) ( ) ) ( ) ( ) Trang ĐỀ CƯƠNG ĐẠI SỐ CẢ NĂM Bài Chứng minh đẳng thức sau: acx + bc = ax ( dx − c ) − bx ( cx − d ) + ( ax + b ) cx − dx + c a) ( a + b + c ) a + b + c − ab − bc − ca = a + b + c − 3abc b) ( a + b + c) = a + b + c + 3( a + b )( b + c)( c + a ) c) Bài Tìm x: 4( x + 3)( 3x − ) − 3( x − 1)( 4x − 1) = −27 a) ( x + 1) (3x − x + 1) + x ( − 3x) = b) 2( x − 2)( x + 2) + 4( x − )( x + 1) + ( x + )( − 5x) = c) ( 2x + 1)( 5x − 1) = 20x − 16x − d) 4x 2x − + 27 = 4x + 6x + ( 2x + 3) e) Bài A = x ( 2x − 3) − 2x ( x + 1) a) Cho Chứng minh A chia hết cho với số nguyên x B = ( 3x − 4)( 4y − 3) − ( 4x − 3)( 3y − 4) b) Cho Chứng minh B chia hết cho với số nguyên x, y Bài 10 a) Tìm số tự nhiên liên tiếp Biết tích hai số đầu nhỏ tích hai số cuối 38 b) Cho a, b hai số tự nhiên Biết a chia cho d 1, b chia cho d Ch ứng minh r ằng: a.b chia cho dư c) Cho hai số a b, biết: a = 999 91 (có 2005 chữ số mà 2004 chữ số đầu 9) b = 222 22 (có 2005 chữ số 2) Chứng minh rằng: ab – chia hết cho n ∈ N* Bài 11 Tính (với ): n −1 A = 2x 3x + + 6x n x − a) B = 3x n −2 x n +1 − y n + + y n +2 3x n −2 − y n −2 b) C = y n +1 2x n −1 − y n −1 + 2x n −1 x n +1 − y n +1 c) Bài 12 Tính giá trị biểu thức: A = b + c + ab + ac − abc a+b+c=0 a) , biết B = x − 5x + 5x3 − 5x + 5x − x=4 b) với ( ( ( ) ) ( ( ) ) ( ( ( ) ) ) ) ( ( ) ) Trang ĐỀ CƯƠNG ĐẠI SỐ CẢ NĂM c) C = x − 80x + 80x − 80x + + 80x + 15 D= d) với x = 79 1 2002 −4 − + 2003 2005 2003 2005 2003.2005 401 E=3 1 1110 1112 −1 − − 1111 1113 1111 1113 1113 101 e) Bài 13 So sánh A B, biết: A = 2219.2221 2226 − 2218.2223.2225 B = 3004.2999.2997 − 3003.2996.3001 BÀI 3, 4, NHỮNG HẰNG ĐẲNG THỨC ĐÁNG NHỚ LÝ THUYẾT I Các đẳng thức đáng nhớ 1) Bình phương tổng: ( A + B) = A + 2AB + B2 2) Bình phương hiệu: ( A − B) = A − 2AB + B 3) Hiệu hai bình phương: A − B = ( A − B)( A + B) 4) Lập phương tổng: ( A + B) = A + 3A2 B + 3AB2 + B3 5) Lập phương hiệu: ( A − B) = A − 3A2 B + 3AB2 − B3 6) Tổng hai lập phương: A + B3 = ( A + B) A − AB + B ) 7) Hiệu hai lập phương: A − B3 = ( A − B) A + AB + B ) ( ( 8) Bình phương tổng hạng tử: ( A + B − C) = A + B + C + 2AB + 2BC + 2CA ( A − B − C) = A + B + C − 2AB + 2BC − 2CA II Một số dạng thường ứng dụng 2 A + B = ( A + B) − = ( A − B) + 1) A + B3 = ( A + B) − 3AB( + ) 2) A − B3 = ( A − B) + 3AB( − ) 3) Trang ĐỀ CƯƠNG ĐẠI SỐ CẢ NĂM A + B = ( A + B ) − = ( A − B ) + 4) III Một số ứng dụng 99 = (100 − 1) = 100 − 2.100.1 + 12 = 9801 1) Tính nhẩm: A = 25a + 4b2 − 20ab; B = 8x + 27y 2) Viết biểu thức sau dạng tích biểu thức: 2 A = 25a + 4b2 − 20ab = ( a ) − 2.5 a b + ( b ) = ( a − b ) * 3 2 B = 8x + 27y = ( 2x ) + ( 3y) = ( 2x + 3y) ( 2x ) − 2x.3y + ( 3y) = ( 2x + 3y) ( 4x − 6xy + 9y ) * A = x + 4x + B = −2x + 12x − 20 ∀x ∈ R 3) Chứng minh: ln có giá trị dương ln có giá trị âm A = x + 2.x.2 + 2 + = ( x + 2) + * 2 ∀x ∈ R, ( x + ) ≥ ⇒ A = ( x + ) + ≥ > (đpcm) 2 2 B = −2( x − 6x + 10 ) = −2 x − 2.x.3 + + = −2 ( x − 3) + = −2( x − 3) − * 2 ∀x ∈ R, ( x − 3) ≥ ⇒ −2( x − 3) ≤ ⇒ B = −2( x − 3) − ≤ −2 < (đpcm) M = x + 2x − N = −4x + 4x + 4) Tìm giá trị nhỏ tìm giá trị lớn 2 2 M = x + 2x − = x + 2.x.1 + − = ( x + 1) − *  ∀x ∈ R, ( x + 1) ≥ ⇒ M = ( x + 1) − ≥ −9  M = −9 ⇔ ( x + 1) = ⇔ x + = ⇔ x = −1 [ [ ] ] [ ] −9 minM = −9 ⇔ x = −1 x = −1 Vậy GTNN M (hoặc ) 2 2 2 N = −4x + 4x + = −( 4x − 4x − 3) = − ( 2x ) − 2.2x.1 + − = − ( 2x − 1) − = −( 2x − 1) + *  ∀x ∈ R, − ( 2x + 1) ≤ ⇒ N = −( 2x + 1) + ≤   N = ⇔ −( 2x + 1) = ⇔ 2x + = ⇔ x = −   [ x=− ] [ maxN = ⇔ x = − Vậy GTLN N (hoặc BÀI TẬP Bài 14 Dùng hẳng đẳng thức để khai triển thu gọn: a) ( 3x + 5) b)  1  6x +  3  ] ) c) ( 5x − 4y) Trang ĐỀ CƯƠNG ĐẠI SỐ CẢ NĂM ( 2x y − 3y x ) d) g) ( 5x − 3)( 5x + 3) ( − 4xy − 5)( − 4xy) e) ( a b + ab )( ab h) ( 3a − 1) + 2( 9a − 1) + ( 3a + 1) 2 2 −a b f) ) i) ( 6x + 5y)( 6x − 5y) ( 3x − 4) + 2( 3x − 4)( − x ) + ( − x ) (a )( ) ( + ab + b a − ab + b − a + b j) k) Bài 15 Viết biểu thức sau dạng bình phương tổng hiệu: a + − 6a x + 2x + 1 − 4x + 4x a) b) c) 2 9x + 16y − 24x y 36a − 60ab + 25b 4x − 4x + d) e) f) Bài 16 Viết biểu thức sau dạng tích đa thức: 81− y 16x − 9a − 25b4 a) b) c) 2 ( 2x + y ) − ( x + y + z) − ( x − y − z) d) e) Bài 17 Tính nhanh: 99 + 2.99 + 64 + 128.36 + 362 72 + 288.14 + 28 a) b) c) 3 6 2 2 12 + 12 − − 20 + 18 + 16 + + + 2 − 19 + 17 + 15 + + 32 + 12 d) e) Bài 18 Dùng đẳng thức để khai triển thu gọn: ( a) c) e) g) )(  1  2x +  3  ) ( ) ( ( 2x y − 3xy) b) d) ( x + 1) − ( x − 1) − 6( x − 1)( x + 1) ( x − 1) − ( x + ) ( x − 2x + ) + 3( x + 4)( x − 4) ) 2   − 3xy + x y    (x )    − ab − 2a b    f) − 3x + )( x + 3) + ( − x ) − 9x ( x − 3) ( ) x ( x − 1)( x + 1) − ( x + 1) x − x + 3x2 ( x + 1)( x − 1) + ( x − 1) − ( x − 1)( x + x + 1) 2 3 h) ( 4x + 6y ) ( 4x − 6xy + 9y ) − 54y3 k) l) Bài 19 Biến đổi biểu thức sau thành tích đa thức: 27 − 8y y6 + x3 + a) b) c) x y3 − 64x3 − y 125x6 − 27y 125 64 d) e) f) 2 16x ( 4x − y ) − 8y ( x + y ) + xy(16x + 8y ) g) Bài 20 Điền hạng tử thích hợp vào chỗ có dấu * để có đẳng thức: 2 x + 4x + * = ( * + *) 9x − * + = ( * − *) a) b) Trang ĐỀ CƯƠNG ĐẠI SỐ CẢ NĂM c) x + x + * = ( * + *) d) *− 4y − * = ( * −3x)( * + *) e) ( g) ) ( i) h) )   * +* =  * + y  4x − * + *   64a + * + * + 27b = ( * + *) k) f) 8x + * = ( * +2a ) 4x − * + * ( * − *) 3 j) l) = x − * + 12xy − * m) Bài 21 Tìm x, biết: a) c) n) x − 2x + = 25 ( x − 1) ( x ) + x + − x ( x + 2)( x − ) = b) d) 6( x + 1) − 2( x + 1) + 2( x − 1) ( x + x + 1) = * −2a + = ( * − *) e) Bài 22 Tính giá trị biểu thức: A = 4x2 + 8x + a) với x = 49 C = x − 9x + 27x − 26 = ( 3y − *)( * + *) ( ) * −27y = ( 4x − *) 9y + * + * * −* = ( 4y − *)( * + y + *) 8x − * + * − * = ( * −3y) ( * + *) = * + 108x y + 144xy2 + * ( 5x + 1) − ( 5x − 3)( 5x + 3) = 30 ( x − 2) − ( x − 3) ( x + 3x + ) + 6( x + 1) = 15 b) B = x + 3x + 3x + với x = 99 D = ( 2x − 3) − ( 4x − 6)( 2x − 5) + ( 2x − 5) c) với x = 23 d) với x = 99 Bài 23 Tìm x, y biết: x + y − 2x + 4y + = x + 4y2 + 6x − 12y + 18 = a) b) 2 5x + 9y − 12xy − 6x + = 2x + 2y + 2xy − 10x − 8y + 41 = c) d) Bài 24 Chứng minh đa thức sau luôn dương với x, y: x + 2x + 4x − 12x + 11 a) b) x − 2x + y + 4y + x − x +1 c) d) Bài 25 Chứng minh đa thức sau âm với x: − x + 6x − 15 − 9x + 24x − 18 a) b) ( x − 3)(1 − x ) − ( x + 4)( − x ) − 10 c) d) Bài 26 Với giá trị biến, đa thức sau có giá trị nhỏ nhất? Tìm giá trị nhỏ x − 2x + y − 4x + 4x − 12x + 11 a) b) ( x − 1)( x + 2)( x + 3)( x + 6) x + x +1 c) d) Trang ĐỀ CƯƠNG ĐẠI SỐ CẢ NĂM Bài 27 Với giá trị biến, đa thức sau có giá trị lớn nhất? Tìm giá trị lớn − x2 + x + − x + 4x − a) b) − x + 2x − 4y2 − 4y + − x + 6x − 15 c) d) Bài 28 So sánh: B = 1998 A = 1997.1999 a) C = 1994.1996.1998 D = 1995 2.1997.1999 b) E = ( + 1) + + 38 + 316 + F = 332 − c) Bài 29 Chứng minh đẳng thức sau: 4p( p − a ) = b + c − a + 2bc a) Nếu a + b + c = 2p x + y = a − 2b x + y = a − 3ab b) Nếu x + y = a xy = b 2 2 2 ( a + b )( c + d ) = ( ac + bd ) + ( ad − bc) c) a + b + c = 3abc d) Nếu a + b + c = 1 + + =0 ( a + b ) a + b a + b a + b a 32 + b 32 = a 64 − b 64 a b c e) Nếu a + b3 a + b = a + c3 a + c g) Nếu a = b + c Bài 30 a = m2 + n 2;b = m2 − n2 a) Áp dụng định lý Pytago Chứng minh ta có a, b, c > cho ; c = 2mn số cạnh tam giác vuông b) Các cạnh góc vng tam giác vng có độ dài a, b di ện tích b ằng S Tính góc c ( a + b) = 8S tam giác vng biết c) Chứng minh a, b, c độ dài cạnh tam giác vuông (v ới a đ ộ dài c ạnh huy ền) x = 9a + 4b + 8c; y = 4a + b + 4c số x, y, z sau độ dài c ạnh c tam giác vuông: ; z = 8a + 4b + 7c ( )( )( )( ( ) )( )( ) ( ) BÀI 6, 7, PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ LÝ THUYẾT Phân tích đa thức thành nhân tử viết đa thức dạng tích đơn thức đa thức khác Phương pháp đặt nhân tử chung Khi hạng tử đa thức có chung nhân tử, ta có th ể đ ặt nhân t chung ngồi d ấu ngoặc dựa vào công thức: AB − AC + AD = A( B − C + D ) [A nhân tử chung] Trang ĐỀ CƯƠNG ĐẠI SỐ CẢ NĂM Ví dụ Phân tích đa thức sau thành nhân tử: 9x y − 18xy z + 27x y z = 9xy x y − 2z + 3xz2 a) [nhân tử chung 9xy2] 25x3 y( x − y ) − 5x y( x − y ) = 5x y( x − y )( 5x − 1) b) [nhân tử chung là: 5x2y(x – y)] * Có phải đổi dấu để làm xuất nhân tử chung Ví dụ Phân tích đa thức sau thành nhân tử: 2x ( x − y ) − ( y − x ) = 2x ( x − y ) + ( x − y ) = ( x − y )( 2x + 1) a) [nhân tử chung x – y] 2 5x( x − ) + 3( − x ) = 5x( x − 2) + 3( x − ) = ( x − ) [ 5x + 3( x − ) ] = ( x − )( 8x − ) = 2( x − )( 4x − 3) b) 3 2 3x( x − 1) − (1 − x ) = 3x(1 − x ) − (1 − x ) = (1 − x ) [ 3x − (1 − x ) ] = (1 − x ) ( 4x − 1) ( ) c) https : //giaideth i24h.net Trang 10 ... 9xy + 16xy − 12y ) ( )( = 4x − 9y 12x + 7xy − 12y ) = 48x + 28x y − 48x y − 108x y − 63xy3 + 108y 4 2 = 48x + 28x y − 156x y − 63xy2 + 108y Nhân hai đa thức xếp Các bước thực hiện: - Đa thức viết... thức: 81 − y 16x − 9a − 25b4 a) b) c) 2 ( 2x + y ) − ( x + y + z) − ( x − y − z) d) e) Bài 17 Tính nhanh: 99 + 2.99 + 64 + 1 28. 36 + 362 72 + 288 .14 + 28 a) b) c) 3 6 2 2 12 + 12 − − 20 + 18 + 16... SỐ CẢ NĂM c) C = x − 80 x + 80 x − 80 x + + 80 x + 15 D= d) với x = 79 1 2002 −4 − + 2003 2005 2003 2005 2003.2005 401 E=3 1 1110 1112 −1 − − 1111 1113 1111 1113 1113 101 e) Bài 13 So sánh A B,

Ngày đăng: 19/08/2019, 13:38

TỪ KHÓA LIÊN QUAN

w