1. Trang chủ
  2. » Giáo án - Bài giảng

Bài giảng Đại số 9 chương 4 bài 7: Phương trình quy về phương trình bậc hai

16 50 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 550 KB

Nội dung

≠ 1/ Nêu công thức nghiệm pt bậc hai ? 2/ Giải pt x2 - 5x + = Công thức nghiệm ax + bx + c = 0; (a ≠ 0) biệt thức ∆ = b − 4ac + Nếu ∆ > phương trình có hai nghiệm phân biệt: −b + ∆ ; x1 = 2a −b − ∆ x2 = 2a + Nếu ∆ = phương trình có −b nghiệm kép x1 = x2 = + Nếu ∆< phương trình vơ nghiệm 2a 2/ giải pt : x2 – 5x + = x 1,4= ∆ ∆ = − 4.4 = > + Phương trình có hai nghiệm phân biệt: 5+ ; 5− x1 = = x2 = =1 2 TIẾT 61 I/ Phương trình trùng phương : 1/ Phương trình trùng phương phương trình có dạng: ax + bx + c = 0(a ≠ 0) Các bước bước giải giải phương phương trình trình trùng trùng phương: phương: Các 44 + bx22 + c = ax ax + bx + c = Đặt x2 = t (t ≥ 0) •Đưa phương trình trùng phương phương trình bậc theo t: at2 + bt + c = Giải phương trình bậc theo t 3.Lấy giá trị t ≥ thay vào x2 = t để tìm x x=± t • Kết luận số nghiệm phương trình cho 2/ Ví dụ : Giải phương trình sau: 4x4 + x2 - = 4x4 + x2 - = Đặt x2 = t; t ≥ ta phương trình 4t2 + t - = ( a = 4, b = 1; c = -5) a + b + c = +1 - = ⇒ t1= 1; t2 = - (loại) • t1= ⇒ x2 = ⇔ x = ± ⇔ x = ±1 Vậy phương trình cho có nghiệm :x1=1; x2 = -1 TIẾT 61 I/ Phương trình trùng phương : 1/ Phương trình trùng phương phương trình có dạng: ax + bx + c = 0(a ≠ 0) 2/ Ví dụ : giải pt 4x4 + x2 - = Đặt x2 = t; t ≥ ta phương trình 4t2 + t - = ( a = 4, b = 1; c = -5) a + b + c = +1 -5 = ⇒ t1= 1; t2 = -5 (loại) • t1= ⇒ x2 = ⇔ x = ± ⇔ x = ±1 • Vậy phương trình cho có nghiệm :x1=1; x2 = -1 TIẾT 61 I/ Phương trình trùng phương : II/ Phương trình chứa ẩn mẫu thức : 1/ Tóm tắc bước giải : ( xem sgk trang 55 ) TIẾT 61 II/ Phương trình chứa ẩn mẫu thức : 1/ Tóm tắc bước giải : Bước : Tìm điều kiện xác định phương trình Bước : Quy đồng mẫu thức hai vế khử mẫu thức Bước : Giải phương trình vừa nhận Bước : Chọn nghiệm kết luận TIẾT 61 I/ Phương trình trùng phương : II/ Phương trình chứa ẩn mẫu thức : 1/ Tóm tắc bước giải : ( xem sgk trang 55 ) 2/ Ví dụ : giải pt x − 3x + = x2 − x −3 TIẾT 61 2/ Ví dụ : giải pt ⇒ ⇔ x − 3x + = x2 − x −3 đk : x ≠ ±3 x2 – 3x + = x+3 x2 – 4x + = Ta có a + b + c = – +3 = Theo hệ Vi-et ta có X1 = X2 = ( loại ) Vậy phương trình cho có nghiệm x = TIẾT 61 I/ Phương trình trùng phương : II/ Phương trình chứa ẩn mẫu thức : III/ Bài Tập Áp Dụng : Giải pt sau • 1/ • x4 - 10x2 + = TIẾT 61 III/ Bài Tập Áp Dụng : 1/ Giải pt x4 - 10x2 + = • Đặt x2 = t; t ≥ • Ta phương trình t2 -10t + = ta có a + b + c = – 10 + = Theo hệ Vi-ét t = , t = * Với t = ⇒ x2 = ⇔ x = ±1 * Với t = ⇒ x2 = ⇔ x = ± Vậy phương trình có nghieäm x1 = ; x2= - ; x3 = ; x4 = -3 Ta có PT bậc ẩn t at2 + bt + c = x t ặ Đ Giải PT bậc theo t t≥ Lấy giá trị t ≥ thay vào x2 = t để tìm x Kết luận số nghi ệm PT cho Tìm ĐK xác định PT =t PT trùng phương Phương trình quy phương trình bậc PT chứa ẩn mẫu Quy đồ ng mẫu thức Và khử vế mẫu thứ c Giải PT vừa nhận Kết lu ận ... I/ Phương trình trùng phương : 1/ Phương trình trùng phương phương trình có dạng: ax + bx + c = 0(a ≠ 0) Các bước bước giải giải phương phương trình trình trùng trùng phương: phương: Các 44 +... ≥ 0) •Đưa phương trình trùng phương phương trình bậc theo t: at2 + bt + c = Giải phương trình bậc theo t 3.Lấy giá trị t ≥ thay vào x2 = t để tìm x x=± t • Kết luận số nghiệm phương trình cho... Giải phương trình sau: 4x4 + x2 - = 4x4 + x2 - = Đặt x2 = t; t ≥ ta phương trình 4t2 + t - = ( a = 4, b = 1; c = -5) a + b + c = +1 - = ⇒ t1= 1; t2 = - (loại) • t1= ⇒ x2 = ⇔ x = ± ⇔ x = ±1 Vậy phương

Ngày đăng: 09/08/2019, 10:30

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w