1. Trang chủ
  2. » Giáo án - Bài giảng

Đề thi và đáp án vào 10 tỉnh Quảng Ninh năm 2009-2010

3 11,1K 66
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tuyển sinh lớp 10 THPT năm học 2009 - 2010
Trường học SỞ GIÁO DỤC VÀ ĐÀO TẠO QUẢNG NINH
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2009
Thành phố Quảng Ninh
Định dạng
Số trang 3
Dung lượng 174 KB

Nội dung

2,0 điểm: Giải bài toán sau bằng cách lập phơng trình hoặc hệ phơng trình: Một ca nô chuyển động xuôi dòng từ bến A đến bến B sau đó chuyển động ngợc dòng từ B về A hết tổng thời gian l

Trang 1

SỞ GIÁO DỤC VÀ ĐÀO TẠO

QUẢNG NINH

- -KỲ THI TUYỂN SINH LỚP 10 THPT

NĂM HỌC 2009 - 2010

ĐỀ THI CHÍNH THỨC MễN : TOÁN Ngày thi : 29/6/2009

Thời gian làm bài : 120 phút

(không kể thời gian giao đề)

Chữ ký GT 1 : Chữ ký GT 2 :

(Đề thi này có 01 trang)

Bài 1 (2,0 điểm) Rút gọn các biểu thức sau :

a) 2 3 3 27  300

b) 1 1 1

:

Bài 2 (1,5 điểm)

a) Giải phơng trình: x2 + 3x – 4 = 0

b) Giải hệ phơng trình: 3x – 2y = 4

2x + y = 5

Bài 3 (1,5 điểm)

Cho hàm số : y = (2m – 1)x + m + 1 với m là tham số và m # 1

2 Hãy xác định m trong mỗi

tr-ờng hơp sau :

a) Đồ thị hàm số đi qua điểm M ( -1;1 )

b) Đồ thị hàm số cắt trục tung, trục hoành lần lợt tại A , B sao cho tam giác OAB cân

Bài 4 (2,0 điểm): Giải bài toán sau bằng cách lập phơng trình hoặc hệ phơng trình:

Một ca nô chuyển động xuôi dòng từ bến A đến bến B sau đó chuyển động ngợc dòng từ B

về A hết tổng thời gian là 5 giờ Biết quãng đờng sông từ A đến B dài 60 Km và vận tốc dòng nớc

là 5 Km/h Tính vận tốc thực của ca nô (( Vận tốc của ca nô khi nớc đứng yên )

Bài 5 (3,0 điểm)

Cho điểm M nằm ngoài đờng tròn (O;R) Từ M kẻ hai tiếp tuyến MA , MB đến đờng tròn (O;R) ( A; B là hai tiếp điểm)

a) Chứng minh MAOB là tứ giác nội tiếp

b) Tính diện tích tam giác AMB nếu cho OM = 5cm và R = 3 cm

c) Kẻ tia Mx nằm trong góc AMO cắt đờng tròn (O;R) tại hai điểm C và D ( C nằm giữa M

và D ) Gọi E là giao điểm của AB và OM Chứng minh rằng EA là tia phân giác của góc CED

Hết

-(Cán bộ coi thi không giải thích gì thêm)

Họ và tên thí sinh: ……… Số báo danh: ………

Trang 2

Đáp án Bài 1 :

a) A = 3 b) B = 1 + x

Bài 2 :

a) x1 = 1 ; x2 = -4

b) 3x – 2y = 4

2x + y = 5

<=> 3x – 2y = 4 7x = 14 x = 2

<=> <=>

4x + 2y = 5 2x + y = 5 y = 1

Bài 3 :

a) Vì đồ thị hàm số đi qua điểm M(-1;1) => Tọa độ điểm M phải thỏa mãn hàm số :

y = (2m – 1)x + m + 1 (1)

Thay x = -1 ; y = 1 vào (1) ta có: 1 = -(2m -1 ) + m + 1

<=> 1 = 1 – 2m + m + 1

<=> 1 = 2 – m

<=> m = 1

Vậy với m = 1 Thì ĐT HS : y = (2m – 1)x + m + 1 đi qua điểm M ( -1; 1)

c) ĐTHS cắt trục tung tại A => x = 0 ; y = m+1 => A ( 0 ; m+1) => OA = m 1

cắt truc hoành tại B => y = 0 ; x = 1

m m

 

 => B ( 1

m m

 

 ; 0 ) => OB = 1

m m

 

Tam giác OAB cân => OA = OB

<=> m 1 = 1

m m

 

 Giải PT ta có : m = 0 ; m = -1

Bài 4: Gọi vận tốc thực của ca nô là x ( km/h) ( x>5)

Vận tốc xuôi dòng của ca nô là x + 5 (km/h)

Vận tốc ngợc dòng của ca nô là x - 5 (km/h)

Thời gian ca nô đi xuôi dòng là : 60

5

x  ( giờ)

Thời gian ca nô đi xuôi dòng là : 60

5

x  ( giờ)

Theo bài ra ta có PT: 60

5

x  +

60 5

x  = 5

<=> 60(x-5) +60(x+5) = 5(x2 – 25)

<=> 5 x2 – 120 x – 125 = 0

 x1 = -1 ( không TMĐK)

 x2 = 25 ( TMĐK)

Vậy vân tốc thực của ca nô là 25 km/h

Bài 5:

D C

E O M

A

B

a) Ta có: MA  AO ; MB  BO ( T/C tiếp tuyến cắt nhau)

=>   0

90

Tứ giác MAOB có : MAO MBO  900 + 900 = 1800 => Tứ giác MAOB nội tiếp đờng tròn

Trang 3

b) áp dụng ĐL Pi ta go vào  MAO vuông tại A có: MO = MA + AO

MA2 = MO2 – AO2

MA2 = 52 – 32 = 16 => MA = 4 ( cm) Vì MA;MB là 2 tiếp tuyến cắt nhau => MA = MB => MAB cân tại A

MO là phân giác ( T/C tiếp tuyến) = > MO là đờng trung trực => MO AB

Xét AMO vuông tại A có MO AB ta có:

AO2 = MO EO ( HTL trongvuông) => EO =

2

AO

9

5(cm)

=> ME = 5 - 9

5 =

16

5 (cm)

áp dụng ĐL Pi ta go vào tam giác AEO vuông tại E ta có:AO2 = AE2 +EO2

 AE2 = AO2 – EO2 = 9 - 81

25 =

144

25 =

12 5

 AE =12

5 ( cm) => AB = 2AE (vì AE = BE do MO là đờng trung trực của AB)

 AB = 24

5 (cm) => SMAB =

1

2ME AB =

1 16 24

2 5 5 =

192

25 (cm

2) c) Xét AMO vuông tại A có MO AB áp dụng hệ thức lợng vào tam giác vuông AMO ta có: MA2 = ME MO (1)

mà : ADC MAC =1

2Sđ AC ( góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn 1 cung)

MAC  DAM (g.g) => MA MD

MCMA => MA

2 = MC MD (2)

Từ (1) và (2) => MC MD = ME MO => MD ME

MCE  MDO ( c.g.c) ( M chung; MD ME

MOMC ) => MEC MDO  ( 2 góc tứng) ( 3)

Tơng tự: OAE OMA (g.g) => OA

OE=

OM OA

=> OA

OE =

OM

OA =

OEOD ( OD = OA = R)

Ta có: DOE  MOD ( c.g.c) ( O chong ; OD OM

OEOD ) => OED ODM  ( 2 góc t ứng) (4)

Từ (3) (4) => OED MEC  mà : AEC MEC =900

AED OED =900

=> AECAED => EA là phân giác của DEC

Ngày đăng: 06/09/2013, 16:10

TỪ KHÓA LIÊN QUAN

w