1. Trang chủ
  2. » Giáo án - Bài giảng

Bài tập trắc nghiệm dãy số cấp số cộng cấp số nhân phương pháp quy nạp có lời giải

65 168 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 65
Dung lượng 4 MB

Nội dung

www.thuvienhoclieu.com CHỦ ĐỀ 3: DÃY SỐ CẤP SỐ CỘNG - CẤP SỐ NHÂN Phương pháp quy nạp toán học A LÝ THUYẾT Để chứng minh mệnh đề liên quan đến số nguyên dương n với n mà khơng thể thử trực tiếp làm sau: - Bước 1: Kiểm tra mệnh đề với n  - Bước 2: Giả thiết mệnh đề với số tự nhiên n  k �1 (gọi giả thiết quy nạp) Bằng kiến thức biết giả thiết quy nạp, chứng minh mệnh đề với n  k  B CÁC BÀI TỐN ĐIỂN HÌNH 2 Ví dụ Với mối số nguyên dương n , đặt S     n Mệnh đề đúng? n(n  1)(n  2) n(n  1)(2n  1) S S A B S n(n  1)(2n  1) C Đáp án C D S n(n  1)(2n  1) Lời giải * Cách 1: Chúng ta chứng minh phương pháp quy nạp toán học n �� , ta đẳng n(n  1)(2n  1) 12  22  32   n2  thức 1(1  1)(2.1  1) 1 - Bước 1: Với n  vế trái  , vế phải Vậy đẳng thức với n  thức với n  k �1 , tức chứng minh (k  1)  (k  1)  1  2( k  1)  1 (k  1)(k  2)(2k  3) 12  22  32   k  (k  1)   6 Ta phải chứng minh đẳng thức với n  k  , tức chứng minh (k  1)  (k  1)  1  2( k  1)  1 (k  1)(k  2)(2k  3) 12  22  32   k  (k  1)   6 Thật vậy, theo giả thiết quy nạp ta (k  1)(k  1)(2k  1) 12  22  32   k  (k  1)2   (k  1)2 -Bước 2: Giả sử đẳng (k  1)( k  1)(2k  1) k (k  1)(2k  1)  6( k  1) ( k  1)( k  2)(2k  3)  (k  1)   6 Mà (k  1)(k  2)(2k  3) 12  22  32   k  (k  1)  Suy Do đẳng thức với n  k  Suy điều phải chứng minh Vậy phương án C Cách 2: Kiểm tra tính đúng-sai phương án đến tìm phương án thông qua số giá trị cụ thể n + Với n  S   (loại phương án B D); 2 + Với n  S    (loại phương án A) www.thuvienhoclieu.com Trang www.thuvienhoclieu.com Vậy phương án C STUDY TIP Ngồi kết nêu ví dụ 1, đề cập đến kết tương tự sau: n(n  1)    n  1) n (n  1)    n  2) 3) 4) 3 14  24   n4  n(n  1)(2n  1)(3n  3n  1) 30 15  25   n5  n (n  1)2 (2n  2n  1) 12 1.2.3  2.3.4   n( n  1)( n  2)  Câu 5) Nhận xét: Từ ví dụ tập phần nhận xét, ta thấy bậc vế trái nhỏ bậc vế phải đơn vị Lưu ý điều tính tổng dạng luỹ thừa dựa vào phương pháp hệ số bất định Từ kết ví dụ này, hồn tồn đề xuất câu hỏi trắc nghiệm sau đây: 2 Với số nguyên n, đặt S     n Mệnh đề sai? A Câu S  2n3  3n  n  Câu 1 S �   n3  n  �n  1   n  1 � �6 B n  n  1  2n  1 1� S   n  1  3n  n  1   n  1 � S � 6� C D 2 Với số nguyên dương n, ta    n  an  bn  cn, a, b, c 2 số Tính giá trị biểu thức M  ab  bc  ca A M  25 Câu n(n  1)(n  2)(n  3) B M 25 216 C M 25 2 Tìm tất số nguyên dương n, để    n  2017 A n �18 B n �20 C n �17 D M  23 D n �19 2 Tính tổng S tất số nguyên dương n, thoả mãn    n  2018 A S  153 B S  171 C S  136 D S  190 Ví dụ Đặt Tn      (có n dấu căn) Mệnh đề mệnh đề đúng?   T  cos T  cos n n n  2n 1 A Tn  B C D Tn  Đáp án B Lời giải Ta chứng minh Tn  cos  2n 1 phương pháp quy nạp toán học Thật vậy: www.thuvienhoclieu.com Trang www.thuvienhoclieu.com Bước 1: Với n  vế trái Vậy đẳng thức với n  , vế phải Bước 2: Giả sử đẳng thức với n  k �1 , nghĩa cos    cos  11 Tk  cos  2k 1 Tk 1  cos  2k 2 Tk 1   Tk   cos  2k 1 Ta phải chứng minh đẳng thức với n  k  , tức chứng minh Tk 1   Tk Thật vậy, nên theo giả thiết quy nạp ta   �  �    cos k 1   cos � k  � cos k  Tk 1  2.2 cos k   cos k  2 2 �2 � Mặt khác, nên Vậy phương án B STUDY TIP Ngồi cách làm trên, ta làm theo cách sau: kiểm tra tính – sai phương án đến tìm phương án thông qua số giá trị cụ thể n Câu + Với n  T1  (loại phương án A, C D) Nhận xét: Từ kết ví dụ 2, đề xuất câu hỏi đây: 511 Tn  2sin Tn      1024 Đặt (có n dấu căn) Tìm n để A n  10 Câu Cho dãy số u số  n  là: B n   un  C n  11 D n  u   un , n ��* xác định u1  n 1 Số hạng tổng quát dãy   un  cos n 1 n 1 A B   un  cos n 1 un  sin n 1 C D 1 Sn     1.3 3.5 (2n  1)(2n  1) ,với n ��* Mệnh đề đúng? Ví dụ Đặt n 1 3n  n n2 Sn  Sn  Sn  Sn  2(2n  1) 4n  2n  6n  A B C D un  2sin Đáp án C Lời giải Cách 1: Rút gọn biểu thức Sn dựa vào việc phân tích phần tử đại diện 1� 1 �  �  � Với số nguyên dương k , ta (2k  1)(2k  1) �2k  2k  � 1� 1 1 � 1� � n Sn  �       1 � � � 3 n  n  2 n  � � � � 2n  Do đó: Vậy phương án phương án C Cách 2: Kiểm tra tính – sai phương án dựa vào số giá trị cụ thể n www.thuvienhoclieu.com Trang www.thuvienhoclieu.com Với n  S1  1  1.3 (chưa loại phương án nào); 1   1.3 3.5 (loại phương án A,B D Với n  Vậy phương án phương án C Nhận xét: Từ kết ví dụ này,chúng ta hoàn toàn trả lời câu hỏi trắc nghiệm sau đây: 1 an  b     * (2n  1)(2n  1) cn  Trong a, b, c số nguyên Với n �� ,biết 1.3 3.5 S2  Câu Câu Câu Câu 4 Tính giá trị biểu thức P  a  b  c A P  17 B P  10 C P  D P  19 1 an  b     * (2n  1)(2n  1) 4n  c Trong a, b, c số Với n �� ,biết 1.3 3.5 T   a  b  c   a  b2  c2  nguyên.Tính giá trị biểu thức A T  40 B T  C T  32 D T  16 Biết 1 an  bn  c     1.3 3.5 (2n  1)(2n  1)  2n  1 F   a  b * ,trong n �� a, b, c số a c nguyên Tính giá trị biểu thức F  F  A B C F  D F  27 Tính tổng S tất số nguyên dương n thỏa mãn bất phương trình 1 17     1.3 3.5 (2n  1)(2n  1) 35 A S  153 B S  136 C S  272 D S  306 n 1 Ví dụ Tìm tất số nguyên dương n cho  n  3n A n �3 B n �5 C n �6 D n �4 Đáp án D Lời giải Kiểm tra tính – sai bất đẳng thức với trường hợp n  1, 2,3, 4, ta dự đoán 2n 1  n  3n, với n �4 Ta chứng minh bất đẳng thức phương pháp quy nạp toán học Thật vây: 1 -Bước 1: Với n  vế trái   32, vế phải  3.4  28 Do 32  28 nên bất đẳng thức với n  k 1 -Bước 2: Giả sử đẳng thức với n  k �4, nghĩa  k  3k Ta phải chứng minh bất đẳng thức với n  k  1, tức phải chứng minh k 2 2 k 1 1   k  1   k  1 hay  k  5k  k 1 Thật vậy, theo giả thiết quy nạp ta  k  3k www.thuvienhoclieu.com Trang Suy 2.2 Mặt khác k 1   k  3k  www.thuvienhoclieu.com k 2 hay  2k  6k 2k  6k   k  5k    k  k  �4    16 2k    k  3k   k  5k  với k �4 Do hay bất đẳng thức với n  k  Suy bất đẳng thức chứng minh Vậy phương án D STUDY TIP Dựa vào kết ví dụ 4, ta đề xuất tốn sau: n 1 Tìm số nguyên tố p nhỏ cho:  n  3n, n �p, n ��* A p  B p  C p  C BÀI TẬP RÈN LUYỆN KỸ NĂNG Câu Tổng S góc đa giác lồi n cạnh, n �3 , là: A S  n.180� B S   n   180� D p  C S   n  1 180� Câu Câu Câu Câu D S   n  3 180� * Với n �� , rút gọn biểu thức S  1.4  2.7  3.10   n  3n  1 2 A S  n  n  1 B S  n  n   C S  n  n  1 D S  2n  n  1 * *   Kí hiệu k !  k k  2.1, k �� Với n �� , đặt Sn  1.1! 2.2!  n.n ! Mệnh đề đúng?       A S n  2.n ! B Sn  n  ! C S n  n  ! D S n  n  ! 2 2 2 *  2  2 Với n �� , đặt Tn      2n M n      2n Mệnh đề đúng? Tn Tn Tn Tn 4n  4n  8n  2n      n 1 n 1 A M n 2n  B M n 2n  C M n D M n n Tìm số nguyên dương p nhỏ để  2n  với số nguyên n �p A p  Câu B p  C p  * n Tìm tất giá trị n �� cho  n D p  B n  n �6 C n �7 D n  n �5 1 an  b      3n  1  3n   cn  , a, b, c Với số nguyên dương n , ta có: 2.5 5.8 2 số nguyên Tính giá trị biểu thức T  ab  bc  ca A n �5 Câu A T  Câu B T  C T  43 D T  42 � 1� � � � � an  1 � 1 � �  � � � � � � n � bn  , a, b Với số nguyên dương n �2 , ta có: � � 2 số nguyên Tính giá trị biểu thức T  a  b A P  Câu B P  C P  20 D P  36 3 * Biết    n  an  bn  cn  dn  e, n �� Tính giá trị biểu thức M  abcd e www.thuvienhoclieu.com Trang www.thuvienhoclieu.com A M  B M  M  M  M T C D   Câu 10 Biết số nguyên dương n , ta 1.2  2.3   n n   a1n  b1n  c1n  d1 1.2  2.5  3.8   n  3n  1  a2 n3  b2 n  c2 n  d2 Tính giá trị biểu thức T  a1a2  b1b2  c1c2  d1d A T  B T  C D Câu 11 Biết    n , n, k số nguyên dương Xét mệnh đề sau: k k k n  n  1 n  n  1  2n  1 n  n  1 n  n  1  2n  1  3n  3n  1 S1  S2  S3  S4  30 , , Số mệnh đề mệnh đề nói là: A B C D n * n Câu 12 Với n �� , ta xét mệnh đề P : "7  chia hết cho 2" ; Q :"7  chia hết cho 3" Q : "7 n  chia hết cho 6" Số mệnh đề mệnh đề : A B C D n 1 Câu 13 Xét toán: “Kiểm nghiệm với số nguyên dương n bất đẳng thức n �2 ” Một học sinh trình bày lời giải tốn bước sau: n 1 n1 11 Bước 1: Với n  , ta có: n !  1!     Vậy n ! �2 k 1 Bước : Giả sử bất đẳng thức với n  k �1 , tức ta k ! �2 k Ta cần chứng minh bất đẳng thức với n  k  , nghĩa phải chứng minh  k  1 ! �2 Bước : Ta  k  1 !   k  1 k ! �2.2  Vậy n! �2 n Chứng minh hay sai, sai sai từ bước ? k 1 A Đúng B Sai từ bước k C Sai từ bước n 1 với số nguyên dương D Sai từ bước 1 an  bn     n  n  1  n   cn  dn  16 , a, b, c, d n số Câu 14 Biết 1.2.3 2.3.4 nguyên dương Tính giá trị biểu thức T   a  c   b  d  : A T  75 B T  364 C T  300 D T  256 D HƯỚNG DẪN GIẢI Câu Đáp án B Cách 1: Từ tổng góc tam giác 180�và tổng góc từ giác 360�, dự đoán S   n   180� Câu Cách 2: Thử với trường hợp biết để kiểm nghiệm tính –sai từ cơng thức Cụ thể với n  S  180�(loại phương án A, C D); với n  S  360� (kiểm nghiệm phương án B lần nữa) Đáp án A www.thuvienhoclieu.com Trang www.thuvienhoclieu.com Để chọn S đúng, dựa vào ba cách sau đây: Cách 1: Kiểm tra tính –sai phương án với giá trị n Với n  S  1.4  (loại phương án B C); với n  S  1.4  2.7  18 (loại phương án D) Cách 2: Bằng cách tính S trường hợp n  1, S  4; n  2, S  18; n  3, S  48 ta dự đốn cơng thức S  n  n  1    n  n  n  1 Cách 3: Ta tính S dựa vào tổng biết kết n  n  1  2n  1 12  22   n  2 2 Ta có: S      n       n   n  n  1 Câu Đáp án B Chúng ta chọn phương án dựa vào hai cách sau đây: Cách 1: Kiểm nghiệm phương án giá trị cụ thể n Với n  S1  1.1!  (Loại phương án A, C, D) Cách 2: Rút gọn Sn dựa vào việc phân tích phần tử đại diện k k !   k   1 k !   k  1 k ! k !   k  1 ! k ! Suy ra: Sn   2! 1!   3! 2!     n  1 ! n !   n  1 ! Câu Đáp án A Chúng ta chọn phương án dựa vào hai cách sau đây: Cách 1: Kiểm nghiệm phương án giá trị cụ thể n T1  2 Với n  T1    5; M   nên M (loại phương án B, C, D) Cách 2: Chúng ta tính Tn , M n dựa vào tổng biết kết Cụ thể dựa vào ví dụ 1: Tn 4n  2n  2n  1  4n  1 2n  n  1  2n  1  Tn  ; Mn  Suy M n 2n  Câu Câu Đáp án B p Dễ thấy p  bất đẳng thức  p  sai nên loại phương án D p Xét với p  ta thấy  p  bất đửng thức Bằng phương pháp quy nạp toán học n chứng minh  2n  với n �3 Vậy p  số nguyên dương nhỏ cần tìm Đáp án D Kiểm tra với n  ta thấy bất đẳng thức nên loại phương án A C Kiểm tra với n  ta thấy bất đẳng thức Bằng phương pháp quy nạp toán học n chứng minh  n , n �5 Câu Đáp án B 1� 1 �  �  � Cách 1: Với ý  3k  1  3k   �3k  3k  �, có: 1 1 �1 1 1 �     �       �  3n  1  3n   �2 5 2.5 5.8 3n  3n  � www.thuvienhoclieu.com Trang www.thuvienhoclieu.com 3n n  =  3n   6n  Đối chiếu với đẳng thức cho, ta có: a  1, b  0, c  2 Suy T  ab  bc  ca  a  b 2a  b x  b  ;  ;  Cách 2: Cho n  1, n  2, n  ta được: c  10 2c  3c  22 2 Giải hệ phương trình ta a  1, b  0, c  Suy T  ab  bc  ca  Câu Đáp án C 1 k 1 k 1  k2 k k Suy Cách 1: Bằng cách phân tích số hạng đại diện, ta có: � 1� � � � � n  n  n  2n  1 � 1 � �  �   � � � 4� � � � n2 � 2 3 n 2n 2n 4n 2 Đối chiếu với đẳng thức cho ta có: a  2, b  Suy P  a  b  20 a  3a  2  ;  n  2, n  3b Giải hệ phương trình trren ta Cách 2: Cho ta b 2 a  2; b  Suy P  a  b  20 Câu Đáp án B n  n  1 n  2n3  n    n   4 Cách 1: Sử dụng kết biết: So sánh cách hệ 1 a  ;b  ;c  ; d  e  4 số, ta 3 Cách 2: Cho n  1, n  2, n  3, n  4, n  , ta hệ phương trình ẩn a, b, c, d , e Giải hệ 1 a  ;b  ;c  ;d  e  4 phương trình đó, ta tìm Suy M  a  b  c  d  e  Câu 10 Đáp án C Cách 1: Sử dụng tổng lũy thừa bậc bậc ta có: 1.2  2.3   n  n  1   12  2   n       n   n3  n  n 3 +) a1  ; b1  1; c1  ; d1  3 Suy 2 +) 1.2  2.5  3.8   n  3n  1      n       n   n  n Suy a2  b2  1; c2  d  Do T  a1a2  b1b2  c1c2  d1d  Cách 2: Cho n  1, n  2, n  3, n  sử dụng phương pháp hệ số bất đinh ta tìm a1  ; b1  1; c1  ; d1  3 ; a2  b2  1; c2  d  www.thuvienhoclieu.com Trang www.thuvienhoclieu.com T  a1a2  b1b2  c1c2  d1d  Do Câu 11 Đáp án D n  n  1 S3  Bằng kết biết ví dụ 1, thấy sai Câu 12 Đáp án A n Bằng phương pháp quy nạp toán học, chứng minh  chia hết cho Thật vậy: Với n    12M6 k Giả sử mệnh đề với n  k �1 , nghĩa  chia hết ccho k 1 Ta chứng minh mệnh đề với n  k  , nghĩa phỉa chứng minh  chia hết cho k 1 k Ta có:       30 k 1 k k Theo giả thiết quy nạp  chia hết       30 chia hết cho n Vậy  chia hết cho với n �1 Do mệnh đề P Q Câu 13 Đáp án A Câu 14 Đáp án C 1� 1 �  �     2� k  k  1  k  1  k   � � Phân tích phần tử đại diện, ta có: k k  k  1     n n  1  n   Suy ra: 1.2.3 2.3.4 �1 1 1 �  �       2� 1.2 2.3 2.3 3.4 n  n  1  n  1  n   � �  1� 1 � n  3n 2n  6n   2�  n  1  n   � � �= 4n  12n  8n  24n  16 Đối chiếu với hệ số, ta được: a  2; b  6; c  8; d  24 Suy ra: T   a  c   b  d   300 DÃY SỐ A LÝ THUYẾT Định nghĩa: * Một hàm số u xác định tập hợp số nguyên dương � gọi dãy số vô hạn (hay gọi tắt dãy số)   Người ta thường viết dãy số dạng khai triển u1 , u2 , , un , , un  u n viết u  tắt n Số hạng u1 gọi số hạng đầu, un số hạng tổng quát (số hạng thứ n ) dãy số Các cách cho dãy số: Người ta thường cho dãy số cách đây: www.thuvienhoclieu.com Trang www.thuvienhoclieu.com - Cách 1: Cho dãy số công thức số hạng tổng quát n xn  n 1 xn   Ví dụ Cho dãy số với Dãy số cho cách ưu điểm xác định số hạng 10 10 x10  11  177147 dãy số Chẳng hạn, - Cách 2: Cho dãy số phương pháp truy hồi Ví dụ Cho dãy số  an  Ví dụ Cho dãy số  un  xác định a1  an1  3an  7, n �1 b1  1, b2  � � b  4bn 1  5bn , n �1 b  Ví dụ Cho dãy số n xác định �n  Với cách này, ta xác định mối liên hệ số hạng nhóm số hạng dãy số thơng qua hệ thức truy hồi Tuy nhiên, để tính số hạng dãy số cần phải tích số hạng trước phải tìm cơng thức tính số hạng tổng quát dãy số - Cách 3: Cho dãy số phương pháp mô tả diễn đạt lời cách xác định số hẩng dãy số gồm số nguyên tố Ví dụ Cho tam giác ABC cạnh Trên cạnh BC , ta lấy điểm A1 cho CA1  Gọi B1 hình chiếu A1 CA , C1 hình chiếu B1 AB , A2 hình chiếu C1 u  BC , B2 hình chiếu A2 CA ,… tiếp tục thế, Xét dãy số n với un  CAn Dãy số tăng, dãy số giảm, dãy số hằng: Dãy số  un  Dãy số  un  Dãy số n ��*  un  * gọi dãy số tăng ta un 1  un với n �� * gọi dãy số giảm ta un 1  un với n �� gọi dãy số (hoặc dãy số không đổi) ta un 1  un với Ví dụ a) Cho dãy số  xn  với xn  n  2n  dãy số tăng  2   Chứng minh: Ta xn 1  n   n    n  Suy Vậy xn 1  xn   n     n  2n  3  2n   0, n �1 hay xn 1  xn , n �1  xn  dãy số tăng n2 yn  n yn   dãy số giảm b) Dãy số với Chứng minh: n3 n3 n2 4n  yn 1  yn  n 1  n   n 1  0, n �1 yn 1  n 1 Suy 5 Cách 1: Ta hay yn 1  yn , n �1 Vậy  yn  dãy số giảm www.thuvienhoclieu.com Trang 10 b) Ta Sk  u1   q k  1 q    2k  1 www.thuvienhoclieu.com u1   q13  13 S  S13    10  1 1 q   2k  1  2k  1  189 � 2k  26 � k  Theo giả thiết, ta B CÁC DẠNG TỐN VỀ CẤP SỐ NHÂN Câu Trong dãy số đây, dãy số cấp số nhân? A Dãy số  an  , với an   1 n 3n1  1, n ��* 2017 b1  1, bn 1  bn  b n , n �� b  2018 B Dãy số n , với C Dãy số  cn  , với cn  n.52 n1 , n ��* D Dãy số  d n  , với * d1  3, d n 1  d n2 , n ��* Lời giải Đáp án B Kiểm tra phương án đến tìm phương án - Phương án A: Ba số hạng dãy số 8, 28,  80 28 80 � Ba số khơng lập thành cấp số nhân 8 28 4035 bn 1  bn , n ��* b  2018 - Phương án B: Ta nên n cấp số nhân cn 1 25  n  1  n - Phương án C: Ta cn (phụ thuộc vào n, không đổi) Do (cn ) khơng phải cấp số nhân d - Phương án D: Ba số hạng dãy số  n  3,9,81 Nhận thấy ba số không lập d thành cấp số nhân nên dãy số  n  không cấp số nhân Câu Cho cấp số nhân A a5  24  an  a1  a2  6 Tìm số hạng thứ năm cấp số nhân cho B a5  48 C a5  48 Lời giải D a5  24 Đáp án B q Ta cơng bội cấp số nhân 4 Suy a5  a1.q  3.(2)  48 a2  2 a1 Vậy phương án B Nhận xét: Với kiện ví dụ này, đề xuất câu hỏi sau đây: www.thuvienhoclieu.com Trang 51 Câu www.thuvienhoclieu.com a  Cho cấp số nhân n a1  a2  6 Tìm số hạng tổng quát cấp số nhân cho n 1 B un  3.(2) n A un  3.(2) Câu Cho cấp số nhân cho  an  50 A S   Câu Cho cấp số nhân Cho cấp số nhân A x1  1, q   an  a1  50 C S   51 D S   a2  6 Biết S k  16383 , tính a k B ak  24576  xn  n D un  3.(2) a1  a2  6 Tìm tổng S 50 số hạng cấp số nhân 51 B S   A ak  24576 Câu n 1 C un  3.(2) C ak  49152 �x2  x4  x5  10 � �x3  x5  x6  20 B x1  1, q  Tìm x1 cơng bội q C x1  1, q  2 D ak  49152 D x1  1, q  2 Lời giải �x2   q  q   10 �x2  x4  x5  10 �x  � �� � �2   � q2 x q  q  q � �x3  x5  x6  20   � � Ta x x1   q Suy Vậy phương án A Câu n u  Cho cấp số nhân n tổng n số hạng S n   Tìm số hạng đầu u1 công bội q cấp số nhân A u1  6, q  B u1  5, q  C u1  4, q  D u1  5, q  Lời giải u  S2  S1   52  1    1  20 Ta u1  S1    STUDY TIP 1) Định lý Vi-ét phương trình bậc ba: Nếu phương trình bậc ba ax  bx  cx  d  ba nghiệm x1 , x2 , x3 thì: b � x  x  x   � a � � c �x1 x2  x2 x3  x3 x1  a � � d x1 x2 x3   � a � 2) Trong thực hành giải toán, sử dụng kết kết hợp với giả thiết tốn để tìm nghiệm phương trình xác định mối liên hệ hệ số phương trình www.thuvienhoclieu.com Trang 52 www.thuvienhoclieu.com d Trường hợp a số điều kiện cần để phương trình bậc ba nói ba nghiệm d x3 a nghiệm phương trình bậc ba lập thành cấp số nhân  Câu u  Cho cấp số nhân n u1  15u1  4u2  u3 đạt giá trị nhỏ Tìm số hạng thứ 13 cấp số nhân cho A u13  24567 B u13  12288 C u13  49152 D u13  3072 Lời giải u  Gọi q công bội cấp số nhân n 15u1  4u2  u3  45  12q  3q   q    33 �33 q Ta 12 Suy u13  u1q  12288 Phương án B Nhận xét: Từ kết ví dụ này, đề xuất câu hỏi sau: Câu 15 Cho cấp số nhân cấp số nhân n 1 A un  3.2 C un   2  n 1  un  u1  15u1  4u2  u3 đạt giá trị nhỏ Số hạng tổng quát n B un  3.2  n 1 D un  3.4 u  Câu 16 Cho cấp số nhân n u1  15u1  4u2  u3 đạt giá trị nhỏ Số 12288 số hạng thứ cấp số nhân đó? A 13 B 12 C 14 D 15 u  Câu 17 Cho cấp số nhân n u1  15u1  4u2  u3 đạt giá trị nhỏ Tính tổng S15 15 số hạng cấp số nhân A S15  737235 B S15  2949075 C S15  1474515 D S15  2949075 Câu 18 Cho cấp số nhân tìm k A k  16 Câu  un  u1  15u1  4u2  u3 đạt giá trị nhỏ Biết S k  5898195, B k  18 C k  19 D k  17 Số đo ba kích thước hình hộp chữ nhật lập thành cấp số nhân Biết thể tích khối hộp 125 cm diện tích tồn phần 175 cm Tính tổng số đo ba kích thước hình hộp chữ nhật A 30cm B 28cm C 31cm D 17,5cm Lời giải Vì ba kích thước hình hộp chữ nhật lập thành cấp số nhân nên ta gọi ba kích a , q, aq q thước a V  a.qa  a  125 � a  q Thể tích khối hình hộp chữ nhật Diện tích tồn phần hình hộp chữ nhật www.thuvienhoclieu.com Trang 53 www.thuvienhoclieu.com �a � a� 1� � 1� Stp  � a  a.aq  aq � 2a �  q  � 50 � 1 q  � q� q� � q� �q � q2 � � 1� � 50 �  q  � 175 � 2q  5q   � � q� q � � Theo giả thiết, ta q q  2 kích thước hình hộp chữ nhật 2,5cm;5cm;10cm Với Câu Suy tổng ba kích thước 2,5   10  17, cm Vậy phương án D Tìm tất giá trị tham số m để phương trình sau ba nghiệm phân biệt lập thành x  x   m  6m  x   cấp số nhân: A m  7 B m  C m  1 m  D m  m  7 Lời giải + Điều kiện cần: Giả sử phương trình cho ba nghiệm phân biệt x1 , x2 , x3 lập thành cấp số nhân Theo định lý Vi-ét, ta x1 x2 x3  Theo tính chất cấp số nhân, ta x1 x3  x2 Suy ta x2  � x2  2 + Điều kiện đủ: Với m  m  m  6m  nên ta phương trình x  x  14 x   Giải phương trình này, ta nghiệm 1, 2, Hiển nhiên ba nghiệm lập thành cấp số nhân với công bôị q  Vậy, m  m  7 giá trị cần tìm Do phương án D STUDY TIP Ta nghiệm x2 cách khác: Theo định lý Vi-ét x1  x2  x3  7; x1 x2  x2 x3  x3 x1   m  6m  ; x1 x2 x3  Theo tính chất cấp số nhân x1 x3  x2 Suy  m  6m   x1 x2  x2 x3  x3 x1  x2  x1  x2  x3   m  6m  Câu  m  6m  x2  8 73 Thay x1  x2  x3  7; Thay vào x1 x2 x3  ta � m2  6m   Nhận xét: Từ kêt ví dụ này, ta đề xuất câu hỏi sau đây: Biết tồn hai giá trị tham số m để phương trình sau ba nghiệm phân biệt x  x   m  6m  x   lập thành cấp số nhân: Tính tổng bình phương hai giá trị A 48 B 64 C 36 D 50 www.thuvienhoclieu.com Trang 54 Câu Câu www.thuvienhoclieu.com Biết tồn hai giá trị tham số m để phương trình sau ba nghiệm phân biệt lập x  7 x   m  6m  x   thành cấp số nhân: Tính tổng bình phương ba số hạng cấp số nhân A 49 B 21 C 14 D 13 Một khu rừng trữ lượng gỗ 4.10 mét khối Biết tốc độ sinh trưởng khu rừng 4% năm Hỏi sau năm, khu rừng mét khối gỗ 4.105  0, 05  A 4.105  1,  B 4.105  1, 04  C Lời giải  10,  D Đặt u0  4.10 r  4%  0, 04 Gọi un trữ lượng gỗ khu rừng sau năm thứ n un1  un  un   r  , n �N Khi ta Suy  un  cấp số nhân với số hạng đầu u0 công bội q   r Do số hạng tổng quát cấp số nhân Sau năm, khu rừng có: un  u1.q  4.105   0, 04    10,  Câu  un  u n  u0   r  n mét khối gỗ Vậy phương án D Bài toán “Lãi kép” Một người gửi số tiền 100 triệu đồng vào ngân hàng với lãi suất 7% /năm Biết khơng rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào vốn ban đầu (người ta gọi lãi kép) Giả sử khoảng thời gian gửi người gửi không rút tiền lãi suất không thay đổi, hỏi sau 10 năm tổng số tiền vốn lẫn lãi mà người gửi nhận gần với số tiền số tiền đây? A 196715000 đồng B 196716000 đồng C 183845000 đồng D 183846000 đồng Lời giải Đặt M  10 (đồng) r  7%  0, 07 Gọi M n số tiền vốn lẫn lãi mà người gửi nhận sau n năm Theo giả thiết, ta M n 1  M n  M n r  M n   r  , n �1  M n  cấp số nhân với số hạng đầu M công bội q   r Suy Do dãy số n M n  M0  1 r  Vì vậy, sau 10 năm tổng số tiền vốn lẫn lãi mà người gửi nhận M 10  M   r  10  108  1, 07  10 �196715000 Vậy phương án A Câu 10 Một người gửi ngân hàng 150 triệu đồng theo thể thức lãi kép, lãi suất 0,58% tháng (kể từ tháng thứ , tiền lãi tính theo phần trăm tổng tiền lãi tháng trước tiền gốc tháng trước đó) Sau tháng, người 180 triệu đồng? A 34 tháng B 32 tháng C 31 tháng www.thuvienhoclieu.com D 30 tháng Trang 55 www.thuvienhoclieu.com Lời giải Theo ví dụ , sau n tháng gửi tiết kiệm, ta Mn  M0 1 r , n M  15.10 , r  0, 0058 M n  15.107  1, 0058  n Do Cách 1: Kiểm tra phương án đến tìm phương án 34 + Phương án A: M 34  15.107  1, 0058  + Phương án B: M 32  15.10  1, 0058  32 �182594000 �180494000 (đồng) (đồng) M  15.107  1, 0058  �179453000 + Phương án C: 31 (đồng) Vậy, phương án B (Không cần kiểm tra phương án D phương án D, số tháng phương án C nên số tiền nữa) Cách 2: Theo giả thiết, ta M n  18.10 (đồng) 31 n n 18.107  15.107  1, 0058  �  1, 0058   Do đó, ta �6 � n �log � � : log  1, 0058  �5 � Sử dụng máy tính cầm tay, ta tính hay n �31,526 Do n  32 Vậy phương án B C BÀI TẬP RÈN LUYỆN KỸ NĂNG Dạng 1: Bài tập nhận dạng cấp số nhân Câu Dãy số không cấp số nhân? 1 1,  ,  ,  25 125 A Câu 1  ;  ;  ;1 B 1 1; ; ; D 27 4 4 C 2; 2; 2;8 Trong dãy số cho đây, dãy số cấp số nhân?  un  , với un   3n   , n với   t  n n w , t , 3n C Dãy số n với wn  7.3 D Dãy số n với Câu Trong dãy số cho công thức truy hồi sau, chọn dãy số cấp số nhân u1  u1  u1  1 u1  3 � � � � � � � � un 1  3un un 1  un  un 1  un un 1  2n.un � � � � A B C D Dạng 2: Bài tập xác định số hạng công bội cấp số nhân u un 1  n , n �1 un   u  Câu Cho dãy số xác định Tìm số hạng tổng quát dãy số A Dãy số n A un  3.4 Câu 1 n B un  3.4 B Dãy số n 1 C un  3.4  n 1 D un  3.4 x  Cho cấp số nhân n x2  3 x4  27 Tính số hạng đầu x1 cơng bội q cấp số nhân A x1  1, q  3 x1  1, q  B x1  1, q  x1  1, q  3 www.thuvienhoclieu.com Trang 56 www.thuvienhoclieu.com C x1  3, q  1 x1  3, q  D x1  3, q  x1  3, q  1 Câu Câu  an  a3  a5  32 Tìm số hạng thứ mười cấp số nhân B a10  �512 C a10  1024 D a10  1024 Cho cấp số nhân x,12, y,192 Tìm x y A x  3, y  48 x  4, y  36 B x  3, y  48 x  2, y  72 Cho cấp số nhân A a10  �1024 C x  3, y  48 x  3, y  48 Câu D x  3, y  48 x  3, y  48 u  Cho cấp số nhân n u1  5, q  S n  200, tìm n un A n  un  405 B n  un  1215 C n  un  3645 D n  un  135 a  Cho cấp số nhân n a1  biểu thức 20a1  10a2  a3 đạt giá trị nhỏ Tìm số hạng thứ bảy cấp số nhân A a7  156250 B a7  31250 C a7  2000000 D a7  39062 Câu 10 Một tứ giác lồi số đo góc lập thành cấp số nhân Biết số đo góc nhỏ số đo góc nhỏ thứ ba Hãy tính số đo góc tứ giác Câu 0 0 A ,15 , 45 , 225 Câu 11 Cho cấp số nhân A u1  2, q  3  un  Câu 12 Cho cấp số nhân T   k  1 ak 0 0 0 0 0 0 B , 27 ,81 , 243 C , 21 , 63 , 269 D ,32 , 72 , 248 u4  u6  540 � � u3  u5  180 � Tìm số hạng đầu u1 công bội q cấp số nhân B u1  2, q  C u1  2, q  D u1  2, q  3  an  a1  7, a6  224 S k  3577 Tính giá trị biểu thức A T  17920 B T  8064 C T  39424 Dạng 3: Bài tập tổng n số hạng cấp số nhân Câu 13 Cho cấp số nhân  un  Câu 14 Cho cấp số nhân  un  D T  86016 S  S3  13 Tìm S5 181 35 S5  S5  S  121 S  121 16 16 A B 185 183 S  S  5 16 16 C S5  114 D S5  141  411  1 u1  biểu thức 4u3  2u2  15u1 đạt giá trị nhỏ Tính S10  410  1 211  S10  S10  S10  5.49 5.48 3.27 A B D 1024 u4  u   u7 đạt giá trị nhỏ Câu 15 Cho cấp số nhân n u1  2, cơng bội dương biểu thức Tính S  u11  u12   u20 A S  2046 B S  2097150 210  S10  3.26 C C S  2095104 www.thuvienhoclieu.com D S  1047552 Trang 57 www.thuvienhoclieu.com u4  u6  540 � � u  u  180 �3 Tính S 21 u  Câu 16 Cho cấp số nhân n 1 21 S21   321  1 S   21 21   1 21 2 A B S 21   C S 21   D Dạng 4: Bài tập liên quan đến cấp số nhân Câu 17 Tìm tất giá trị tham số m để phương trình sau ba nghiệm phân biệt lập thành x   x  1 x   5m   x   cấp số nhân: A m  2 B m  C m  D m  4 Câu 18 Biết tồn hai giá trị m1 m2 để phương trình sau ba nghiệm phân biệt lập thành x3   m  2m  1 x   m  2m   x  54  cấp số nhân: Tính giá trị biểu thức 3 P  m1  m2 A P  56 B P  C P  56 D P  8 Câu 19 Một hàng kinh doanh, ban đầu bán mặt hàng A với giá 100 (đơn vị nghìn đồng) Sau đó, cửa hàng tăng giá mặt hàng A lên 10% Nhưng sau thời gian, cửa hàng lại tiếp tục tăng giá mặt hàng lên 10% Hỏi giá mặt hàng A cửa hàng sau hai tăng giá bao nhiêu? A 120 B 121 C 122 D 200 Câu 20 Một người đem 100 triệu đồng gửi tiết kiệm với kỳ han tháng, tháng lãi suất 0, 7% số tiền mà người Hỏi sau hết kỳ hạn, người lĩnh tiền? A 108  0, 007  10  0, 007  C (đồng) B 108  1, 007  10  1, 007  (đồng) D (đồng) (đồng) Câu 21 Tỷ lệ tăng dân số tỉnh M 1, 2% Biết số dân tỉnh M triệu người Nếu lấy kết xác đến hàng nghìn sau năm số dân tỉnh M bao nhiêu? A 10320 nghìn người B 3000 nghìn người C 2227 nghìn người D 2300 nghìn người Câu 22 Tế bào E Coli điều kiện ni cấy thích hợp 20 phút lại nhân đơi lần Nếu lúc đầu 12 10 tế bào sau phân chia thành tế bào? 12 12 12 13 A 1024.10 tế bào B 256.10 tế bào C 512.10 tế bào D 512.10 tế bào Câu 23 Người ta thiết kế tháp gồm 11 tầng theo cách: Diện tích bề mặt tầng nửa diện tích mặt tầng bên diện tích bề mặt tầng nửa diện tích đế tháp Biết diện tích đế tháp 12288m , tính diện tích mặt 2 A 6m B 12m C 24m Dạng 5: Bài tập liên quan đến cấp số nhân cấp số cộng Câu 24 Trong mệnh đề đây, mệnh đề sai? D 3m  an  , với a1  an1  an  6, n �1, vừa cấp số cộng vừa cấp số nhân b  2bn  1  3, n �1, b  B Dãy số n , với b1  n 1 vừa cấp số cộng vừa cấp số nhân c  C Dãy số n , với c1  cn 1  3cn  10 n �1, vừa cấp số cộng vừa cấp số nhân d  D Dãy số n , với d1  3 d n 1  2d n  15, n �1, vừa cấp số cộng vừa cấp số nhân A Dãy số www.thuvienhoclieu.com Trang 58 www.thuvienhoclieu.com Câu 25 Các số x  y , x  y, 8x  y theo thứ tự lập thành cấp số cộng, đồng thời, số x , y  1, x  y theo thứ tự lập thành cấp số nhân Hãy tìm x y 3 x ,y x ,y 8 8 A x  3, y  1 B x  3, y  C x  24, y  x  3, y  1 D x  24, y  8 x  3, y  Câu 26 Ba số x, y, z lập thành cấp số cộng tổng 21 Nếu thêm số 2;3;9 vào ba số (theo thứ tự cấp số cộng) ba số lập thành cấp số nhân Tính F  x2  y  z A F  389 F  395 B F  395 F  179 C F  389 F  179 D F  441 F  357 D HƯỚNG DẪN GIẢI Dạng 1: Bài tập nhận dạng cấp số nhân Câu Đáp án B Các dãy số phương án A, C D đảm bảo dấu dãy số phương án B số hạng đầu âm số hạng thứ tư dương nên dãy số phương án B cấp số nhân Câu Đáp án C Kiểm tra phương án đến tìm phương án + Phương án A : Ba số hạng đầu dãy số 4,1, 2 không lập thành cấp số nhân nên dãy số  un  cấp số nhân + Phương án B : Ba số hạng đầu dãy số 4; 2; 20 không lập thành cấp số nhân nên dãy v  số n cấp số nhân n 1 w  + Phương án C : Ta wn 1  7.3  3wn , n �1 nên dãy số n cấp số nhân 7 , , + Phương án D : Ba số hạng đầu dãy số không lập thành cấp số nhân nên dãy số  tn  Câu cấp số nhân Đáp án B Các kiểm tra câu Dạng 2: Bài tập xác định số hạng công bội cấp số nhân Câu Đáp án B Ta có: un 1  un 1  un q  u   4 Suy số hạng tổng qt nên n cấp số nhân cơng bội n 1 �1 � un  u1.q n 1  � �  3.41n �4 � Vậy phương án B Câu Đáp án B www.thuvienhoclieu.com Trang 59 Câu www.thuvienhoclieu.com �x1q  3 �x2  3 �x  1 �x1  �� � �1 � � x4  27 q  q   x q   27 � � � �1 Ta Do B phương án Đáp án A � a1q  a 2 �a3  � � �� � �1 � a  32 q2 a1q  32 � � Ta có: �5 Với a1  2, q  a10  a1q  1024 Câu a1  � � q  2 � Với a1  2, q  2 a10  a1q  1024 Vậy a10  �1024 Suy A phương án Đáp án C Theo tính chất cấp số nhân, ta có: y  12.192  2304 � y  �48 Cũng theo tính chất cấp số nhân, ta có: xy  122  144 Với y  48 x  3; với y  48 x  3 Vậy phương án C Câu Đáp án D Ta có: S n  u1  qn  q nên theo giả thiế, ta có:  3n  200 � 3n  81 � n  1 3 Suy u4  u1.q  135 Vậy đáp án D Câu Đáp án B a  Gọi q công bội cấp số nhân n 20a1  10a2  a3   q  10q  20    q    10 �10, q Ta Dấu xảy q  6 Suy a7  a1.q  2.5  31250 Vậy phương án B Câu 10 Đáp án B Cách 1: Kiểm tra dãy số phương án thỏa mãn yêu cầu tốn khơng 0 0 + Phương án A : Các góc ,15 , 45 , 225 khơng lập thành cấp số nhân 150  3.50 ; 450  3.150 ; 2250 �3.450 0 0 + Phương án B : Các góc , 27 ,81 , 243 lập thành cấp số nhân 90  810 0 0  27  81  243  360 Hơn nữa, nên B phương án www.thuvienhoclieu.com Trang 60 www.thuvienhoclieu.com + Phương án C D : Kiểm tra phương án A Cách 2: Gọi góc tứ giác a, aq, aq , aq , q  1 a  aq Theo giả thiết, ta nên q  Suy góc tứ giác a,3a,9a, 27 a Vì tổng góc tứ giác 360 nên ta có: a  3a  9a  27a  3600 � a  90 Do đó, phương án B (vì ba phương án lại khơng phương án góc 90 ) Câu 11 Đáp án A �  u3  u5  q  540 Ta u4  u6  540 Kết hợp với phương trình thứ hai hệ, ta tìm q  3 � u1  q  q   180 Lại u3  u5  180 Vì q  3 nên u1  Vậy phương án A Câu 12 Đáp án A Ta a6  224 � a1q  224 � q  (do a1  ) Sk  a1   q k    2k  1 �  2k  1  3577 � 2k  29 � k  nên S k  3577 Suy T  10a9  10a1q  17920 Vậy phương án A Dạng 3: Bài tập tổng n số hạng cấp số nhân Do 1 q Câu 13 Đáp án A Ta u3  S3  S2  � u1q  � u1  q2 9  4 S  u  u q  q q 1 Vì nên Do q � 4q  9q   � q  + Với q  u1  1, u6  u1q  243 u  u  243 S5    121 1 q 1 Suy 243 u   u1  16, 64 + Với u  u 181 S5    q 16 Suy q www.thuvienhoclieu.com Trang 61 www.thuvienhoclieu.com Vậy phương án A Câu 14 Đáp án B Gọi q công bội cấp số nhân Khi 4u3  2u2  15u1   4q  1  122 �122, q Dấu xảy 4q   �q 10 �1� 1 �  � 410  10   1 q 4� � S10  u1   1 q 5.4 �1�  � � � 4� Suy ra: Vậy phương án B Câu 15 Đáp án C Gọi q công bội cấp số nhân, q  u4  1024 512  2q  u7 q Ta Áp dụng bất đẳng thức Cơ-si, ta có: 2q  512 512 512  q  q3  �3 q q3  24 q q q Suy Ta u4  S10  1024 512 q3  u7 đạt giá trị nhỏ 24 q � q  u1   q10  1 q   2; S10  11 u1   q 20  1 q  221  Do S  S20  S10  2095104 Vậy phương án C Câu 16 Đáp án A �  u3  u5  q  540 Ta u4  u6  540 Kết hợp với phương trình thứ hai hệ, ta tìm q  3 Lại u3  u5  180 � u1  q  q   180 Vì q  3 nên u1  Suy Vậy phương án A S 21  u1   q 21  1 q  21   1 Dạng 4: Bài tập liên quan đến cấp số nhân Câu 17 Đáp án B Cách 1: Ta  d 8   a Điều kiện cần để phương trình choc ó ba nghiệm lập thành cấp số nhân x   nghiệm phương trình Thay x  vào phương trình cho, ta www.thuvienhoclieu.com Trang 62 www.thuvienhoclieu.com  2m  � m  Với m  2, ta phương trình x  x  14 x   � x  1; x  2; x  Ba nghiệm lập thành cấp số nhân nên m  giá trị cần tìm Vậy, B phương án Cách 2: Kiểm tra phương án đến tìm phương án Câu 18 Đáp án A d 54    27 Ta a Điều kiện cần để phương trình cho ba nghiệm phân biệt lập thành cấp số nhân x  27  phải nghiệm phương trình cho � m  2m   � m  2; m  4 Vì giả thiết cho biết tồn hai giá trị tham số m nên m  m  4 giá trị thỏa mãn P  23   4   56 Suy Vậy phương án A Câu 19 Đáp án B Sau lần tăng giá thứ giá mặt hàng A là: M  100  100.10%  110 Sau lần tăng giá thứ hai giá mặt hàng A là: M  110  110.10%  121 Suy phương án B Suy phương án B Câu 15 Đáp án D Số tiền ban đầu M  10 (đồng) Đặt r  0, 7%  0, 007 Số tiền sau tháng thứ Số tiền sau tháng thứ hai M1  M  M r  M   r  M  M  M 1r  M   r  Lập luận tương tự, ta số tiền sau tháng thứ sáu M  10  1, 007  Do M6  M0 1 r Câu 16 Đáp án C Đặt P0  2000000  2.10 r  1, 2%  0, 012 Gọi Pn số dân tỉnh M sau n năm Ta có: Suy Pn 1  Pn  Pn r  Pn   r   Pn  cấp số nhân với số hạng đầu P0 công bội q   r P  M   r   2.106  1, 012  Do số dân tỉnh M sau 10 năm là: 9 www.thuvienhoclieu.com 10 �2227000 Trang 63 www.thuvienhoclieu.com Câu 17 Đáp án C Lúc đầu 10 22 tế bào lần phân chia tế bào tách thành hai tế bào nên ta cấp 22 số nhân với u1  10 công bội q  Do 20 phút phân đôi lần nên sau lần phân chia tế bào Ta u10 số tế 12 bào nhận sau Vậy, số tế bào nhận sau u10  u1q  512.10 Câu 18 Đáp án A Gọi u0 diện tích đế tháp un diện tích bề mặt tầng thứ n , với �n �11 Theo un 1  un �n �10 giả thiết, ta u  Dãy số n q u  12288 lập thành cấp số nhân với số hạng đầu công bội 11 �1 � u11  u0 q11  12288 � �  m �2 � Diện tích mặt tháp Dạng 5: Bài tập liên quan đến cấp số nhân cấp số cộng Câu 19 Đáp án D Kiểm tra phương án đến tìm phương án sai + Phương án A:Ta a2  3; a2  3; Bằng phương pháp quy nạp toán học chúng chứng a  minh an  3, n �1 Do n dãy số khơng đổi Suy vừa cấp số cộng (công sai ) vừa cấp số nhân (công bội ) b  + Phương án B: Tương tự phương án A, bn  1, n �1 Do n dãy số khơng đổi Suy vừa cấp số cộng (công sai ) vừa cấp số nhân (công bội ) c  + Phương án C: Tương tự phương án A, cn  2, n �1 Do n dãy số khơng đổi Suy vừa cấp số cộng (cơng sai ) vừa cấp số nhân (công bội ) + Phương án D: Ta có: d1  3, d  3, d3  Ba số hạng không lập thành cấp số cộng không lập thành cấp số nhân nên dãy số số nhân  dn  cấp số cộng không cấp Câu 20 Đáp án A + Ba số x  y, x  y,8 x  y lập thành cấp số cộng nên  x  y    8x  y    5x  y  � x  y x  , y  1, x  y + Ba số lập thành cấp số nhân nên � 5�  x  y    y  1 �x  � � 3� Thay x  y vào ta y  y   � y  1 www.thuvienhoclieu.com y Trang 64 www.thuvienhoclieu.com y x y   Với x  3 ; với Câu 21 Đáp án C Theo tính chất cấp số cộng , ta x  z  y Kết hợp với giả thiết x  y  z  21 , ta suy y  21 � y  Gọi d cơng sai cấp số cộng x  y  d   d z  y  d   d Sau thêm số 2;3;9 vào ba số x, y, z ta ba số x  2, y  3, z  hay  d ,10,16  d  d   16  d   102 � d  7d  44   Theo tính chất cấp số nhân, ta Giải phương trình ta d  11 d  Với d  11 , cấp số cộng 18, 7, 4 Lúc F  389 Với d  , cấp số cộng 3, 7,11 Lúc F  179 www.thuvienhoclieu.com Trang 65 ... thế, Xét dãy số n với un  CAn Dãy số tăng, dãy số giảm, dãy số hằng: Dãy số  un  Dãy số  un  Dãy số n ��*  un  * gọi dãy số tăng ta có un 1  un với n �� * gọi dãy số giảm ta có un 1... nghĩa cấp số cộng, dãy số 2, 1, 4, 7, 10, 13, 16, 19 cấp số cộng với công sai d  Ví dụ Trong dãy số đây, dãy số cấp số cộng? Tìm số hạng đầu cơng sai  3n bn  an  b    a  n  ; a) Dãy số. .. TỐN VỀ CẤP SỐ CỘNG Câu Trong dãy số đây, dãy số cấp số cộng? A Dãy số  an  , với an  2n , n ��* B Dãy số  bn  , với b1  1, bn1  2bn  1, n ��* C Dãy số  cn  , với cn D Dãy số  d

Ngày đăng: 25/05/2019, 22:40

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w