đề tài sáng kiến kinh nghiệm Phòng giáo dục-Đào tạovĩnh linh Tr ờng THCS Cửa Tùng ***o0o*** Sáng kiến kinh nghiệm Mộtsố phơng phápsosánh hai phânsố Tác giả: Nguyễn Đăng ánh Tổ : TOáN Nguyễn Đăng ánh - Trờng THCS Cửa Tùng đề tài sáng kiến kinh nghiệm a/ đặt vấn đề: I/ Lý do chọn đề tài: Ngày nay với sự đổi mới chơng trình sách giáo khoa và phơng pháp dạy học ngày càng đợc phát triển không ngừng thì đòi hỏi mỗi giáo viên chúng ta cần phải thực sự phải đổi mới phơng pháp dạy thật triệt để. Nhiệm vụ của giáo dục phổ thông là đào tạo học sinh trở thành những ngời lao động mới, phát triển toàn diện, năng động sáng tạo đáp ứng yêu cầu của xã hội. Trong đó dạy-học là hoạt động trung tâm đặc trng của nhà trờng, là con đờng cơ bản chủ yếu nhất để tiến hành giáo dục toàn diện. Quá trình dạy học là quá trình hoạt động thống nhất của giáo viên và học sinh. Giáo viên giử vai trò chủ đạo, hớng dẩn tổ chức điều khiển, cổ vũ cho hoạt động, còn học sinh có vai trò chủ động: tích cực, tự giác, độc lập, sáng tạo, tự tổ chức, tự điều chỉnh. Bên cạnh việc đổi mới phơng pháp dạy học, ngời dạy cần cũng cố cho mình khối lợng kiến thức một cách có hệ thống theo các chuyên đề. Chuyên đề sosánh hai phânsố học sinh đã đợc học ở trờng Tiểu học, song chỉ đợc giới hạn trong tập hợp số tự nhiên(N). Lên lớp 6 học sinh đợc học lại phép toán sosánh hai phânsố nhng không phải giới hạn trên tập hợp số tự nhiên N mà đợc phát triển mở rộng trên tập hợp các số nguyên Z. Trong quá trình dạy học ở trờng THCS tôi nhận thấy các phơng phápsosánh hai phânsố có những tiện ích: 1. Học sinh xác định có thể sử dụng phơng pháp nào để sosánh hai phân số. 2. Học sinh có thể sử dụng các phơng phápsosánh hai phânsố trên phân thức đại số. 3. Giải toán sosánh hai phânsố góp phần vào phát huy độc lập sáng tạo cho học sinh trong học tập. 4. Đối với giáo viên các phơng phápsosánhphânsố có thể hổ trợ đắc lực giúp giáo viên tiết kiệm thời gian khi làm bài toán sosánh hai phân số. Tôi nghĩ rằng vì yêu cầu và các tiện ích trên và chắc đang còn nhiều nữa, là một giáo viên dạy Toán tại trờng THCS Cửa Tùng tôi luôn trăn trở làm thế nào để nâng cao chất lợng giảng dạy học sinh đại trà nói chung và ngày càng nâng cao chất lợng học sinh giỏi. Muốn vậy tôi nghĩ rằng ngời thầy cần tìm tòi ngiên cứu, tích cực kiểm tra và theo giỏi sát sao việc học tập của học sinh. Từ đó uốn nắn và giải đáp những thắc mắc cho học sinh. Đồng thời ngời thầy phải hệ thống kiến thức, phân loại bài tập hình thành phơng pháp và kỷ năng giải toán cho học sinh. II/ Phạm vi đề tài: Trong đề tài này tôi xin đề cập đến vấn đề Mộtsố phơng phápsosánh hai phânsố nhằm rèn luyện kỷ năng sosánh hai phânsố cho học sinh trung học cơ sở. III/ Đối t ợng nghiên cứu và ph ơng pháp tiến hành Nguyễn Đăng ánh - Trờng THCS Cửa Tùng đề tài sáng kiến kinh nghiệm Đề tài đợc áp dụng cho học sinh lớp 6 năm học 2005-2006 và 2006-2007. Đề tài thực hiện trong các giờ học. Đánh giá hiệu quả của đề tài thông qua tỉ lệ học sinh hiểu bài nâng cao chất lợng bộ môn Toán. b/ giải quyết vấn đề: I.Nhận xét chung: Những bài toán sosánhphânsố trong mộtsố tài liệu đòi hỏi học sinh phải có kiến thức tổng hợp và kỷ năng nhất định, cho nên khi học sinh gặp các dạng toán này thờng gặp rất nhiều khó khăn vì vậy các em tiếp thu chậm hiệu quả học tập thấp mặt khác các kiến thức và kỷ năng biến đổi của các em còn hạn chế, vì vậy các em có thể khó tiếp cạnh ngay. Vậy vấn đề đặt ra là ngời thầy cần dạy chuyên đề sosánh hai phânsố nh thế nào để các em nắm đợc bài có hiệu quả cao. Tôi xin nêu ra mộtsố biện pháp mà tôi đã áp dụng qua thực tiển và đã có những kết quả nhất định. II. Biện pháp thực hiện: Muốn học sinh làm đợc các bài tập sosánh hai phânsố thì trớc hết giáo viên phải chia nhỏ yêu cầu thành các dạng bài tập riêng. Mỗi dạng học sinh đ- ợc nắm chắc kiến thức, phơng pháp và kỹ năng làm bài. Đối với các kiến thức học sinh đã biết thì giáo viên cần kiên trì, bề bỉ ôn tập, bổ sung và giải đáp v- ớng mắc và khó khăn cho học sinh. Các bài toán đa ra từ dể đến khó, từ đơn giản đến phức tạp khi đó học sinh mới hiểu bài, làm đợc bài thì mới hứng thú tích cực học tập. Học sinh đợc học theo các trình tự sau: Phần i kiến thức cơ bản 1/ Sosánh hai phânsố cùng mẫu: - Đây là kiến thức học sinh đã đợc học ở trờng Tiểu học, nhng chỉ xét các phânsố có tử và mẫu là những số tự nhiên. Bây giờ ta xét trên tập hợp số nguyên Z. Quy tắc: Trong hai phânsố có cùng một mẫu dơng, phânsố nào có tử lớn hơn thì lớn hơn. Tổng quát: m a ; m b ( a, b, m Z, m > 0 ). -Nếu a > b thì m a > m b . -Nếu a < b thì m a < m b . VD: a) 5 1 5 2 < (Vì -2 < 1) b) 7 12 7 3 > ( Vì 3 > -12) 2/ Sosánh hai phânsố không cùng mẫu: Nguyễn Đăng ánh - Trờng THCS Cửa Tùng đề tài sáng kiến kinh nghiệm Quy tắc: Muốn sosánh hai phânsố không cùng mẫu, ta viết chúng dới dạng hai phânsố có cùng một mẫu dơng rồi sosánh các tử với nhau : Phânsố nào có tử lớn hơn thì phânsố đó lớn hơn. 3/ Mộtsố ph ơng pháp khác sosánh hai phânsố : a) Cho hai phânsố b a và d c ( a, b, c, d Z ; b > 0; d > 0 ) ad > bc b a > d c ad < bc b a < d c . Thật vây: - Nếu ad > bc thì d c b a bd bc bd ad >=>> . - Nếu b a > d c thì bcad bd bc bd ad >> . Suy ra: ad > bc b a > d c b) Trong hai phânsố có tử và mẫu đều dơng, nếu hai tử số bằng nhau thì phânsố nào có mẫu nhỏ hơn phânsố đó sẻ lớn hơn và ngợc lại. Cho a, m, n N* m < n m a > n a . Thật vậy: - Nếu m < n thì a.m < a.n => m a n a nm na nm ma << . . . . hay m a > n a . - Nếu m a > n a thì nm nm <> 11 . Suy ra: m < n m a > n a . Ví dụ: Cho hai phânsố b a và d c cùng dấu. CMR nếu b a > d c thì a b < c d . C/m: Bao giờ ta cũng viết đợc hai phânsố đã cho có cùng mẫu dơng. Vì b a > d c nên ad > bc hay bc < ad suy ra a b < c d . c) Để sosánh hai phânsố ngoài cách quy đồng mẫu hoặc tử ( cách sosánh hai "tích chéo" thực chất chính là quy đồng mẫu), trong mộtsố trờng hợp cụ thể, tùy theo đặc điểm của các phân số, ta còn có thể sosánh bằng mộtsố ph- ơng pháp khác. Tính chất bắc cầu của thứ tự thờng đợc sử dụng trong đó phát hiện ra số trung gian để làm cầu nối là vấn đề quan trọng. 1. Dùng số 1 làm số trung gian. a) Nếu b a > 1 và d c < 1 thì b a > d c . b) Nếu b a = 1 + M ; d c = 1 + N M > N thì b a > d c ; M < N thì b a < d c . Nguyễn Đăng ánh - Trờng THCS Cửa Tùng đề tài sáng kiến kinh nghiệm M và N theo thứ tự gọi là " phần thừa" so với 1 của hai phânsố đã cho . Nếu hai phânsố có "phần thừa" so với 1 khác nhau, phânsố nào có "phần thừa" lớn hơn thì lớn hơn. Ví dụ: Sosánh hai phân số: 76 77 và 83 84 . Ta có: 76 77 = 1 + 76 1 ; 83 84 = 1 + 83 1 . Vì 76 1 > 83 1 nên 76 77 > 83 84 . c) Nếu b a = 1 - M ; d c = 1 - N M > N thì b a < d c . M và N theo thứ tự là " phần thiếu" hay " phần bù" tới đơn vị tới đơn vị của hai phânsố đã cho. Nếu hai phânsố có "phần bù" tới đơn vị khác nhau, phânsố nào có "phần bù" lớn hơn thì phânsố đó nhỏ hơn. Ví dụ: Sosánh hai phânsố : 43 42 và 59 58 . Ta có: 43 42 = 1 - 43 1 ; 59 58 = 1 - 59 1 . Vì 43 1 > 59 1 nên 43 42 < 59 58 . 2. Dùng mộtphânsố làm trung gian. Ví dụ 1: Sosánh 31 18 và 37 15 . Giải: Xét phânsố trung gian 37 18 ( Phânsố này có tử là tử của phânsố thứ nhất, còn mẫu là mẫu của phânsố thứ hai). Ta thấy: 31 18 > 37 18 ; 37 15 < 37 18 . Suy ra: 31 18 > 37 15 ( tính chất bắc cầu). Nhận xét: - Ta cũng có thể lấy phânsố 31 15 làm phânsố trung gian. - Trong hai phân sốphânsố nào vừa có tử lớn hơn, vừa có mẫu nhỏ hơn thì phânsố đố lớn hơn. Ví dụ 2: Sosánh 47 12 và 77 19 . Ta thấy cả hai phânsố 47 12 và 77 19 đều xấp xỉ 4 1 nên ta dùng phânsố 4 1 làm trung gian. Ta có: 47 12 > 48 12 = 4 1 (1) ; 77 19 < 76 19 = 4 1 (2). Nguyễn Đăng ánh - Trờng THCS Cửa Tùng đề tài sáng kiến kinh nghiệm Từ (1) và (2) suy ra 47 12 > 77 19 . Phần II bài tập đề nghị Bài 1: So sánh: a) 85 64 và 81 73 ; 2 1 + + n n và 3 + n n ( ) *Nn . Bài 2: So sánh: a) 77 67 và 83 73 ; b) 461 456 và 128 123 ; c) 2004.2003 12004.2003 và 2005.2004 12005.2004 . Bài 3: So sánh: a) 32 11 và 49 16 ; b) 89 58 và 53 36 . Bài 4: Sosánh các phân số: A= 2323.353535 232323.3535 ; B = 3534 3535 ; C = 2322 2323 . Bài 5: So sánh: A = 52.4426.22 )26.2213.11.(5 và B = 548 690 137 138 2 2 . Bài 6*: Cho A = 1 1 10 10 12 11 ; B = 1 1 10 10 11 10 + + . Hãy sosánh A với B. HD: Bài 1: a) Chọn số trung gian: 81 64 hoặc 85 73 b) Chọn số trung gian: 2 + n n hoặc 3 1 + + n n Bài 2: Sosánh hai phần bù ( phần thiếu). Bài 3: Vận dụng tính chất bắc cầu. a) 32 11 > 33 11 = 3 1 ; 49 16 < 48 16 = 3 1 => 32 11 > 49 16 . b) 89 58 = 1- 89 31 ; 53 36 = 1- 53 17 mà 89 31 > 93 31 = 3 1 ; 53 17 < 51 17 = 3 1 . => 89 31 > 53 17 => 89 58 < 53 36 . Nguyễn Đăng ánh - Trờng THCS Cửa Tùng đề tài sáng kiến kinh nghiệm Bài 4: A=1. Sosánh B với C với 1. Bài 5: A = 52.4426.22 )26.2213.11.(5 = ( ) 26.2213.114 )26.2213.11.(5 = 4 1 1 4 5 += B = 548 690 137 138 2 2 = 137 1 1 137 138 )4137.(137 )5138.(138 +== Bài 6: Sử dụng t/c: Nếu 1 < b a thì b a mb ma > + + với m > 0. A = 1 1 10 10 12 11 < 1 => A = 1 1 10 10 12 11 < 11)1( 11)1( 10 10 12 11 + + = 10 10 10 10 12 11 + + = )1.(10 )1.(10 10 10 11 10 + + = B => A < B. C/ Kết quả thực hiện: 1 / Kết quả đối với học sinh: Vĩnh Quang- Vĩnh Ging- Vĩnh Tân là ba xã thuộc vùng đông Vĩnh Linh, là ba xã kinh tế cũng còn nhiều khó khăn, tuy vây sự hiếu học rất cao. Qua quá trình tham gia giảng dạy tại trờng chúng tôi thờng xuyên đổi mới phơng pháp nhằm giúp học nắm bắt kiến thức dể dàng hơn. Tuy nhiên thời gian dành cho bài sosánhphânsố quá ít, vì thế trong việc sosánh nhiều phânsố học sinh gặp rất nhiều khó khăn. Trớc thực trạng đó tôi nhận thấy cần hệ thống lại mộtsố phơng phápsosánh hai phânsố nhằm bổ sung thêm vào vố kiến thức cho các em học sinh. Từ khi áp dụng đề tài vào các buổi trên lớp thấy rằng nhiều học sinh tiến bộ hẳn, biết các cách để sosánh hai phân số, làm tăng thêm hứng thú và tích cực học tập hơn. Vì vậy chất lợng của bộ môn ngày càng đi lên. 2/ Bài học kinh nghiệm: Qua việc áp dụng đề tài, bản thân tôi rút ra mộtsố kinh nghiệm nhất định. Đó là giáo viên luôn phải bám sát học sinh, tìm hiểu thông tin ngợc từ phía học sinh để có phơng pháp giảng dạy dể hiểu nhất. Thực tế cho thấy những vấn đề mà giáo viên chủ quan cho là đơn giản thì đối với học sinh tiếp thu rất khó khăn. Giáo viên cần chị khó, nhiệt tình trong giảng dạy, gần gủi với học sinh, cảm hóa học sinh thì học sinh mạnh dạn trao đổi với giáo viên, học sinh sẻ hứng thú hơn, say mê học tâp hơn, từ đó biết kính trọng thầy cô hơn. Nguyễn Đăng ánh - Trờng THCS Cửa Tùng . hai phân số có cùng một mẫu dơng rồi so sánh các tử với nhau : Phân số nào có tử lớn hơn thì phân số đó lớn hơn. 3/ Một số ph ơng pháp khác so sánh hai phân. lấy phân số 31 15 làm phân số trung gian. - Trong hai phân số phân số nào vừa có tử lớn hơn, vừa có mẫu nhỏ hơn thì phân số đố lớn hơn. Ví dụ 2: So sánh