Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 11 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
11
Dung lượng
591 KB
Nội dung
GV: Trần Thị Loan Tiết 1: Tuaàn: Trường THPT Phan Chu Trinh Ngày soạn: 24/08/08 HÀM SỐ LƯỢNG GIÁC A Mục Tiêu: Về kiến thức: - Nắm định nghĩa hàm số sin hàm số cosin, từ dẫn đến định nghĩa hàm số tang hàm số cotang hàm số xác định công thức - Nắm tính tuần hồn hàm số lượng giác, chu kỳ hàm số lượng giác, TXĐ B Chuẩn bị: GV: giáo án + SGK + đường tròn lượng giác C Phương pháp: vấn đáp , gợi mở D Tiến trình: ổn định lớp: kiểm tra: mới: Hoạt động học sinh hoạt động giáo viên Hoạt động 1: hàm số sin hàm số cosin ?Nhắc lại cung đặc biệt học? Có cung đặc biệt là; 0, , , , bàn học sinh tính cho biết kết y M x sinx O y y sinx M x O A sinx O x Giáo viên hướng dẫn học sinh y cosxA M’ x x y cosx M x O x cosx x O M” x x ? Cho biết giá trị lượng giác cung đặc biệt Mỗi bàn sử dụng máy tính bỏ túi tính giá trị lượng giác số thực x câu hỏi HD: “ bấm mode mode mode sin x =” yêu cầu câu b tiến hành bước + Xác định gầm điểm M đường tròn lượng giác mà SĐ AM = x + Chiếu vng góc lên trục cosin Từ tập 1, ta thấy số thực x xác định xác định số thực y = sinx hay y = cosx ưuy tắc cho ta khái niệm hàm số sinx hàm số cosinx sau: a Hàm số sinx: + quy tắc đặt tương ứng số thực x với số thực sinx Sin: R R x y = sinx gọi hàm số sin, kí hiệu y = sinx tập xác định R b hàm số cosin: +quy tắc đặt tương ứng số thực x với số thực y = cosx Cos; R R x y = cosx gọi hàm số cosin, kí hiệu y = cosx tập xác định R Hoạt động 2: hàm số tang hàm số côtang Giáo án đại số-giải tích 11 GV: Trần Thị Loan Trường THPT Phan Chu Trinh a Hàm số tang: hàm số tang hàm số xác công thức: y = Do cosx 0 nên x k , k Z D = R\ k , k Z 2 cos x , (sin x 0) y= sin x sinx 0 x k , k Z D=R\{k , k Z } Sin(-x) = -sinx Cos(-x) = cosx Tan(-x) = -tanx Cot(x) = cot(-x) Hs : ta biết: -sinx = sin(-x) -cosx = cos(-x) sin x , (cos x 0) cos x Ký hiệu y = tanx ? tìm tập xác định hàm số khơng? b Hàm số côtang ? từ giá trị lượng giác góc cho biết hàm số cotang hàm số nào? ? Cho biết tập xác định hàm số? ? Nhắc lại giá trị lượng giác hai góc đối nhau? Hãy trả câu hỏi 2? * cho y = f(x) có tập xác đinh : D thỏa điều kiện hàm số chẵn, lẻ * Nhận xét: hàm số y = sinx hàm số lẻ y = cosx hàm số chẵn y = tanx, y = cotx hàm lẻ Hoạt động 3: tính tuần hồn hàm số lượng giác x R Hs: ta có: Hãy làm câu hỏi SGK Sin(x+k2 ) = sinx Ta thấy x D mà f(x +T) = f(x) T gọi x D ta có: chu kỳ hàm số f(x) Tan(x+k ) = tanx Tóm lại: hàm số y = sinx tuần hoàn với chu kỳ , y = cosx tuần hoàn với chu kỳ Hàm số tanx, cotx tuàn hoàn với chu kỳ Hoạt động 4: củng cố - dặn dò Hs trả lời câu hỏi củng cố giáo viên Qua tiết học nhớ; tập xác định, tính tuần hoàn, chu kỳ hàm số lượng giác, tính chẵn, lẻ hàm số Dặn dị: xem tiếp học thuộc định nghĩa vừa học ****************************** Tiết - Tuaàn 1: Ngày soạn: 24/08/08 HÀM SỐ LƯỢNG GIÁC (tiếp theo) A Mục Tiêu: Về kiến thức: Hs biết biến thiên dạng đồ thị hàm số lượng giác nhớ lại tính chất hàm số lượng giác B Chuẩn bị: Giáo án đại số-giải tích 11 GV: Trần Thị Loan Trường THPT Phan Chu Trinh GV: giáo án + SGK + đường tròn lượng giác C Phương pháp: vấn đáp , gợi mở, tích cực hóa hoạt động học sinh D Tiến trình: ổn định lớp: kiểm tra: phát biểu định nghĩa hàm số sin, tập xác định, tính chẵn, lẻ, chu kỳ tương tự hàm số cosin, tang, côtang Bài mới: (tiếp theo) Hoạt động học sinh Hoạt động giáo viên Hoạt động 1:Sự biến thiên đồ thị hàm số sin Do hàm số y = sinx hàm lẻ nên cần khảo sát [0 ; ] suy kết [- ;0] phép Sin đối xứng qua gốc o Xét hai trường hợp: B * Chiều biến thiên: ([0; ]) x3 Sinx2 x2 x4 Sinx1 x => sinx1 hàm số đồng biến (0; ) A’ A Cosin B’ * ( ; ) ta có; x3 x => sinx3>sinx4 => 2 hàm số nghịch biến ( ; ) Ta có bảng biến thiên: x sinx Tính sin0, sin , sin 0 từ bảng biến thiên ta có dạng đồ thị nào? y - đồ thị qua (0;0) ( O ;1 ) ( ;0 ) x -1 lấy đối xứng qua gốc tọa độ O * Đồ thị hàm số y = sinx R Làm để có đồ thị y = sinx R? hàm tuàn hoàn chu kỳ nên x R Sin(x+k2 ) = sinx Nên ta tịnh tiến liên tiếp đồ thị hàm số [- ; ] theo vectơ v( 2 ;0) - v( 2 ;0) ? từ định nghĩa cho biết tập giá trị hàm số VD: dựa vào đồ thị hàm số y = sinx tìm khoảng giá trị X để hàm số nhận giá trị âm Hs; dựa vào đồ thị ta có: sinx tanx1 < tanx2 Suy đồ thị hàm số (- ; ): lấy đối xứng đồ thị hàm số y = tanx [0, x tanx Giáo án đại số-giải tích 11 ) qua O * Đồ thị hàm số y = tanx D: Do hàm số y = tanx tuần hoàn với chu kỳ nên tịnh tiến đồ thị khoảng (- ; ) song song HS theo dõi hình GV treo bảng Hàm số đồng biến [0; ) trục hồnh đoạn có độ dài ta đồ thị hàm số D GV giới thiệu dạng đồ thị cho học sinh.tập giá trị cuả hàm số + ? Từ đồ thị hàm số y = tan x ta tìm khoảng giá trị x để hàm số nhận giá trị theo yêu cầu không? GV: Trần Thị Loan Trường THPT Phan Chu Trinh Hoạt động 4: Sự biến thiên - đồ thị hàm số côtang D = R\{ k ,k Z } hàm lẻ chu kỳ ? cho biết tập xác định, tính chẵn, lẻ, chu kì hàm số cotx Chính tính chất hàm số y = cõt ta xét biến thiên hàm số khoàng (0; ) Sau tịnh tiến đồ thị theo u ( ; 0) u (- ; 0) * biến thiên đồ thị y = cotx (0; ) ta có : 0 hàm số xác định sinx 0 x k , k Z D = R\{k , k Z} b, hàm số có dạng nào? Hs xác định dạng y = P ( x) điều kiện xác định gì? Q( x) y = A( x ) y = tangx y = cotx Bài tập 2/17 a, dạng gì? điều kiện xác định nào? cos x 0 cos x 1 – cosx >0 cosx 1 x k2 , k Z Vậy D = R\{k2 , k Z} 5 k x k 5 D = R\ k , k Z 6 d, hs xác định x + k x k 6 Vậy D = R\ k c, HS xác định x - sin x sin x 0 Sinx = sin x sin x Bài 3/17: dựa vào đồ thị hàm số y = sinx vẽ đồ thị hàm số y = sin x Ta có: y = sin x = ? => đồ thị gồm hai phần sin x sin x nên giữ nguyễn phần đồ thị hàm số y = sinx lấy Giáo án đại số-giải tích 11 GV: Trần Thị Loan y= -2 -3 y sin x - - Trường THPT Phan Chu Trinh đối xúng qua trục Ox phần sinx