1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Hướng dẫn giải một số bài tập tọa độ trong không gian nâng cao phạm minh tuấn file word image marked

14 357 4

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 692,08 KB

Nội dung

Câu 1: Tìm m để góc hai vectơ: u = (1;log3 5;logm 2) , v = (3;log5 3;4) góc nhọn Chọn phương án đầy đủ 1 A m  , m  B m   m  2 C  m  D m  ➢ Giải: + log3 5.log5 + 4log m u.v Do mẫu số lớn nên ta tìm = u.v u.v điều kiện để tử số dương ❖ Mặt khác + log 5.log + log m   log m  −4  log m  −1  log m  log m m 1 ❖ Với 01 m ❖ Vậy m>1  m  Câu 2: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 3x -3y + 2z +37 = điểm A(4;1;5) , B(3;0;1), C(-1;2;0) Điểm M (a;b;c) thuộc (P) cho biểu thức P = MA.MB + MB.MC + MC.MA đạt giá trị nhỏ nhất, a+b+c bằng: A 10 B 13 C D ➢ Giải: ❖ M (a;b;c)  P = (a − 2) + (b − 1) + (c − 2) − 5 ❖ Ta có cos(u, v) = ❖ M  P  3a − 3b + 2c + 37 =  3(a − 2) − 3(b − 1) + 2(c − 2) = −44 ❖ Áp dụng BĐT Bunhiacốpxki ta có: (−44)2 = 3(a − 2) − 3(b − 1) + 2(c − 2)  (32 + 32 + 22 ) (a − 2)2 + (b − 1)2 + (c − 2)2  (−44)2  (a − 2) + (b − 1) + (c − 2)  2 = 88 + + 22 a − b −1 c − = =  M (−4;7; −2)  a + b + c = ❖ Dấu “=” xảy −3 Câu 3: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x - y + = đường thẳng (2m + 1) x + (1 − m) y + m − = dm :  (m tham số) Tìm m để đường thẳng dm song song với mặt mx + (2m + 1) z + 4m + − phẳng (P) 1 A m = B m = C m = − D m = −1 2 ➢ Giải: 2 x − y + =  ❖ dm / / ( P )  hệ PT ẩn x, y, z sau vô nghiệm (2m + 1) x + (1 − m) y + m − = mx + (2m + 1) z + 4m + =  2 ❖ (1)  y = x + Thay vào (2) ta được: x = m −1 2m + y= 3 http://dethithpt.com – Website chuyên đề thi – tài liệu file word 1 ❖ Thay x, y vào (3) ta được: (2m + 1) z = − (m + 11m + 6) Để PT vơ nghiệm m=− Câu 4: Trong không gian với hệ tọa độ Oxyz, mặt phẳng qua điểm M (1;3;9) cắt tia Ox, Oy, Oz A(a;0;0) , B(0;b;0) , C(0;0;c) với a, b, c số thực dương Tìm giá trị biểu thức P = a +b + c để thể tích tứ diện OABC đạt giá trị nhỏ A P=44 B P=39 C P=27 D P=16 ➢ Giải: 1 ❖ VOABC = OA.OB.OC = abc 6 x y y ❖ Phương trình mặt phẳng qua A, B, C: + + = a b c ❖ Vì M  ( ABC )  + + = a b c 9 27.27 + +  33   abc  121,5 = VOABC a b c a b c abc 1 a =  a + b + c =   b =  a + b + c = 39 ❖ Dấu “=” xảy   = = c = 27   a b c x −1 y z +1 = = Câu 5: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng : ba điểm A(3;2;1 −1 1), B(-3;-2;3) , C(5;4;-7) Gọi tọa độ điểm M (a;b;c) nằm Δ cho MA+MB nhỏ nhất, giá trị biểu thức P = a +b + c là: 42 − 6 16 + 12 16 + 6 16 − 6 A P = B P = C P = D P = 5 5 ➢ Giải: ❖ M   nên M (1 + t ; 2t ; −1 − t ) ❖ Áp dụng BĐT Côsi: = AM = (t − 2; 2t − 2; −t )  AM = 6t − 12t + BM = (t + 4; 2t + 2; −t − 4)  BM = 6t + 24t + 36     ❖ MA + MB = 6t − 12t + + 6t + 24t + 36 =  (1 − t ) + + (t + 2) +    f ( x)       2 = 9+ + 2 ❖ Áp dụng BĐT Vectơ ta có: f ( x)  (1 − t + t + 2) +      2 ❖ Dấu “=” xảy khi: 1− t t + 8−3 =   13 − 16 − 6 − 13  16 − 6 ; ; ❖ Do đó: M    P = 5 5   http://dethithpt.com – Website chuyên đề thi – tài liệu file word Câu 6: Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp chữ nhật ABCD.A'B'C'D' có A trùng với gốc hệ tọa độ Cho B(a;0;0), D(0;a;0), A’(0;0;b) với a,b > Gọi M trung điểm cạnh CC’ a Xác định tỉ số để hai mặt phẳng (A’BD) (BDM) vng góc với b a a a a A = B = C = D = b b b b b  - Từ giả thiết ta có: C (a; a;0) ; C (a; a;0)  M  a; a;  2  - Mặt phẳng (BDM) có VTPT là: - Mặt phẳng (A’BD) có VTPT là: a 2b a 2b a - Yêu cầu toán tương đương với: n1.n2 =  + − a4 =  a = b  = 2 b x −1 y z +1 = = Câu 7: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng  : mặt phẳng (P): −1 2x - y + 2z -1= Mặt phẳng (Q) chứa  tạo với (P) góc  nhỏ nhất, góc  gần với giá trị sau đây? A 6° B 8° C 10° D 5° ➢ Giải:  x = + 2t  ❖  : y = t Chọn điểm (1;0;-1) (3;1;-2) với t=1  z = −1 − t  ❖ (Q) chứa Δ suy (Q): a(x-1)+by+c(z+1)=0  ax + by + cz − a + c = ❖ Và (3;1;-2)  (Q)  3a + b − 2c − a + c =  2a + b − c =  c = 2a + b ❖ Vậy (Q): ax+by+(2a+b)z+a+b=0 Gọi =((P),(Q)),   0o ;90o  ❖ Ta có: cos  = nP nQ = nP nQ ❖ Nếu a =  cos  = b + 6a a + b + (2a + b) = b + 12a + 36a 2b + 4ab + 5a b b2 + 12ab + 36a t + 12t + 36 = = f (t ) ta có: a 2b2 + 4ab + 5a 2t + 4t +  −7 t= ❖ f '(t ) =   10 Từ bảng biến thiên ta dễ nhận thấy:  t = −6 ❖ Nếu a  , đặt t = http://dethithpt.com – Website chuyên đề thi – tài liệu file word  53    53   = cos −1  ❖ max f (t ) = f  −  =    10    Câu 8: Trong không gian với hệ tọa độ Oxyz, cho điểm A(0;1;1), B(1;0;-3), C(-1;-2;-3) mặt cầu (S): x2 + y2 + z2 - 2x + 2z - = Điểm D(a;b;c) mặt cầu (S) cho tứ diện ABCD tích lớn nhất, a + b + c bằng: A − B C D 3 ➢ Giải: ❖ Tâm I(1;0;-1), bán kính R=2 (ABC): 2x – 2y + z + 1=0 ❖ VABCD = d ( D;( ABD)).S ABC VABCD max d (D;(ABC)) max ❖ Gọi D1D2 đường kính (S) vng góc với (ABC) Ta thấy với D điểm thuộc (S) d(D;(ABC))  max{d(D1;(ABC)), d(D2;(ABC))} ❖ Dấu “=” xảy D trùng với D1 D2   x = + 2t t =  7 1  5  D1  ; ;  , D2  − ; ; −  ❖ D1D2:  y = −2t thay mặt (S) ta suy ra:   3 3  3 3 t = −  z = −1 + t   7 1 ❖ Vì d(D1;(ABC)) > d(D2;(ABC)) nên D  ; − ; −   a + b + c =  3 3 x = − t  Câu 9: Cho mặt cầu (S): x + y + z − x + z + = đường thẳng d :  y = t Tìm m để d cắt (S) z = m + t  hai điểm phân biệt A,B cho mặt phẳng tiếp diện (S) A B vng góc với A m=-1 m=-4 B m=0 m=-4 C m=-1 m=0 D Cả A, B, C sai ➢ Giải: ❖ Bình luận: Ta có hai mặt phẳng tiếp diện (S) A B vng góc với hai vtpt hai mặt phẳng vng góc với Mà hai vtpt hai mặt phẳng IA , IB Với I (1;0;-2) tâm mặt cầu (S) Vậy ta có hai điều kiện sau: d cắt (S) hai điểm phân biệt IA IB - ❖ Để thỏa mãn yêu cầu đề trước tiên d phải cắt mặt cầu, tức phương trình (2 − t )2 + t + (m + t )2 − 2.(2 − t ) + 4.(m + t ) + = có hai nghiệm phân biệt 2  3t + 2(m + 1)t + m2 + 4m + = ❖ Phương trình có hai nghiệm phân biệt Δ’>0  (m + 1)2 − 3m2 − 12m −   m2 + 5m +  ❖ Với phương trình có hai nghiệm phân biệt, áp dụng định lí Viet ta có m + 4m + t1t2 = ; t1 + t2 = − (m + 1) 3 ❖ Khi IA = (1 − t1; t1; m + + t1 ), IB = (1 − t2 ; t2 ; m + + t2 ) http://dethithpt.com – Website chuyên đề thi – tài liệu file word ❖ Vậy IA.IB = (1 − t1 )(1 − t2 ) + t1t2 + (m + + t1 )(m + + t2 ) =  3t1t2 + (m + 1)(t1 + t2 ) + (m + 2) + =  m = −1 (TM)  m2 + 4m + − (m + 1)2 + (m + 2) + =    m = −4 Câu 10: Trong không gian Oxyz cho ba điểm A(1;1;1), B(-1;2;0), C(3;-1;2) Điểm M(a;b;c) thuộc x −1 y z +1 = = đường thẳng  : cho biểu thức P = 2MA2 + 3MB − 4MC đạt giá trị nhỏ −1 Tính a+b+c= ? 16 11 A B − C D − 3 ➢ Giải: ❖ Gọi D(x;y;z) điểm thỏa 2DA + 3DB − 4DC = ❖ DA + 3DB − DC =  DA + 3( DA + AB) − 4( DA + AC ) =  DA = AC − AB 1 − x = 4.2 + 3.2   1 − y = −4.2 − 3.1  D(−13;12; −6) 1 − z = 4.1 + 3.1  ❖ Khi đó: P = 2( MD + DA) + 3( MD + DB) − 4( MD + DC ) = MD + 2MD(2 DA + 3DB − DC ) + AD + 3BD − DC = MD + AD + 3BD − DC ❖ Do MD + AD + 3BD − DC không đổi nên P nhỏ MD nhỏ Mà M thuộc Δ nên MD nhỏ M hình chiếu D lên Δ 11 11  11  ❖ M (1 + 2t ; t ; −1 − t ) Ta có: DM u =  t = −  M  − ; − ;   a + b + c = −  6 Câu 11: Trong không gian Oxyz cho ba điểm A(1;1;1), B(-1;2;0), C(3;-1;2) Điểm M (a;b;c) thuộc mặt phẳng (): x − y + z + = cho biểu thức P = 3MA + 5MB − MC đạt giá trị nhỏ Tính a +b+c = ? A B -5 C 13 D ➢ Giải: ❖ Gọi F ( x; y; z ) điểm thỏa 3FA + 5FB − FC =  CF = 3CA + 5CB  F (−23; 20; −11) ❖ Khi đó: P = 3( MF + FA) + 5( MF + FB) − 7( MF + FC ) = MF ❖ Do P nhỏ M hình chiếu F lên () Điểm M (−23 + 2t; 20 − t; −11 + 2t ) Vì M thuộc () nên: 2(−23 + 2t ) − (20 − t ) + 2(−11 + 2t ) + =  t =  M (−5;11;7)  a + b + c = 13 Câu 12: Trong không gian Oxyz cho ba điểm A(1;1;1), B(-1;2;0), C(3;-1;2) Điểm M(a;b;c) thuộc mặt cầu (S ) : ( x − 1)2 + y + ( z + 1)2 = 861 cho biểu thức P = 2MA2 − MB + 4MC đạt giá trị nhỏ Tính a + b + c = ? A B.5 C.-5 D.3 ➢ Giải: ❖ Gọi K ( x; y; z ) điểm thỏa KA − KB + KC =  K (−21;16;10) ❖ Khi đó: P = − MK + KA2 − KB + KC ❖ Do P nhỏ MK lớn Mặt cầu (S) có tâm I(1;0;-1)  KI = (22; −16; −11) http://dethithpt.com – Website chuyên đề thi – tài liệu file word  x = + 22t  ❖ Phương trình đường thẳng KI:  y = −16t Thay x,y,z vào (S) ta được:  z = −1 − 11t   K = (23; −16; −12) (22t )2 + (−16t )2 + (−11t )2 = 861  t = 1 Suy KI cắt (S) hai điểm   K = (−21;16;10) ❖ Vì KK1 > KK2 nên MK lớn M  K1 (23; −16; −12) Vậy M = (23; −16; −12) Câu 13: Trong không gian Oxyz cho hai điểm A(1;1;-1), B(-3;5;5) Điểm M(a;b;c) thuộc mặt phẳng ( ) : x − y + z − = cho biểu thức P = MA + MB đạt giá trị nhỏ Tính a + b + c = ? A B C D ➢ Giải: ❖ Ta có f ( A) f ( B )  , nên A, B phía so với () Gọi A’ điểm đối xứng qua A qua ()  x = + 2t  y = 1− t  ❖ Phương trình đường thẳng AA’:  Tọa độ giao điểm I AA’ () z = − + t  2 x − y + z − =  x = + 2t  y = 1− t   I (3;0;1) nghiệm hệ:  z = − + t  2 x − y + z − = ❖ Vì I trung điểm AA’ nên A’(5;-1;3) A’, B nằm khác phía so với () Khi với điểm M thuộc () ta ln có: MA + MB = A ' M + MB  A ' B Đẳng thức xảy M = A ' B  ( )  x = − 4t  ❖ A ' B = (−8;6; 2)  A ' B :  y = −1 + 3t Tọa độ giao điểm M A’B () nghiệm z = + t   x = − 4t  y = −1 + 3t   M (1; 2; 4) hệ:  z = + t  2 x − y + z − = Câu 14: Trong không gian Oxyz cho hai điểm A(1;1;-1),C(7;-4;4) Điểm M(a;b;c) thuộc mặt phẳng ( ) : x − y + z − = cho biểu thức P = MA − MC đạt giá trị lớn nhất.Tính a + b + c = ? A B C ➢ Giải: ❖ M (a; b; c) Đặt f ( M ) = 2a − b + 2c − ❖ Ta có f ( A) f (C )  nên A C nằm hai phía so với () D ❖ Gọi A’ điểm đối xứng A qua () http://dethithpt.com – Website chuyên đề thi – tài liệu file word  x = + 2t  ❖ Phương trình đường thẳng AA’:  y = − t Tọa độ giao điểm I AA’ ()  z = −1 + 2t   x = + 2t  y = 1− t  nghiệm hệ:   I (3;0;1) z = − + t  2 x − y + z − = ❖ Vì I trung điểm AA’ nên A’(5;-1;3) Khi với điểm M thuộc () ta ln có: MA − MC = MA '− MC  A ' C Đẳng thức xảy M = A ' C  ( )  x = + 2t  ❖ A ' C = (2; −3;1)  A ' C :  y = −1 − 3t Tọa độ giao điểm M A’C () nghiệm z = + t   x = + 2t  y = −1 − 3t   M (3; 2; 2) hệ  z = + t 2 x − y + z − = x −1 y −1 z = = mặt phẳng 2 ( P) : ax + by + cz − = chứa Δ cách O khoảng lớn Tính a + b + c = ? A -2 B C D -1 ➢ Giải: ❖ Gọi K hình chiếu vng góc O lên Δ, suy K (1 + t ;1 + 2t ; 2t ) , OK = (1 + t;1 + 2t; 2t ) Câu 15: Trong không gian Oxyz cho đường thẳng  :  2 2 K  ; ; −     ❖ Vì OK ⊥  nên OK u =  t = −   OK =  ; ; −     3 3 ❖ Gọi H hình chiếu O lên (P), ta có: d (O;( P)) = OH  OK = Đẳng thức xảy H  K Do (P) cách O khoảng lớn (P) qua K vng góc với OK Từ ta suy phương trình (P) là: x + y − z − =  a + b + c = x −1 y −1 z = = mặt phẳng Câu 15: Trong không gian Oxyz cho đường thẳng  : 2 ( ) : x − y + z − = Mặt phẳng (Q): ax + by + cz + = chứa Δ tạo với () góc nhỏ Tính a + b + c = ? A -1 B C D ➢ Giải: http://dethithpt.com – Website chuyên đề thi – tài liệu file word ➢ Công thức giải nhanh: n(Q ) =  n( ) , n  , n    ➢ Chứng minh công thức: AK AH AK  Mà không đổi nên suy AC AC AC φ nhỏ  H  K hay (Q) mặt phẳng qua Δ vng góc với mặt phẳng (ACK) ❖ Mặt phẳng (ACK) qua Δ vng góc với () nên: n( ACK ) −  n( ) , n  ❖ Do (Q) qua Δ vng góc với mặt phẳng (ACK) nên: n(Q ) = n( ACK ) , n  =  n( ) , n  , n    ❖ A(1;1;0)  Δ, φ=ACH sin  = sin ACH = ❖ Áp dụng công thức nên ta có n(Q ) = (−8; 20; −16) suy ra: (Q) : −8( x − 1) + 20( y − 1) − 16 z =  x − y + z + =  a + b + c = x −1 y −1 z = = hai điểm M(1;2;1), N(-1;0;2) Mặt Câu 16: Trong không gian Oxyz cho đường  : 2 phẳng (ß): ax + by + cz − 43 = qua M, N tạo với (Δ) góc lớn Tính a + b + c = ? A -22 B 33 C -33 D 11 ➢ Giải: ➢ Công thức giải nhanh: n(  ) =  nNM , n  , nNM    ❖ Chứng minh tương tự câu 15: n(  ) = (1;10; 22) suy (  ) :1( x − 1) + 10( y − 2) + 22( z − 1) =  x + 10 y + 22 z − 43 =  a + b + c = 33 Câu 17: Trong không gian Oxyz cho ba điểm A(1; 2;3), B(−1;0; −3), C (2; −3; −1) Điểm M(a;b;c) thuộc mặt phẳng (): x + y − z − = cho biểu thức P = 3MA2 + 4MB − 6MC đạt giá trị nhỏ Tính a + b + c = ? A 15 B 12 C 20 D ➢ Giải: ❖ M (a; b; c)  ( )  2a + b − 2c − = ❖ P = a + b2 + c + 26a − 48b − 6c − = (a + 11)2 + (b − 25) + (c − 1) + 2(2a + b − 2c − 1) − 747  −747 ❖ Dấu “=” xảy khi: a = −11; b = 25; c =  a + b + c = 15 Câu 18: Trong không gian Oxyz cho ba điểm A(1; 2;3), B(−1;0; −3), C (2; −3; −1) Điểm M (a; b; c) x −1 y +1 z −1 = = thuộc đường thẳng  : cho biểu thức P = MA − MB + 5MC đạt giá trị lớn −1 Tính a + b + c = ? 11 12 31 55 A B C D ➢ Giải: ❖ M    M (1 + 2t ; −1 + 3t ;1 − t ) ❖ MA − MB + 5MC = (2t + 19;3t − 14; −t + 20) 6411  12  6411  ❖ P = (2t + 19) + (3t − 14) + (20 − t ) = 14  t −  + 7 7  12 55 ❖ Dấu “=” xảy khi: t =  a + b + c = 7 2 http://dethithpt.com – Website chuyên đề thi – tài liệu file word Câu 19: Trong không gian Oxyz cho ba điểm A(1;2;3), B(-1;0;-3), C(2;-3;-1) Điểm M(a;b;c) thuộc 283 mặt cầu ( S ) : ( x − 2) + ( y − 2) + ( z − 8) = cho biểu thức P = MA2 − 4MB + 2MC đạt giá trị lớn Tính a + b + c = ? A -28 B C D -3 ➢ Giải: ❖ Gọi E ( x; y; z ) điểm thỏa EA − EB + EC =  E (−9; 4; −13) ❖ Khi đó: P = − EM + EA2 − EB + EC ❖ P lớn EM nhỏ Mặt cầu (S) có tâm  x = − 11t  I (2; 2;8)  IE = (−11; 2; −21)  IE :  y = + 2t Thay x, y, z vào (S) ta t =  Suy  z = − 21t    5  E1  − ;3; −    IE cắt (S) hai điểm    15 37   E2  − ;1;     5  ❖ Vì EE1  EE2 nên EM nhỏ M  E1  − ;3; −  , suy M = (6;0;12) 2  x y +1 z − = Câu 20: Trong không gian Oxyz cho đường thẳng d : = cắt đường thẳng a b c x +1 y z − d ': = = cho khoảng cách từ điểm B(2;1;1) đến đường thẳng d nhỏ Tính −1 a +b+c = ? A -28 B C D 18 ➢ Giải:   AB, AM  = (1 − t ;1; − 2t ) M = d  d '   M (−t + 2t ; t ; − t ) , suy   ❖ Gọi  A (0; − 1; 2)  d  ud = AM = (2t − 1; t + 1; −t ) ❖ d ( B, d ) =  AB, AM  5t − 18t + 18   − = 6t − 2t + AM f (t ) t =  f (t ) = f (2) =  ud − (3;3; −2)  a + b + c = ❖ f '(t ) =   11 t = x y +1 z − = Câu 21: Trong không gian Oxyz cho đường thẳng d : = cắt đường thẳng a b c x −5 y z x +1 y z − d ': = = = = lớn Tính a + b + c = ? cho khoảng cách d  : 2 −2 −1 A -8 B -1 C D 12 ➢ Giải: M = d  d '  M (−1 + 2t; t; − t ) , suy ud = AM = (2t −1; t + 1; −t ) ❖ Gọi   A(0; −1; 2)  d ❖ N (5;0;0) , u = (2; −2;1)  u , AM  = (t − 1; 4t − 1;6t ) http://dethithpt.com – Website chuyên đề thi – tài liệu file word u , AM  AN (2 + t )   ❖ d (d ; ) = =3 = f (t ) 53t − 10t + u , AM     t=    ❖ f '(t ) =  37  f (t ) = f    ud − − (29; −41; 4)  a + b + c = −8  37  37  t = −2 Câu 22: Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng ( P) : x − y + z − = , (Q) : x + y − z + = điểm I(1;1;- 2).Mặt cầu (S) tâm I, tiếp xúc với (P) mặt phẳng ( ) : ax + by + cz + m = vng góc với (P), (Q) cho khoảng cách từ I đến (α) 29 Biết tổng hệ số a + b + c + m dương Cho mệnh đề sau đây: (1) Điểm A(1;1;0) B(-1;1;-2) thuộc mặt cầu (S) (2) Mặt phẳng (α) qua C(0;-5;-3)  x = 2t  (3) Mặt phẳng (α) song song với đường thẳng (d)  y = −5 − t  z = −3  (4) Mặt cầu (S) có bán kính R = (5) Mặt phẳng (α) Mặt cầu (S) giao đường tròn có bán kính lớn Hỏi có mệnh đề sai ? A B C D ➢ Giải: Chọn đáp án C ❖ R = d ( I , ( P)) = Phương trình mặt cầu: ( x − 1)2 + ( y − 1)2 + ( z + 2)2 = ❖ n = (2;3;4)  ( ) : x + y + 3z + m = d ( I ;( )) = 29  m =  29 ❖ Vậy ( ) : x + y + z  29 = chọn ( ) : x + y + z + 29 = a + b + c + m  ❖ Đối chiếu: (1) Đúng: Thay tọa độ điểm vào mặt cầu ta thấy (2) Đúng: Thay tọa độ điểm vào mặt phẳng (3) Sai: Thực chất ta tưởng lầm mặt phẳng phẳng (α) song song (d) thực chất (d) thuộc phẳng phẳng (α), em kiểm tra cách tính khoảng cách điểm đến (α) (4) Đúng (5) Sai: Do khoảng cách từ tâm mặt cầu đến mặt phẳng lớn bán kính mặt cầu nên hai mặt không giao Câu 23: Cho không gian Oxyz, cho điểm A(2;3;0), B(0;- ;0) đường thẳng d có phương trình x = t   y = Điểm C (a;b;c) đường thẳng d cho tam giác ABC có chu vi nhỏ z = − t  Tính a + b + c = ? A B C D ➢ Giải: ❖ Vì AB khơng đổi nên tam giác ABC có chu vi nhỏ CA+CB nhỏ ❖ Gọi C(t;0;2-t) Ta có CA= 2(t − 2) + 32 , CB = 2(1 − t ) + 22 ❖ Đặt u = ( 2(t (t − 2);3) v = ( 2(1 − t ); 2)  u + v = (− 2;5) ❖ Áp dụng tính chất u + v  u + v Dấu “=” xảy u hướng với v http://dethithpt.com – Website chuyên đề thi – tài liệu file word 10 ❖ CA + CB = u + v  u + v = + 25 = 3 2(t − 2) =  t =  a+b+c = 2(t − 1) Câu 24: Trong không gian Oxyz, cho điểm M(a;b;c) với c < thuộc mặt cầu ( S ) : ( x − 2)2 + ( y − 1)2 + ( z − 1)2 = cho biểu thức P = a + 2b + 2c đạt giá trị lớn Khi a +b+c = ? A B C -1 D ➢ Giải ❖ M (a; b; c)  ( S )  (a − 2) + (b − 1) + (c − 1) = ❖ Dấu “=” xảy ❖ P = (a − 2) + 2(b − 1) + 2(c − 1) +  (1 + + 4) (a − 2) + (b − 1) + (c − 1)  = + = 15 b −1  a − =  c −1  ❖ Dấu “=” xảy khi: a − =  a + b + c = −1  (a − 2) + (b − 1) + (c − 1) =   Câu 25: Trong không gian Oxyz, cho điểm A(2; 4; -1), B(1; 4;-1), C(2; 4; 3), D(2; 2;-1) điểm M(a;b; c) cho biểu thức P = MA2 + MB + MC + MD đạt giá trị nhỏ nhất, a + b + c = ? 23 21 A B C D 4 4 ➢ Giải:  14  ❖ Gọi G tâm ABCD suy G  ; ;0  4  ❖ P = 4MG + GA2 + GB + GC + GD Vì GA2 + GB + GC + GD không đổi nên P nhỏ  14  MG nhỏ hay M  G  ; ;0  4  Câu 26: Trong không gian Oxyz, cho mặt cầu ( S ) : x + y + z − x + y − z + = mặt phẳng ( P) : x + y − z + 16 = Điểm M(a;b; c) di động (S) điểm N(m;n; p) di động (P) cho độ dài đoạn thẳng MN ngắn nhất, a + b + c + m + n + p = ? A B C D ➢ Giải: ❖ Mặt cầu ( S ) có tâm I (2; −1;3) bán kính R = ❖ d ( I ;( P)) =  R Do (S) (P) khơng có điểm chung Suy MN = − = ❖ Trong trường hợp này, M vị trí M0 N vị trí N0 Dễ thấy N0 hình chiếu vng góc I lên mặt phẳng (P) M0 giao điểm đoạn thẳng IN0 với mặt cầu (S) Gọi d đường  y = + 2t  thẳng qua I vng góc với (P) N0 = d  ( P) , d:  y = −1 + 2t Tọa độ N z = − t  y = + t   y = −1 + 2t   13 14   N0  − ; − ;  nghiệm hệ:   3 3 z = − t 2 x + y − z + 16 = http://dethithpt.com – Website chuyên đề thi – tài liệu file word 11 ❖ IM = IN  M (0; −3 − 4)  a + b + c + m + n + p = Câu 27: Trong không Oxyz, cho mặt cầu ( S ) : x + y + z − x − y − z + 23 = mặt phẳng ( P) : x + y − z + = Điểm M(a;b;c) nằm mặt cầu (S) cho khoảng cách từ M đến mặt phẳng (P) lớn nhất; a + b + c = ? A B C D ➢ Giải: ❖ Mặt cầu (S) có tâm I(3;4;1) bán kính R = y = 3+t  ❖ Gọi d đường thẳng qua I vng góc với (P), d :  y = + t Khi M = d  ( S ) hay z = 1− t  y = 3+t y = +t  M (4;5;0)  tọa độ M nghiệm hệ: d :    M (2;3; 2) z = 1− t  x + y + z − x − y − z + 23 = ❖ Ta thấy d ( M1;( P))  d ( M ;( P)) Do M (4;5;0)  a + b + c = Câu 28: Trong không gian Oxyz, cho mặt cầu ( S ) : x + y + z + x − y + m = đường thẳng d giao tuyến hai mặt phẳng ( P) : x − y − z + = , (Q) : x + y − z − = Tìm m để mặt cầu (S) cắt đường thẳng d hải điểm M, N cho MN = A m = 12 B m = -5 C m = -3 D m = -12 ➢ Giải: ❖ Mặt cầu (S) có I(-2; 3; 0) bán kính R = 13 − m = IM (m  13) ❖ Gọi H trung điểm MN suy MH = IH = d ( I ; d ) = −m − (d) qua A có VTCP u = (2;1; 2)  d ( I ; d ) = u; AI    = Vậy u −m − =  m = −12 Câu 29: Trong không gian Oxyz, cho hai điểm E (2;1;5) , F (4;3;9) Gọi Δ giao tuyến hai mặt phẳng ( P) : x + y − z + = , (Q) : x − y + z − = Điểm I(a;b;c) thuộc Δ cho biểu thức P = IE − IF lớn Tính a + b + c = ? A B C ➢ Giải: x = 1+ t x = + t '   ❖  :  y = −5t , EF :  y = + t '  z = − 3t  z = + 2t '   1 + t = + t ' t =  ❖ Xét hệ: −5t = + t '   EF cắt Δ A(1;0;3) t ' = −  3 − 3t = + 2t '  D ❖ Trong mặt phẳng (Δ;EF) điểm I thuộc Δ ta có IE − IF  EF ❖ Dấu “=” xảy I, E, F thẳng hàng, suy I  A(1;0;3) Câu 30: Trong không gian Oxyz, cho hai điểm A(−1; −1; 2), B(−2; −2;1) mặt phẳng ( P) : x + y − z + = Gọi (Q) mặt phẳng trung trực đoạn AB, Δ giao tuyến (P) (Q) Điểm M(a;b;c) thuộc Δ cho độ dài đoạn thẳng OM nhỏ nhất, a + b + c = ? http://dethithpt.com – Website chuyên đề thi – tài liệu file word 12 ➢ Giải: B − A C D  3 3 ❖ Gọi I trung điểm AB suy I  − ; − ;  , (Q ) : x + y + z + =  2 2   x = − + 2t    ❖ Δ giao tuyến (P) (Q) suy Δ:  y = −t  M  − + 2t ; −t ; − t     z = − t  25   25  ❖ OM =  t −  + 32   32  3 ❖ Dấu “=” xảy t =  M  − ; − ; −   8 Câu 31: Trong không gian Oxyz, cho điểm A( −2;3; 4) , mặt phẳng ( P) : x + y − z + = đường x + y +1 z − = = thẳng d : Gọi Δ đường thẳng nằm (P) qua giao điểm d (P) đồng thời 1 vng góc với d Điểm M (a; b; c) thuộc Δ cho độ dài đoạn thẳng AM nhỏ nhất, a +b+c = ? 13 A B − C D ➢ Giải: ❖ Gọi I = d  ( P) suy I(-1;0;4) x = 1− t  ❖ u − ud , n( P )  − (−3;3;3) suy Δ:  y = t  M (1 − t ; t ; + t ) z = + t  ❖ AM ngắn AM ⊥ Δ  AM u −  t =  16  ❖ Vậy M  − ; ;   3 3 Câu 32: Trong không gian Oxyz, cho ba điểm A(5;8; −11) , B(3;5; −4) , C (2;1; −6) đường thẳng x −1 y − z −1 d: = = Điểm M (a; b; c) thuộc d cho biểu thức P = MA − MB − MC đạt giá trị 1 nhỏ nhất, a + b + c = ? 14 15 A − B − C D 2 ➢ Giải: ❖ M (1 + 2t; + 2t;1 + t )  d 53  10  53  ❖ P = (2t + 1) + (2t + 4) + t =  t +  + 9 9  10  11  ❖ Dấu “=” xảy t = −  M  − ; − ; −   9 9 2 http://dethithpt.com – Website chuyên đề thi – tài liệu file word 13 Câu 33: Trong không gian Oxyz, cho hai điểm A(1;5; 0) , B (3;3;6) đường thẳng x +1 y −1 z d: = = Điểm M (a; b; c) thuộc d cho ΔMAB có diện tích nhỏ nhất, −1 a +b+c = ? A B C D ➢ Giải: ❖ M (−1 + 2t ;1 − t ; 2t )  d ❖ SMAB =  AM , AB  = 18(t − 1) + 198  198 ❖ Dấu “=” xảy t =  M (1;0; 2) Câu 34: Trong không gian Oxyz, cho hai điểm A(1; −1; 2) , B (3; −4; −2) đường thẳng  x = + 4t  d :  y = −6t Điểm I (a; b; c ) thuộc d cho IA + IB đạt giá trị nhỏ nhất, a + b + c = ?  z = −1 − 8t  65 43 23 21 B C D − 29 29 58 58 ➢ Giải: ❖ AB = (2; −3; −4)  AB / / d Gọi A’ điểm đối xứng A qua d ❖ IA + IB = IA '+ IB  A ' B Dấu “=” xảy A’, I, B thẳng hàng suy I = A ' B  d Vì AB//d nên I trung điểm A’B  36 33 15   43 95 28  ❖ Gọi H hình chiếu A lên d suy H  ; ;  suy A '  ; ; −   29 29 29   29 29 29  A −  65 21 43  ❖ Vì I trung điểm A’B nên I  ; − ; −   29 58 29  x = 1+ t x − y −1 z  = = Điểm Câu 35: Trong không gian Oxyz, cho hai đường thẳng d :  y = −1 − t d ' : −1 z =  A(a; b; c)  d B (m; n; p )  d ' cho đoạn AB có độ dài ngắn nhất, a + b + c + m + n + p = ? A B C D ➢ Giải: ❖ A(1 + t ; −1 − t ; 2) B (3 − t ';1 + 2t '; t ') suy AB = (2 − t − t '; + t + 2t '; t '− 2) ❖ AB có độ dài nhỏ AB đoạn vng góc chung d d’ hay:   AB.ud =  t = t ' =  A(1; −1; 2), B(3;1;0)  AB u =  d'  http://dethithpt.com – Website chuyên đề thi – tài liệu file word 14 ... c = 27   a b c x −1 y z +1 = = Câu 5: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng : ba điểm A(3;2;1 −1 1), B (-3 ;-2 ;3) , C(5;4 ;-7 ) Gọi tọa độ điểm M (a;b;c) nằm Δ cho MA+MB nhỏ nhất,... thi – tài liệu file word  53    53   = cos −1  ❖ max f (t ) = f  −  =    10    Câu 8: Trong không gian với hệ tọa độ Oxyz, cho điểm A(0;1;1), B(1;0 ;-3 ), C (-1 ;-2 ;-3 ) mặt cầu (S):... a 2b a - Yêu cầu toán tương đương với: n1.n2 =  + − a4 =  a = b  = 2 b x −1 y z +1 = = Câu 7: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng  : mặt phẳng (P): −1 2x - y + 2z -1 = Mặt

Ngày đăng: 14/06/2018, 15:27

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w