1. Trang chủ
  2. » Trung học cơ sở - phổ thông

PHƯƠNG TRÌNH bậc HAI một ẩn

6 57 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 184,69 KB

Nội dung

Hơn 12.000 bài luyện tập VẬT LÝ cơ bản đến VẬT LÝ nâng cao giúp học sinh ôn tập và củng cố kiến thức một cách chủ động và hiệu quả hơn., Học và làm bài tập VẬT LÝ Online. Các dạng VẬT LÝ từ cơ bản đến nâng cao. Bài kiểm tra VẬT LÝ . Ôn tập hè môn VẬT LÝ với Luyện thi 123.com., Website học .

PHƯƠNG TRÌNH BẬC HAI MỘT ẨN A Kiến thức Định nghĩa: pt bậc hai ẩn pt có dạng: b, c số cho trước Cách giải ax  bx  c   a �0  (1), x ẩn; a, x0 � x0 � � ax  bx  � x  ax  b   � � � b � ax  b  x � a � a) Khuyết c (c = 0): pt (1) trở thành: c ax  c  � ax  c � x   a (2) b) Khuyết b (b = 0): pt (1) trở thành: c  0 - a pt (2) vơ nghiệm, suy pt (1) cung vô nghiệm -  c c 0� x� a a c) đầy đủ: ax  bx  c   a �0  Công thức nghiệm   b  4ac + Nếu   pt có nghiệm phân biệt: b   b   x1  ; x2  2a 2a +   pt có nghiệm kép: +   pt vơ nghiệm d) Cho pt: x1  x2  ax  bx  c   a �0  Công thức nghiệm thu gọn  '  b '2  ac ' + Nếu   pt có nghiệm phân biệt: x1  b 2a b '   ' b'   ' ; x2  a a ' +   pt có nghiệm kép: ' +   pt vơ nghiệm Điều kiện để phương trình: '     - Vô nghiệm: ( ) ' - Nghiệm kép:   (   ) ' - Có nghiệm phân biệt:   (   ) a.c < �    '  �0 � � x x  - Có nghiệm dấu: �1 �   '  �0 � � �x1.x2  �x  x  - Có nghiệm dấu âm: � x1  x2  b ' a �    '  �0 � � �x1.x2  �x  x  - Có nghiệm dấu dương: � �    '  �0 � � x x  - Có nghiệm khác dấu: �1 Hệ thức Vi-ét ứng dụng b � x  x   � � a � �x x  c ax  bx  c   a �0  a - Định lý: Nếu x1; x2 nghiệm pt � - Ứng dụng nhẩm nghiệm hệ thức Vi-ét: + pt ax  bx  c   a �0  có a  b  c  pt có nghiệm là: x1  1; x2  c a x1  1; x2   ax  bx  c   a �0  c a + pt có a  b  c  pt có nghiệm là: uv  S � � u.v  P suy u, v nghiệm pt: x  Sx  P  (điều kiện để tồn u, v + �   S  P �0 ) B Bài tập áp dụng Bài 1: Giải phương trình sau: � 6� 2� � a) 5x  x  b) x   x  ; x   � � �x1  0; x2   � � 5� 2 � � � � 5� 3� � � c) x  x  d )  x  3x  �x1  0; x2  � �x1  0; x2  � 8� 2� � � x  e) x  42  21; x2   21  Bài 2: Giải phương trình sau: 1� � a) 3x  x   �x1  1; x2  � 3� � b) x  10 x  39   x1  3; x2  13  x1  11; x2  5 d ) 3x  x  70  14 � � �x1  5; x2   � 3� � c ) x  x  55  e) x  x   1� � �x1  2; x2  � 2� � Bài 3: Giải phương trình sau: 2 x  1  x  1   x  3  � x  x    a) pt vô nghiệm b) c)  x  1 10 � �  x  x     � 14 x  20 x  � �x1  0; x2   � 7� �  3x  1  x    20 � 3x  x  22  � � �x1  2; x2   � 11 � � 3�  x    x  3   � x  19 x  15  � � �x1  1; x2  15 � � 4� � d) Bài 4: Chứng tỏ với m phương trình sau ln ln có nghiệm phân biệt x2    m  x  m  a) � 1� '    m  m   � m  �  0, m � 2� Ta có: , đenta dương với m nên pt có nghiệm phân biệt với giá trị m 2 b) x  mx  m    '  m    m2  1   5m2   0, m Ta có: , đenta dương với m nên pt có nghiệm phân biệt với giá trị m mx   2m  1 x   Bài 5: Cho pt Tìm m để pt có nghiệm kép Pt có nghiệm kép: �m �0 m �0 a �0 � � 3 2 3 2 � �� �� �� � m1  ; m2   2  2 0 2   4m  12m   ; m2  � � �m1  � 2 x  mx   x2  2x  m   1 ;   Với giá trị Bài 6: Cho pt sau: m pt có nghiệm chung � m �2 1'  m2  �0 � � m �2 � - đk để pt (1) có nghiệm là: (*) '  m m - đk để pt (2) có nghiệm là: � (**) - từ (*) (**) suy để pt có nghiệm m �2 - giả sử x0 nghiệm chung pt trên, ta có : x02  mx0   x02  x0  m    � mx0   x0  m  �  m   x0  m  � x0  (vì m khác m �2 ) - thay x0 = vào (1) (2) ta được:  m   � m  3 Vậy m = -3 pt có nghiệm chung Bài 7: Tìm m để pt sau có nghiệm chung? x2   m  4 x  m    1 x2   m  2 x  m    2 m2 1 m2 � m �2  1  m  4m  �0 � � m �2  � - đk để pt (1) có nghiệm là: - đk để pt (2) có nghiệm là:   m �0, m (**) (*) � m �2  � m �2  - từ (*) (**) suy để pt có nghiệm � (***) - giả sử x0 nghiệm chung pt trên, ta có : x02   m   x0  m   x02   m   x0  m     �   m   m   x0  4 � x0  - thay x = vào (1) ta được:  ( m  4).2  m   � m  (thỏa mãn (***)) Vậy m = pt có nghiệm chung Bài 8: Tìm m để pt sau có nghiệm chung? x  mx    1 mx  x    2 - đk để pt (1) có nghiệm là: 1  m  �0, m (*)  � 8m m - đk để pt (2) có nghiệm là: (**) m� (***) - từ (*) (**) suy để pt có nghiệm - giả sử x0 nghiệm chung pt trên, đó: x02  mx0   mx02  x0     �  m   x02   m  1 x0   m �   m  10m  25   m   �0 �   m    m ), nên pt có nghiệm Ta có: (vì  m  2 m 1  m m 1  m 2m  x01   ; x02    1  m  2 m2  m  2  m  2  m  2 phân biệt: x01  m2 thay vào (1) ta được: 2 �3 � �   � 18  3m  m     m    � m  m   � m m2 �m  � (phương trình vơ nghiệm có  m  27  ) x 1 - thay 02 vào (1) ta được: 2.1  m.1   � m  1 (thỏa mãn (***)) Vậy m = -1 pt có nghiệm chung Bài 9: Cho pt x  x  m   a) xác định m để pt có nghiệm 2 b) Tìm m để pt có nghiệm thỏa mãn: x1  x2  10 LG ' ' 0 3 m m a) Ta có:     m Pt có nghiệm ���� �x1  x2  � �x1.x2  m  b) với m �3 giả sử pt có nghiệm x1 ; x2 theo Vi-ét ta có: x  x22  10 �  x1  x2   x1 x2  10 lại có: (**)   m  1  10 � m  thay (*) vào (**) ta được: (thỏa mãn điều kiện) Bài 10: Cho pt x  x  m  Xác định m để pt có nghiệm thỏa mãn Ta có:    25  12m 25 ����  25  12m m 12 Pt có nghiệm (*) (*) x12  x22  � x1  x2  � � � 25 �x x  m m� 12 giả sử pt có nghiệm x1 ; x2 theo Vi-ét ta có: � với 5 5 x12  x22  �  x1  x2   x1  x2   �  x1  x2   � x1  x2  9 lại có: (1)  2 (3) � x1  x2  �x1  � � � �� � x2  �x  x  � � kết hợp (1) (3) ta có hệ phương trình: � thay vào (2) ta m  � m  3 (thỏa mãn đk (*)) Bài 11: Cho pt x  2mx  2m   a) Chứng tỏ pt có nghiệm x1, x2 với m A   x12  x12   x1 x2 b) Đặt * CMR: A  8m  18m  * Tìm m để A = 27 c) Tìm m để pt có nghiệm lần nghiệm LG 2   m  2m    m  1 �0, m a) ta có , pt có nghiệm với giá trị m �x1  x2  2m � x x  2m  b) + với m pt có nghiệm x1, x2 theo Vi-ét ta có: �1 (*) 2 A   x1  x1   x1 x2 � A   x1  x2   x1 x2 từ (**) 2 A   2m    m  1  8m  18m  thay (*) vào (**) ta được: => đpcm 8m  18m   27 � 8m2  18m  18  � m1  3; m2   + với A = 27 suy c) giả sử x1 = 2.x2, kết hợp (*) ta có: 4m � x1  � x1  x2 x1  x2 � � � 2m � � � x1  x2  2m � � x2  m �� x2  � � � � � x1.x2  2m  x1.x2  2m  � � �4m 2m �3  2m  � 4m � x1  � � 2m � x2  � � � 8m  18m   � � 3 8m  18m   � m1  ; m2  giải pt *************************************************** Ngày dạy: …………………………………… ... nghiệm pt: x  Sx  P  (điều kiện để tồn u, v + �   S  P �0 ) B Bài tập áp dụng Bài 1: Giải phương trình sau: � 6� 2� � a) 5x  x  b) x   x  ; x   � � �x1  0; x2   � � 5� 2 � � � � 5�... 3x  �x1  0; x2  � �x1  0; x2  � 8� 2� � � x  e) x  42  21; x2   21  Bài 2: Giải phương trình sau: 1� � a) 3x  x   �x1  1; x2  � 3� � b) x  10 x  39   x1  3; x2  13 ... � �x1  5; x2   � 3� � c ) x  x  55  e) x  x   1� � �x1  2; x2  � 2� � Bài 3: Giải phương trình sau: 2 x  1  x  1   x  3  � x  x    a) pt vô nghiệm b) c)  x  1 10 �

Ngày đăng: 27/03/2018, 14:56

TỪ KHÓA LIÊN QUAN

w