GIÁOÁNHÌNHHỌC Tiết 46: TRƯỜNGHỢPĐỒNGDẠNGTHỨBA I Mục tiêu học: - HS nắm trắc định lí trườnghợpđồngdạngthứđồng thời củng cố hai bước thường dùng định lí để chứng minh hai tam giác đồng dạng: Dựng ∆ AMN đồngdạng với ∆ ABC Chứng minh ∆ AMN = ∆ A’B’C’ suy ∆ ABC đồngdạng với ∆ A’B’C’ - Vận dụng định lí vừa học nhận biết hai tam giác đồngdạng tìm tỉ số, góc tương ứng - Rèn kĩ vận dụng điịnh lí học, cẩn thận, logic chứng minh II Phương tiện dạy học: - GV: Bảng phụ vẽ hình ?.1, ?.2, ?.3 - HS: Bảng nhóm, đdht III Tiến trình dạy: Hoạt động thầy Hoạt động 1: Bài tốn đến định lí Hoạt động trò Định lí GT: ∆ ABC, ∆ A’B’C’có GV treo bảng phụ tốn GT?, KL? Cũng cách chứng minh hai định lí trước Ta phải làm Ghi bảng A = A’, B = B’ KL ∆ A’B’C’ ∆ ABC A M A’ N nào? MN//BC=> hai tam giác đồngdạng Cho HS tìm lời giải B C B’ Lấy M ∈ BC cho C’ AM=A’B’, vẽ MN//BC => ∆ ABC ∆ AMN => AMN = B (đ vị) mà B = B’, AM = A’B’ => ∆ AMN = ∆ A’B’C’ => ∆ A’B’C’ ∆ ABC HS đứng chỗ nêu trường Từ tập hay xây dựng lên trườnghợpđồngdạngthứ ba? hợpđồngdạngthứba Định lí: Nếu hai góc tam giác hai góc tam giác hai tam giác đồngdạng với Áp dụng Hoạt động 2: Áp dụng HS thảo luận nhóm trình ?.1 GV treo bảng phụ ?.1 cho HS bày ∆ ABC thảo luận trình bày Lớp nhận xét, bổ sung Vì ∆ ABC cân A ∆ PMN; => B = C = (1800-400):2 = 700 ∆ PMN cân P nên P = Q = 700 => B = P; C = Q ∆ A’B’C’ ∆ D’E’F’ Vì ∆ ABC có C’= 1800 – (600+500) = 700 => B’=E’; C’ = F’ ?.2 ∆ ABD ∆ ACB Hoạt động 3: Củng cố GV treo bảng phụ ?.2 cho HS HS thảo luận nhóm trình Vì A chung thảo luận bày bảng nhóm Cả lớp nhận xét, bổ sung ABD = ACB => AB AD x = = = AC AB 4,5 => x = 9: 4,5 = y = 4,5 – = 2,5 Vì BD phân giác góc B => DA DC 2,5 = = = AB BC BC => BC = 2,5 : = 3,75 mặt khác: ∆ ABD => ∆ ACB AB BD BD = = = AC BC 4,5 3,75 => BD = 3,75 : = 2,5 Hoạt động 4:Dặn dò - Về xem kĩ lại lí thuyết batrườnghợpđồngdạng tam giác - Coi lại tính chất tia phân giác góc tính chất có liên quan tiết sau luyện tập - BTVN: 35,36,37 Sgk/79 IV Rút kinh nghiệm Tiết 47: LUYỆN TẬP I Mục tiêu học: - HS củng cố vững định lí nhận biết hai tam giác đồngdạng Biết phối hợp, kết hợp kiến thức cần thiết để giải vấn đề mà tốn đặt - Vận dụng thành thạo định lí vào giải tập từ đơn giản đến phức tạp, kĩ phân tích chứng minh tổng hợp - Cẩn thận, linh hoạt, xác chứng minh II Phương tiện dạy học: - GV: Bảng phụ vẽ hình 43, 45 Sgk/79 - HS: Ôn tập kiến thức, Đdht III Tiến trình dạy: Hoạt động thầy Hoạt động 1: KTBC Hoạt động trò Ghi bảng HS phát biểu chỗ trườngBài 36 Sgk/79 Nêu trườnghợpđồnghợpđồngdạng tamgiác A dạng hai tam giác? B x GV treo bảng phụ hình hs lên làm, số lại nháp 36 cho HS lên thực 12,5 chỗ GV cho HS bổ sung nhận xét D Chứng minh 28,5 C Xét ∆ ADB ∆ BCD Có: A = DBC (gt) cho điểm ABD = BDC (slt AB//DC) => ∆ ADB GT: Cho hình vẽ A B C Hoạt động 2: Luyện tập Bài 38 AB DB 12,5 DB = = = BD DC DB 28,5 => DB2 = 12,5 28,5 = 356,25 x 3,5 => ∆ BCD y => DB = 356,25 ≈ 18,9 D C Bài 38 Sgk/79 HS lên thực hiện, số lại Từ hình 45 ta có: làm chỗ B = D ; ACB = DCE (đđ) Nêu GT? KL? HS nêu GT, KL => ∆ BCA OA OB = OC OD => AC AB BC x = = = = = CE DE CD y 3,5 => x = 3,5 : = 1,75 GV cho HS lên thực Dựa vào trườnghợpđồng ∆ DCE ∆ AOB ∆ COD y=2.6:3=4 Bài 39 Sgk/79 dạng g-g tính x, y tử tỉ số HS thực hiện, lớp nhận xét A H B Bài 39 Để có O Cho HS neu GT, KL chỗ OA.OD = OB.OC ta phải có = tỉ số nào? OB Vì ∆ AOB OD ∆ COD D Chứng minh Từ tỉ số ta phải chứng minh hai tam giác đồng dạng? OB = Vì ∆ AOB OD GV cho HS lên thực cho lớp nhận xét AB = ? tỉ số Ta nhận xét xem DC OH AB = OK DC luận gì? ∆ COD AB//DC => ∆ AOB ∆ COD OA OB = OA.OD = OC OD OB.OC b Vì ∆ AOB OB AB = OD DC đồng dạng? Từ (1) (2) ta có kết a Xét ∆ AOB ∆ COD có => nào? Dự vào hai tam giác OH Tương tự với tỉ số ? OK C K ∆ COD (1) Mặt khác ∆ HOB ∆ KOD có: Có ∆ ADE ∆ ACB HBO = KDO ( slt AB//DC) OHB = OKD = 900 => ∆ HOB => AD AE = = AC AB Bài 40 Góc A chung GV HS vẽ hình (trường hợpthứ 2) ∆ KOD OB OH = OD OK (2) Từ (1) (2) => Bài 40 Sgk/80 OH AB = OK DC Dự đốn xem có hai tam giác A đồngdạng không? 15 E 20 D B Yêu cầu HS tìm yếu tố để hai tam giác đồng dạng? (theo trườnghợp nào?) Ta có: => C AD AE = = ; = = AC 20 AB 15 AD AE = ; A chung AC AB => ∆ ADE ∆ ACB Hoạt động: Dặn dò - Về xem lại kĩ lí thuyết dạng tập làm tiết sau luyện tập KT 15’ - Xem lại trườnghợpđồngdạng hai tam giác, định lí talét - BTVN: Bài 41 đến 45 Sgk/80 IV Rút kinh nghiệm