1. Trang chủ
  2. » Luận Văn - Báo Cáo

Lý thuyết nghiên cứu biến dạng dẻo của kim loại và hợp kim thay thế A-B

70 225 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 70
Dung lượng 0,92 MB

Nội dung

LỜI CẢM ƠN Tôi xin gửi lời cảm ơn chân thành lòng biết ơn sâu sắc tới giáo hướng dẫn - TS Phạm Thị Minh Hạnh tận tình giúp đỡ, bảo tơi q trình học tập, nghiên cứu thực khóa luận “Lý thuyết nghiên cứu biến dạng dẻo kim loại hợp kim thay A - B” Đồng thời xin chân thành cảm ơn thầy giáo, cô giáo tổ Vật lý lý thuyết, khoa Vật lý trường ĐHSP Hà Nội tạo điều kiện cho tơi hồn thành khóa luận Lời cảm ơn chân thành sâu sắc, tơi xin gửi đến gia đình, bạn bè sát cánh động viên vượt qua khó khăn để tơi hồn thành tốt khóa luận Trong trình nghiên cứu thời gian có hạn bước đầu làm quen với phương pháp nghiên cứu khoa học nên tơi bỡ ngỡ, khơng tránh khỏi thiếu sót, hạn chế Vì tơi mong nhận ý kiến đóng góp thầy giáo, giáo bạn đọc để khóa luận đầy đủ hồn thiện Tơi xin chân thành cảm ơn! Hà Nội, tháng năm 2013 Sinh viên thực Đinh Hồng Hạnh LỜI CAM ĐOAN Tôi xin cam đoan nội dung mà tơi trình bày khóa luận tốt nghiệp kết nghiên cứu riêng hướng dẫn, bảo tận tình TS Phạm Thị Minh Hạnh Tơi xin cam đoan số liệu kết nghiên cứu khóa luận trung thực khơng trùng lặp với khóa luận khác Tơi xin chịu hồn toàn trách nhiệm kết nghiên cứu cá nhân khóa luận Hà Nội, tháng năm 2013 Sinh viên thực Đinh Hồng Hạnh MỤC LỤC Trang LỜI CẢM ƠN LỜI CAM ĐOAN MỞ ĐẦU NỘI DUNG CHƯƠNG 1: LÝ THUYẾT CHUNG VỀ BIẾN DẠNG 1.1 Các yếu tố lý thuyết đàn hồi 1.2 Các yếu tố lý thuyết dẻo 1.3 Tính dẻo trạng thái siêu dẻo vật liệu CHƯƠNG 2: LÝ THUYẾT NGHIÊN CỨU BIẾN DẠNG DẺO CỦA KIM LOẠI 2.1 Lý thuyết nghiên cứu biến dạng đàn hồi kim loại 2.2 Lý thuyết nghiên cứu biến dạng dẻo kim loại CHƯƠNG 3: LÝ THUYẾT NGHIÊN CỨU BIẾN DẠNG DẺO CỦA HỢP KIM THAY THẾ A – B 3.1 Độ dời trung bình khỏi vị trí cân nguyên tử hợp kim độ biến dạng hợp kim 34 3.2 Sự phụ thuộc ứng suất giới hạn có biến dạng dẻo hợp kim vào độ biến dạng 39 KẾT LUẬN TÀI LIỆU THAM KHẢO MỞ ĐẦU Lí chọn đề tài Cuộc cách mạng khoa học kĩ thuật ngày có nhiều bước tiến mới, đặc biệt ngành kim loại hợp kim học Những thành tựu ngành tạo nhiều vật liệu quý cho ngành kĩ thuật mũi nhọn Kim loại loại vật liệu có tính chất có lợi cho xây dựng: cường độ lớn, độ dẻo độ chống mỏi cao Nhờ mà kim loại sử dụng rộng rãi xây dựng ngành kĩ thuật khác Bên cạnh đó, hợp kim có nhiều tính chất có giá trị: cường độ, độ dẻo, khả chống ăn mòn, tính trang trí cao Những điều mở rộng phạm vi sử dụng hợp kim xây dựng, phổ biến chi tiết kiến trúc kết cấu nhôm Hợp kim vật liệu kim loại có chứa loại kim loại số kim loại khác phi kim khác Trong hợp kim có electron tự nên có tính dẫn điện, dẫn nhiệt, tính dẻo ánh kim… Do có tính chất hóa học, vật lý, học quý nên hợp kim sử dụng rộng rãi ngành kinh tế quốc dân Còn nhiều ứng dụng khác dùng để chế tạo máy móc, dùng làm ống xả động phản lực, dùng chế tạo dàn ống dẫn nước chữa cháy tự động, thiết bị dùng dạng dẻo kim loại hợp kim cần nhà máy sản thiết xuất hóa chất Một vấn đề hấp dẫn nhiều Một nhà khoa học thực nghiệm lý thuyết tính chất làm vấn đề nghiên cứu tính chất học cho kim loại hợp kim loại hợp kim kim ứng dụng rộng rãi biến khả dạng dẻo Trong chế tạo khí tính chất kim loại hợp kim ứng dụng phương pháp gia cơng tạo hình áp lực Đây phương pháp gia công kim loại hợp kim có suất chất lượng cao, ứng dụng phổ biến Vì vậy, việc nghiên cứu tượng liên quan đến biến Mặt khác vấn đề biến dạng vật liệu vòng - thập niên gần phát triển mạnh Chính lí trên, với vốn kiến thức nhỏ bé mình, tơi chọn nghiên cứu đề tài “Lý thuyết nghiên cứu biến dạng dẻo kim loại hợp kim thay A - B” Mục đích nghiên cứu - Nghiên cứu tính chất học kim loại hợp kim - Nghiên cứu lý thuyết biến dạng dẻo kim loại hợp kim thay A -B Đối tượng nghiên cứu - Vật liệu kim loại - Hợp kim thay A - B Nhiệm vụ nghiên cứu Để đạt mục đích nghiên cứu đề cần thực nhiệm vụ sau: - Lý thuyết biến dạng - Lý thuyết biến dạng dẻo kim loại hợp kim thay A - B Phương pháp nghiên cứu - Phương pháp phân tích - Phương pháp tổng hợp lý thuyết - Phương pháp thống kê Cấu trúc khóa luận Ngồi phần mở đầu, kết luận tài liệu tham khảo, khóa luận gồm chương: Chương 1: Lý thuyết chung biến dạng Chương 2: Lý thuyết nghiên cứu biến dạng dẻo kim loại Chương 3: Lý thuyết nghiên cứu biến dạng dẻo hợp kim thay A - B NỘI DUNG CHƯƠNG 1: LÝ THUYẾT CHUNG VỀ BIẾN DẠNG 1.1 Các yếu tố lý thuyết đàn hồi Dưới tác dụng ngoại lực, vật rắn từ từ biến dạng, nghĩa thay đổi hình dạng kích thước Trong lý thuyết thơng thường đàn hồi vật rắn vật rắn khảo sát mơi trường liên tục Vị trí điểm  vật rắn đặc trưng bán kính vectơ r  x1, x2 , x3  x1, x2 , x3 với  thành phần vô hướng vectơ r hệ tọa độ tùy ý Trong trình biến dạng, điểm vật rắn dịch chuyển từ vị trí xác định vectơ  / r sang vị trí xác định vectơ r  x,x ,x  / / / Trong phạm vi giới hạn ngoại lực (thường nhỏ) ngừng tác dụng ngoại lực vật rắn trở lại hình dạng kích thước ban đầu, trình biến dạng gọi biến dạng đàn hồi Trong biến dạng đàn hồi, độ dịch chuyển điểm mơ  / tả vectơ dịch chuyển u  r  với thành phần:  r / ui  x  xi i i  1, 2,3 (1.1) Các thành phần vectơ dịch chuyển ui giá trị x i hàm tọa độ xi Theo [1] tenxơ e  ui uk ul ul       ik x x x x  k i i k (1.2) gọi tenxơ biến dạng Rõ ràng tenxơ đối xứng eik  eki  Trong trường hợp biến dạng nhỏ, thành phần thứ ba (1.2) bỏ qua, lúc tenxơ biến dạng có dạng đơn giản:  ui uk  e     ik x x  k i (1.3) Trong biến dạng đàn hồi vật rắn xuất lực có xu kéo vật trạng thái cân Như vật rắn biến dạng đàn hồi, tenxơ biến dạng eik tương ứng có ứng suất  ik bên mô tả tenxơ đối xứng hạng hai Khi biến dạng, vật rắn có lượng đàn hồi dạng tổng quát biểu diễn: F 1 ee  C C ijkl ij kl mn đây: Cijkl ee e ijklmn ij kl môđun đàn hồi hạng hai; Cijklmn (1.4) môđun đàn hồi hạng ba (Đã bỏ qua thành phần bậc cao khai triển chúng nhỏ) Trong lý thuyết đàn hồi tuyến tính, thành phần thứ hai (1.4) bỏ qua biểu thức lượng đàn hồi có dạng: F (1.5) Cijkleijekl Sự liên hệ ứng suất biến dạng đàn hồi tuân theo định luật Húc tổng quát:   ij F  C e e ij (1.6) ijkl kl Rõ ràng rằng: Ciklm  Ckilm  Cikml  Clmik (1.7) Nhờ mà số thành phần độc lập Ciklm giảm bớt trường hợp tổng quát từ 8l xuống 2l Nếu đưa kí hiệu ma trận: Cmn  Cijkl  i, j, k,l  1, 2,3; m, n  1, 2,3, 4,5, 6 (1.8) Vậy (3.1) viết lại dạng: (3.3) Y  C A 1  n1CB  YA  CB  YB  n1C AYAB  Khi có ngoại lực P tác dụng, cách xem xét biến dạng cấu trúc mạng diễn chậm tác dụng ngoại lực, lúc độ dời trung bình khỏi vị trí cân nguyên tử hợp kim thay đổi có dạng: / Y   n C B CA  / AB / / B Y C A A  (3 Y  n C Y4) theo (2.1): YA/  YA  PA 1A  P2 A / YB  YB  PA 1B A (3.5) B P A / YAB  Y AB  PA 1AB  P 2A AB theo (2.2) ta có: Y  A A 2  A K3 A A Y  B (3.6) A B B AB K3 22   AB Y  K B A A B A B Các đại lượng: AA , AB , AAB ,  A ,  B ,  AB , K A , K B , K AB xác định [6] A1A , A1B , A1AB , A xác định (2.3.1) (2.3.2) A , A2B , A2 AB Vì C nên từ (3.3) ta có biểu thức gần xác định CA B độ dời trung □  bình khỏi vị trí cân nguyên tử hợp kim có dạng: / Y  (3 ) 3.1.1.2 Độ biến dạng hợp kim có ngoại lực tác dụng Từ biểu thức định nghĩa độ biến dạng (2.6), áp dụng công thức (3.5) (3.7) ta tìm biểu thức độ biến dạng hợp kim sau: / /     (3.8) P C A  A1A  PA2 A   CB  A1B  PA2B   a/ (3.9) / với: a  C A a A  CB aB khoảng lân cận gần hạt hợp kim T K ; (3.9): aA aB khoảng lân cận gần hạt kim loại A B T K , có dạng (2.23) Xét biến dạng dẻo hợp kim, ngừng tác dụng ngoại lực  P  0  độ biến dạng dư  xác định nhờ (2.26) Do đó, với biến dạng khơng đàn hồi hợp kim, gần bậc môđun Young / E có dạng: / (3.10) / E  1    E d mơđun Young đàn hồi E / hợp kim xác định: d / Edh  với  A1 a /   A 1 PA   (3.11.1)  C A A1A  C B A1B ;  CA A2 A  CB A2 A2B Khi ngoại lực nhỏ (3.11.1) có dạng: / Edh  /  a A1 (3.12) (3.11.2) 3.1.2 Hợp kim có C A C B 3.1.2.1 Độ dời trung bình khỏi vị trí cân nguyên tử hợp kim [1]: Khi hợp kim có nồng độ C A CB bất kỳ, việc sử dụng cơng thức tính độ dời trung bình ngun tử khỏi vị trí cân hợp kim (3.7) cho kết chưa tốt (nhất hợp kim có nồng độ CB lớn) Để giải toán hợp kim A-B nồng độ hạt A, B ta sử dụng thêm thông số môđun đàn hồi đẳng nhiệt tinh thể có dạng sau: B  T (3.13) T với  hệ số dãn đẳng nhiệt tinh thể T Ta tìm biểu thức mơđun đàn hồi đẳng nhiệt trung bình hợp kim A-B dạng: BT  C A BT , A  C B BT (3.14) ,B Khi khoảng lân cận gần hạt hợp kim hồn tồn vơ trật tự có dạng [1]: / a aC B T,A A A C BT Y  Y C BT , / / BT , a B B Y C / BT BT BT , A A A (3.15) B (3.16) B B B BT công thức (3.15) (3.16): / a khoảng cách lân cận gần hạt hợp kim T K ; / / YA , Y độ dời khỏi vị trí cân nguyên tử kim loại A, B có ngoại lực P tác dụng, xác định (3.5) 3.1.2.2 Độ biến dạng hợp kim Cũng từ công thức định nghĩa độ biến dạng (2.6), áp dụng cơng thức (3.4) (3.16) ta tìm biểu thức độ biến dạng hợp kim sau: // BT , A  P C A //       BT , B C  PA AB A 1A 2A 2B B   (3.17)  1B T BT     PA a/ Xét biến dạng dẻo hợp kim, ngừng tác dụng ngoại lực  P  0  độ biến dạng dư  xác định nhờ (2.26) Do đó, với biến dạng khơng đàn hồi hợp kim, gần bậc môđun Young // E có dạng (2.27): (3.18) // // E  1    E d mơ đun Young đàn hồi E // d // Edh  với :  A a / A   1 PA  BT , A C A hợp kim xác định: (3.19.1) BT ,B C A A A C BT 1A BT , A A BT B 2A Khi ngoại lực nhỏ (3.19.1) có dạng: BT 1B (3.20) BT ,B C A A  B BT 2B // Edh  /  a A (3.19.2) 3.2 Sự phụ thuộc ứng suất giới hạn có biến dạng dẻo hợp kim vào độ biến dạng Ta biết, vật thể (đơn hay đa tinh thể) xảy trình biến dạng dẻo, phụ thuộc ứng suất pháp tuyến   vào độ biến dạng  phi tuyến tính tổng quát có dạng (2.28): / / / / /2    E   E1  / /3  E2  (3.21) / đây:  độ biến dạng hợp kim có C A □ CB hay C A , CB mà ta áp dụng kết phần 3.1.1.2 hay phần 3.1.2.2; / E môđun Young Tùy theo loại hợp kim có nồng độ mơđun Young C A □ CB hay C A , CB mà / E xác định biểu thức dạng (3.11.2) hay (3.19.2) Nếu ta xét đến số hạng thứ hai (3.21) ý tới điều kiện xác định biến dạng dẻo vật thể biến dạng dẻo (2.29) ta thu biểu thức sau: / / / E với  d     1 /  2 / (3.22) d độ biến dạng tới hạn hợp kim bắt đầu biến dạng dẻo Ứng suất giới hạn đàn hồi hợp kim tính tương ứng với độ biến dạng  / d , nghĩa nhờ (3.22) ta có:    / / / /h d  dh  E  dh   / 2   Vì  / gần  / (3.23) d nên ta xác định ứng suất giới hạn  / hợp kim hợp kim bắt đầu biến dạng dẻo có độ biến dạng dư   d 0, dh dạng gần đúng:   0,2 / /  / / /  2 / / /            – 2   d    dh d h   d dh / / /   /      (3 4) dh dh Thông số  xác định từ (2.25) biến dạng dẻo hợp kim tương tự (2.33):   (3.25) Từ (3.10) , (3.22) (3.24) ta dễ dàng nhận được:  /  / / 66 / Ed – (3.26) h  d d h  0, dh /   /    d  /  /  d  dh  / 1   1 d2 0,2  dh2 / d h Với công thức (3.10), (3.11.2), (3.12), (3.23) (3.26) ta hoàn toàn xá c đị n h đ ợc  / d   d   d ta xét gần a A E 1 vàkhi  hợp kim d có biến dạng dẻo / biết  0, d /  với hợp kim cụ Giải phương trình (3.27) cho phép ta tìm /  thể biết độ biến / dạng  d 67 d  KẾT LUẬN Sau q trình nghiên cứu, tìm tòi tơi hồn thành khóa luận làm cơng việc sau: - Bước đầu tìm hiểu lý thuyết đàn hồi, lý thuyết dẻo, hiểu biến dạng đàn hồi biến dạng dẻo, thấy khác lý thuyết đàn hồi lý thuyết dẻo - Tìm biểu thức giải tích xác định giá trị ứng suất giới hạn, độ biến dạng vật thể bắt đầu biến dạng dẻo, biểu thức giải tích phụ thuộc ứng suất vào độ biến dạng - Tìm biếu thức tính độ dời trung bình khỏi vị trí cân nguyên tử hợp kim độ biến dạng hợp kim hợp kim có CA  CB hợp kim có C A , CB bất kỳ, biểu thức tính phụ thuộc ứng suất giới hạn có biến dạng dẻo hợp kim vào độ biến dạng TÀI LIỆU THAM KHẢO [1] Nguyễn Thị Hòa (1998), Luận án thạc sỹ Vật lý, Đại học sư phạm –Đại học quốc gia Hà Nội, Hà Nội [2] Nguyễn Hữu Mình, Nguyễn Thế Khơi (1992), Vật lý chất rắn, NXB Khoa học giáo dục [3] Đinh Bá Trụ (2000), Cơ sở lý thuyết biến dạng dẻo kim loại, Học viện kĩ thuật quân sự, Hà Nội [4] www.moon.vn/baigiang/lythuyet.aspx, Đại cương kim loại [5] Vu Van Hung, Nguyen Thanh Hai (1996), Communications in Physic Vol.6, N0 26 [6] Nguyen Tang and Vu Van Hung (1988), Phys, Stat, Sol (b), 149, 511519 [7] Reuss A (1928), Berechnung der Fliesgrenze von Mischkristallen aul Grund der Platisital sberechnung fur Einkristalle – Z – angen Math Mech, q, N, S 49 – 58 [8] Besseling J.F (1958), Theory of elastic – plastic and creep deformation of an initially isotropic material showing anisotropic strain – hardening, creepreco very and secondary creep.- J Appl Mech, 25, N0 , p 529 [9] Murnaghan F (1951), Finite Deformation of an elastic Solids – Newyork, John Wiley, p 153 [10] Hill R (1952), The elastic Behaviour of crystalline Agregate proc Phys Soc A, 65, p 349 – 359 [11] Voigt W (1928), Lehrbuch der Kristall Physik – Leizig: Springer, 500s ... tài Lý thuyết nghiên cứu biến dạng dẻo kim loại hợp kim thay A - B” Mục đích nghiên cứu - Nghiên cứu tính chất học kim loại hợp kim - Nghiên cứu lý thuyết biến dạng dẻo kim loại hợp kim thay. .. 2.1 Lý thuyết nghiên cứu biến dạng đàn hồi kim loại 2.2 Lý thuyết nghiên cứu biến dạng dẻo kim loại CHƯƠNG 3: LÝ THUYẾT NGHIÊN CỨU BIẾN DẠNG DẺO CỦA HỢP KIM THAY THẾ A – B ... Lý thuyết chung biến dạng Chương 2: Lý thuyết nghiên cứu biến dạng dẻo kim loại Chương 3: Lý thuyết nghiên cứu biến dạng dẻo hợp kim thay A - B NỘI DUNG CHƯƠNG 1: LÝ THUYẾT CHUNG VỀ BIẾN DẠNG

Ngày đăng: 18/02/2018, 05:48

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1]. Nguyễn Thị Hòa (1998), Luận án thạc sỹ Vật lý, Đại học sư phạm –Đại học quốc gia Hà Nội, Hà Nội Sách, tạp chí
Tiêu đề: Luận án thạc sỹ Vật lý
Tác giả: Nguyễn Thị Hòa
Năm: 1998
[2]. Nguyễn Hữu Mình, Nguyễn Thế Khôi (1992), Vật lý chất rắn, NXB Khoa học và giáo dục Sách, tạp chí
Tiêu đề: Vật lý chất rắn
Tác giả: Nguyễn Hữu Mình, Nguyễn Thế Khôi
Nhà XB: NXB Khoa học và giáo dục
Năm: 1992
[3]. Đinh Bá Trụ (2000), Cơ sở lý thuyết biến dạng dẻo kim loại, Học viện kĩ thuật quân sự, Hà Nội Sách, tạp chí
Tiêu đề: Cơ sở lý thuyết biến dạng dẻo kim loại
Tác giả: Đinh Bá Trụ
Năm: 2000
[4]. www.moon.vn/baigiang/lythuyet.aspx , Đại cương về kim loại Khác
[5]. Vu Van Hung, Nguyen Thanh Hai (1996), Communications in Physic Vol.6,N 0 4 26 Khác
[6]. Nguyen Tang and Vu Van Hung (1988), Phys, Stat, Sol. (b), 149, 511- 519 Khác
[7]. Reuss A. (1928), Berechnung der Fliesgrenze von Mischkristallen aul Grund der Platisital sberechnung fur Einkristalle – Z – angen Math Mech, q, N, S. 49 – 58 Khác
[8]. Besseling J.F. (1958), Theory of elastic – plastic and creep deformation of an initially isotropic material showing anisotropic strain – hardening, creepreco very and secondary creep.- J. Appl. Mech, 25, N 0 4 , p. 529 Khác

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w