1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Chuyên đề quy nạp toán học, dãy số, cấp số cộng và cấp số nhân – nguyễn bảo vương

123 1,1K 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 123
Dung lượng 2,19 MB

Nội dung

Tài liệu toán 11 năm học 2018 PHNG PHP QUY NẠP TỐN HỌC A TĨM TẮC LÝ THUYẾT Nội dung phương pháp quy nạp toán học Cho số nguyên dương mệnh đề có nghĩa với số tự nhiên (1) Nếu (2) Nếu đúng, với số tự nhiên mệnh đề P(n) với số tự nhiên Khi ta bắt gặp toán: Chứng minh mệnh đề sau Bước 1: Kiểm tra với số tự nhiên ta sử dụng phương pháp quy nạp có hay khơng Nếu bước ta chuyển qua bước hai Bước 2: Với Kết luận: ; , giả sử với ta cần chứng minh Lưu ý: Bước gọi bước quy nạp, mệnh đề gọi giả thiết quy nạp B CÁC DẠNG TOÁN PHƯƠNG PHÁP GIẢI Vấn đề Dùng quy nạp để chứng minh đẳng thức Bất đẳng thức Phương pháp Phương pháp: Giả sử cần chứng minh đẳng thức thực bước sau: Bước 1: Tính (hoặc ) với ta chứng minh Bước 2: Giả sử , ta cần chứng minh ví dụ minh họa n(n + 1) Ví dụ Chứng với số tự nhiên n ≥ ta ln có: + + + + n = Ví dụ Chứng minh với số tự nhiên n ≥ ta ln có: + + + + 2n − = n2 1.3.5 ( 2n − 1) Ví dụ Chứng minh với ∀n ≥ , ta có bất đẳng thức: < 2.4.6.2n 2n + x n (x n +1 + 1) 2n +1  x + 1 Đẳng thức xảy nào? ≤  n   x +1 Chú ý: Trong số trường hợp để chứng minh mệnh đề P(n) với số tự nhiên n ta chứng Ví dụ Chứng minh với ∀n ≥ 1, ∀x > ta có bất đẳng thức: minh theo cách sau Bước 1: Ta chứng minh P(n) với n = n = k Bước 2: Giả sử P(n) với n= k + , ta chứng minh P(n) với n = k Cách chứng minh gọi quy nạp theo kiểu Cauchy (Cơ si) 1i Bài tập tự luận tự luyeän Bài Chứng minh với số tự nhiờn n , ta luụn cú Giảng dạy: nguyễn bảo vương - 0946798489 Page | Tài liệu toán 11 năm học 2018 n(n + 1)(2n + 1) 12 + 2 + + (n − 1)2 + n = Bài Chứng minh đẳng thức sau n ( n + 1)( n + ) 1.2 + 2.3 + + n(n + 1) = với ∀n ≥  n ( n + 1)  + + + + n =     3 2 n 2n + + + + = − 3 3n 4.3n 1 1 n + + + + = 1.5 5.9 9.13 4n +1 ( 4n − )( 4n + 1)      4  −  −  −   −   25    ( 2n − 1)2  1 n + + + = 1.2 2.3 n(n + 1) n + + + (n − 1).n 1.2 + 2.32 + 3.4 = 2n(n + 1)(2n + 1) 2 + + + (2n)2 =  + 2n =  − 2n  n(n − 1)(3n + 2) , ∀n ≥ 12 n(n + 1)(n + 2)(n + 3) 1.2.3 + 2.3.4 + + n(n + 1)(n + 2) = Với n ∈  * n(n − 1)(3n + 2) 1.2 + 2.32 + 3.4 + + (n − 1).n = với ∀n ≥ 12 1 n(n + 3) Với n ∈  * 10 + + + = 1.2.3 2.3.4 n(n + 1)(n + 2) 4(n + 1)(n + 2) Bài Chứng minh với số tự nhiên n ≥ ta có: + + + + + = cos π n +1 (n dấu căn) nx (n + 1)x sin sin 2 với x ≠ k2 π với n ≥ Chứng minh đẳng thức sin x + sin 2x + sin nx = x sin Bài Chứng minh với n ≥ ta có bất đẳng thức: sin nx ≤ n sin x ∀x ∈  Bài n  1 Chứng minh với số tự nhiên n ≥ , ta có :  +  < n  3n > 3n + với số tự nhiên n ≥ ; 2.4.6.2n > 2n + với số tự nhiên n ≥ ; 1.3.5 ( 2n − 1) Bài Cho hàm số f xác định với x ∈  thoả mãn điều kiện : f(x + y) ≥ f(x).f(y), ∀x, y ∈  (*) Chứng minh 2n   x  với số thực x số tự nhiên n ta có : f ( x ) ≥ f  n     Bài Chứng minh bất đẳng thức sau 1 1 1 1 + + + + n < + 2n + ∀n ≥ 3 tan nα > n tan α với < α < ( n − 1) n + > 2n + 5, (∀n ∈  * ) 3n −1 > n(n + 2); (∀n ∈  * , n ≥ 4) n − > 3n − 1; (∀n ∈  * , n ≥ 8) (n + 1)cos 2n + 1 < 2n + 3n + Giảng dạy: nguyễn bảo v­¬ng - 0946798489 π π − n cos ≥ với ∀n ≥ n+1 n 1 10 + + + + < n ;(∀n ∈  * , n ≥ 2) 2n Page | Tài liệu toán 11 Bi Cho tng: S n = năm học 2018 1 1 + + + + 1.3 3.5 5.7 (2n − 1)(2n + 1) Tính S1 ; S ; S ; S Dự đốn cơng thức tính S n chứng minh phương pháp qui nạp Bài Cho hàm số f :  →  , n ≥ số nguyên Chứng minh x+y f(x) + f(x) ≥ f  ∀x, y ≥ (1) ta có    x + x + + x n  f(x1 ) + f(x ) + + f(x n ) ≥ f  ∀xi ≥ , i = 1, n (2) n n   Vấn đề Ứng dụng phương pháp quy nạp số học hình học ví dụ minh họa Ví dụ Cho n số tự nhiên dương Chứng minh rằng: a n = 16 n 15n 1 225 Ví dụ Chứng minh với số tự nhiên n ≥ A(n) = n + 3n − ln chia hết cho Ví dụ Cho n số tự nhiên dương Chứng minh rằng: Bn = ( n + 1)( n + )( n + )… ( 3n ) 3n Ví dụ Trong mặt mặt phẳng cho n điểm rời (n > 2) tất không nằm đường thẳng Chứng minh tất đường thẳng nối hai điểm điểm cho tạo số đường thẳng khác khơng nhỏ n Ví dụ Chứng minh tổng n giác lồi (n ≥ 3) (n − 2)1800 1i Bài tập tự luận tự luyện Bài Cho n số nguyên dương.Chứng minh rằng: n(2n − 3n + 1) chia hết cho 11n +1 + 12 2n −1 chia hết cho 133 n7 − n chia hết cho 13n − chia hết cho n − n chia hết cho với n ≥ 16 n − 15n − chia hết cho 225 với n ≥ 4.32n +1 + 32n − 36 chia hết cho 64 với n ≥ Bài Chứng minh với ∀n ≥ , ta ln có a n = ( n + 1)( n + ) ( n + n ) chia hết cho 2n Cho a, b nghiệm phương trình x − 27x + 14 = Đặt S ( n= ) a n + bn Chứng minh với số nguyên dương n S(n) số nguyên không chia hết cho 715 f(1) 1,f(2) = f(n + 2)= 2f(n + 1) + f(n) Cho hàm số f :  →  thỏa= ( 1)n Chứng minh rằng: f (n + 1) − f(n + 2)f(n) =− n Cho pn số nguyên tố thứ n Chứng minh rằng: 2 > pn Chứng minh số tự nhiên khơng vượt qua n! biểu diễn thành tổng không n ước số đôi khác n! n n Bài Gọi x1 , x hai nghiệm phương trình : x − 6x + = Đặt a= n x1 + x Chứng minh : = a n 6a n −1 − a n − ∀n ≥ a n số nguyên a n không chia hết cho với n ≥ Bài Trong không gian cho n mặt phẳng phân biệt ( n ≥ ), ba mặt phẳng ln cắt khơng có bốn mặt phẳng có điểm chung Hỏi n mặt phẳng chia không gian thành miền? Cho n đường thẳng nằm mặt phẳng hai đường thẳng ln cắt khơng có ba đường thẳng đồng quy Chứng minh n đường thẳng chia mặt phẳng thành n2 + n + Bi Giảng dạy: nguyễn bảo vương - 0946798489 Page | Tài liệu toán 11 năm häc 2018 Cho a, b,c,d,m số tự nhiên cho a + d , (b − 1)c , ab − a + c chia hết cho m Chứng minh x n = a.bn + cn + d chia hết cho m với số tự nhiên n Chứng minh từ n + số 2n số tự nhiên ln tìm hai số bội 1ii Bài tập trắc nghiệm tự luyện Câu Dùng quy nạp chứng minh mệnh đề chứa biến A n  với số tự nhiên n  p ( p số tự nhiên) Ở bước (bước sở) chứng minh quy nạp, bắt đầu với n bằng: A n  B n  p C n  p Câu Cho Sn  Mệnh đề sau đúng? D n  p A S3  1 B S2  12 Câu Dùng quy nạp chứng minh mệnh đề chứa biến A n  với số tự nhiên n  p ( p số tự nhiên) Ở bước Câu Cho Sn  ta giả thiết mệnh đề A n  với n  k Khẳng định sau đúng? A k  p B k  p C k  p 1 1     với n   * n.n  1 1 2  3  Câu Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến A n  với số tự nhiên n  p ( p 1 1     với n   * 1 2  3  n.n  1 A Sn  n 1 n B Sn  n n 1 C Sn  n 1 n2 D Sn  n2 n 3 số tự nhiên), ta tiến hành hai bước: Câu  Bước 2, giả thiết mệnh đề A n  với số tự nhiên n  k  p phải chứng minh với n  k  Trogn hai bước trên: A Chỉ có bước C Cả hai bước Cho 7, n   * '' * sau: A Sn  n 1 2n 1 B Sn  n 2n  C Sn  n 3n  D Sn  n2 2n  với n   Mệnh đề sau đúng? A P  n 1 n2 B P  n 1 2n C P  n 1 n D P  n 1 2n  Giả sử * với n  k , tức 8k  chia hết cho  Ta có: 1    1 3  2n 1 2n  1   1  1 Câu Cho Pn  1  1   1   với n      n  D Cả hai bước sai   8  1  , kết hợp với giả thiết  k k Sn  n   * Mệnh đề sau đúng? B Chỉ có bước Câu Một học sinh chứng minh mệnh đề ''8n  chia hết cho k 1 D S3  Mệnh đề sau đúng? D k  p  Bước 1, kiểm tra mệnh đề A n  với n  p C S2  chia hết suy k 1  chia hết cho Vậy đẳng thức * với n   * Khẳng định sau đúng? Câu Với n  * , hệ thức sau sai? A    n  A Học sinh chứng minh n n  1 B     2n 1  n B Học sinh chứng minh sai khơng có giả thiết qui nạp C Học sinh chứng minh sai khơng dùng giả thiết qui nạp C 12  2   n  n n  12n  1 D Học sinh không kiểm tra bước (bc c s) ca phng phỏp qui np Giảng dạy: nguyễn bảo vương - 0946798489 Page | Tài liệu toán 11 năm học 2018 D 2     2n   2n n  12n  1 1 13     n 1 n  2n 24 Mệnh đề đúng? Câu 10 Xét hai mệnh đề sau: I) Với n   * , số n  3n 5n chia ht cho Giảng dạy: nguyễn bảo vương II) Vi mi n * , ta có - 0946798489 A Chỉ I B Chỉ II C Khơng có D Cả I II Page | Tài liệu toán 11 năm học 2018 1.PHNG PHP QUY NẠP TOÁN HỌC Nội dung phương pháp quy nạp toán học Cho n số nguyên dương P(n) mệnh đề có nghĩa với số tự nhiên n ≥ n Nếu (1) P(n ) (2) Nếu P(k) đúng, P(k + 1) với số tự nhiên k ≥ n ; mệnh đề P(n) với số tự nhiên n ≥ n Khi ta bắt gặp toán: Chứng minh mệnh đề P(n) với số tự nhiên n ≥ n , n ∈  ta sử dụng phương pháp quy nạp sau Bước 1: Kiểm tra P(n ) có hay khơng Nếu bước ta chuyển qua bước hai Bước 2: Với k ≥ n , giả sử P(k) ta cần chứng minh P(k + 1) Kết luận: P(n) với ∀n ≥ n Lưu ý: Bước gọi bước quy nạp, mệnh đề P(k) gọi giả thiết quy nạp Vấn đề Dùng quy nạp để chứng minh đẳng thức Bất đẳng thức Phương pháp Phương pháp: Giả sử cần chứng minh đẳng thức P(n) = Q(n) (hoặc P(n) > Q(n) ) với ∀n ≥ n , n ∈  ta thực bước sau: Bước 1: Tính P(n ), Q(n ) chứng minh P(n ) = Q(n ) = Q(k); k ∈  ,k ≥ n , ta cần chứng minh Bước 2: Giả sử P(k) P(k + 1)= Q(k + 1) Các ví dụ Ví dụ n(n + 1) Chứng với số tự nhiên n ≥ ta ln có: + + + + n = Lời giải n(n + 1) Đặt P(n) = + + + + n : tổng n số tự nhiên : Q(n) = = Q(n) ∀n ∈  ,n ≥ Ta cần chứng minh P(n) P(1) 1,= Q(1) = Bước 1: Với n = ta có 1(1 + 1) = ⇒ P(1) = Q(1) ⇒ (1) với n = Bước 2: Giả sử P(k) = Q(k) với k ∈  , k ≥ tức là: k(k + 1) + + + + k = (1) Ta cần chứng minh P(k + 1)= Q(k + 1) , tức là: (k + 1)(k + 2) + + + + k + (k + 1) = (2) Thật vậy: VT(2) = (1 + + + + k) + (k + 1) k(k + 1) + (k + 1) (Do đẳng thức (1)) k (k + 1)(k + 2) = (k + 1)( + 1) = = VP(2) 2 Vậy đẳng thức cho với n ≥ Ví dụ = n2 Chứng minh với số tự nhiên n ≥ ta ln có: + + + + 2n − = Lời giải • Với n = ta có VT = 1, VP = 1= Giảng dạy: nguyễn bảo vương - 0946798489 Page | Tài liệu toán 11 năm học 2018 = VP ⇒ đẳng thức cho với n = Suy VT • Giả sử đẳng thức cho với n = k với k ∈  , k ≥ tức là: + + + + 2k − = k (1) Ta cần chứng minh đẳng thức cho với n= k + , tức là: + + + + (2k − 1) + (2k + 1) = ( k + 1) (2) Thật vậy: VT(2) = (1 + + + + 2k − 1) + (2k + 1) =k + (2k + 1) (Do đẳng thức (1)) =(k + 1)2 =VP(1.2) Vậy đẳng thức cho với n ≥ Ví dụ Chứng minh với ∀n ≥ , ta có bất đẳng thức: 1.3.5 ( 2n − 1) 2.4.6.2n < 2n + Lời giải * Với n = ta có đẳng thức cho trở thành : 1 < ⇔ > ⇒ đẳng thức cho với n = * Giả sử đẳng thức cho với n= k ≥ , tức : 1.3.5 ( 2k − 1) < (1) 2.4.6 2k 2k + Ta phải chứng minh đẳng thức cho với n= k + , tức : 1.3.5 ( 2k − 1)( 2k + 1) (2) < 2.4.6 2k ( 2k + ) 2k + Thật vậy, ta có : = VT(2) 1.3.5 (2k − 1) 2k + 1 2k + < = 2.4.6 2k 2k + 2k + 2k + 2k + 2k + 2k + 1 < ⇔ (2k + 1)(2k + 3) < (2k + 2)2 2k + 2k + ⇔ > (luôn đúng) Vậy đẳng thức cho với số tự nhiên n ≥ Ta chứng minh: Ví dụ Chứng minh với ∀n ≥ 1, ∀x > ta có bất đẳng thức: x n (x n +1 + 1) xn +  x + 1 ≤    2n +1 Đẳng thức xảy nào? Lời giải • Với n = ta cần chứng minh: x(x + 1)  x +  ≤  ⇔ 8x(x + 1) ≤ (x + 1) x+1   Tức là: x − 4x + 6x − 4x + ≥ ⇔ (x − 1)4 ≥ (đúng) Đẳng thức xảy x = • Giả sử x k (x k +1 + 1) xk +  x + 1 ≤    2k +1 , ta chứng minh x k +1 (x k + + 1) x k +1 +  x + 1 ≤    2k + (*) Thật vậy, ta có: 2k +  x + 1  x + 1  x + 1 =             Nên để chứng minh (*) ta cần chứng minh Giảng dạy: nguyễn bảo vương - 0946798489 2k +1  x +  x k (x k +1 + 1) ≥    xk + Page | Tài liệu toán 11 năm học 2018  x +  x k (x k +1 + 1) x k +1 (x k + + 1) ≥     xk + x k +1 +  x + 1 k +1 + 1)2 ≥ x(x k + + 1)(x k + 1) (**) Hay   (x   Khai triển (**) , biến đổi rút gọn ta thu x 2k + (x − 1)2 − 2x k +1 (x − 1)2 + (x − 1)2 ≥ ⇔ (x − 1)2 (x k +1 − 1)2 ≥ BĐT hiển nhiên Đẳng thức có ⇔ x = Vậy toán chứng minh Chú ý: Trong số trường hợp để chứng minh mệnh đề P(n) với số tự nhiên n ta chứng minh theo cách sau Bước 1: Ta chứng minh P(n) với n = n = k Bước 2: Giả sử P(n) với n= k + , ta chứng minh P(n) với n = k Cách chứng minh gọi quy nạp theo kiểu Cauchy (Cơ si) CÁC BÀI TỐN LUYỆN TẬP Bài Chứng minh với số tự nhiên n ≥ , ta ln có n(n + 1)(2n + 1) 12 + 2 + + (n − 1)2 + n = n 2n + + + = − + 3 3n 4.3n Bài Chứng minh đẳng thức sau n ( n + 1)( n + ) 1.2 + 2.3 + + n(n + 1) = với ∀n ≥ 1 1 n + + + + = 1.5 5.9 9.13 ( 4n − )( 4n + 1) 4n +  n ( n + 1)  + + + + n =     3 3      4  −  −  −   −  25      ( 2n − 1)2  1 n + + + = 1.2 2.3 n(n + 1) n +  + 2n =  − 2n  n(n − 1)(3n + 2) , ∀n ≥ 12 2n(n + 1)(2n + 1) 2 + + + (2n)2 = n(n + 1)(n + 2)(n + 3) 1.2.3 + 2.3.4 + + n(n + 1)(n + 2) = Với n ∈  * 1.2 + 2.32 + 3.4 = + + (n − 1).n n(n − 1)(3n + 2) 1.2 + 2.32 + 3.4 + + (n − 1).n = 12 với ∀n ≥ 1 n(n + 3) + + + = 10 1.2.3 2.3.4 n(n + 1)(n + 2) 4(n + 1)(n + 2) Với n ∈  * Bài Chứng minh với s t nhiờn n ta cú: Giảng dạy: nguyễn bảo vương - 0946798489 Page | Tài liệu toán 11 năm học 2018 + + + + + = cos π n +1 (n dấu căn) nx (n + 1)x sin sin 2 Chứng minh đẳng thức sin x + sin 2x + sin nx = với x ≠ k2 π với n ≥ x sin Bài Chứng minh với n ≥ ta có bất đẳng thức: sin nx ≤ n sin x ∀x ∈  Bài n 1  Chứng minh với số tự nhiên n ≥ , ta có :  +  < n  3n > 3n + với số tự nhiên n ≥ ; 2.4.6.2n > 2n + với số tự nhiên n ≥ ; 1.3.5 ( 2n − 1) Bài Cho hàm số f xác định với x ∈  thoả mãn điều kiện : f(x + y) ≥ f(x).f(y), ∀x, y ∈    x  với số thực x số tự nhiên n ta có : f ( x ) ≥ f  n     Bài Chứng minh bất đẳng thức sau 1 1 n tan α với < α < π ( n − 1) n > 2n + ∀n ≥ n + > 2n + 5, (∀n ∈  * ) 3n −1 > n(n + 2); (∀n ∈  * , n ≥ 4) n − > 3n − 1; (∀n ∈  * , n ≥ 8) π π − n cos ≥ với ∀n ≥ n+1 n 2n + 1 < 2n + 3n + (n + 1)cos 10 + 1 + + + < n ;(∀n ∈  * , n ≥ 2) n −1 Bài Cho tổng: S n = 1 1 + + + + 1.3 3.5 5.7 (2n − 1)(2n + 1) Tính S1 ; S ; S ; S Dự đốn cơng thức tính S n chứng minh phương pháp qui nạp Bài Cho hàm số f :  →  , n ≥ số nguyên Chứng minh x+y f(x) + f(x) ≥ f  ∀x, y ≥ (1) ta có   f(x1 ) + f(x ) + + f(x n )  x + x + + x n  ≥ f  ∀xi ≥ , i = 1,n (2) n n   ĐÁP N Bi Giảng dạy: nguyễn bảo vương - 0946798489 Page | Tài liệu toán 11 năm học 2018 Bước 1: Với n = ta có: 1(1 + 1)(2.1 + 1) VT = 12 = 1, VP = =⇒ VT = VP ⇒ đẳng thức cho với n = Bước 2: Giả sử đẳng thức cho với n= k ≥ , tức là: k(k + 1)(2k + 1) 12 + 2 + + (k − 1)2 + k = (1) Ta chứng minh đẳng thức cho với n= k + , tức cần chứng minh: (k + 1)(k + 1)(2k + 3) 12 + 2 + + (k − 1)2 + k + (k + 1)2 = (2) Thật vây: (1)  + (k + 1)2 VT(2) = 12 + 2 + + k 2=   k(k + 1)(2k + 1) + (k + 1)2  2k + k  (k + 1)(2k + 7k + 6) = (k + 1)  + k + 1 =   (k + 1)(k + 2)(2k + 3) = VP(2) ⇒ (2) ⇒ đẳng thức cho với n ≥ * Với n = ta có VT= 1= VP ⇒ đẳng thức cho với n = * Giả sử đẳng thức cho với n= k ≥ , tức là: k 2k + + + + = − (1) 32 3k 4.3k Ta chứng minh đẳng thức cho với n= k + , tức cần chứng minh k k + 2k + + + + + = − (2) 32 3k 3k +1 4.3k +1 Thật vậy: 2k + k + 2k + VT(2) =− VP(2) + =− = 4.3k 3k +1 4.3k +1 ⇒ (2) ⇒ đẳng thức cho Bài 1.2 + 2.3 + + k(k + 1) + (k + 1)(k + 2) = k(k + 1)(k + 2) (k + 1)(k + 2)(k + 3) + (k + 1)(k + 2) = 3 1 1 + + + + + = 1.5 5.9 9.13 ( 4k − )( 4k + 1) (4k + 1)(4k + 5) k k+1 = + = 4k + (4k + 1)(4k + 5) 4k + 2  k(k + 1)   (k + 1)(k + 2)   + (k + 1)3 =          + 2k (2k + 3)(2k − 1)(1 + 2k) 2k + = − =  −   (2k + 1)2  − 2k −(2k + 1) (2k + 1) (1 − 2k)   5,6,7 Bạn đọc tự làm k(k + 1)(k + 2)(k + 3) + (k + 1)(k + 2)(k + 3) = (k + 1)(k + 2)(k + 3)(k + 4) = Giảng dạy: nguyễn bảo vương - 0946798489 Page | Tài liệu toán 11 năm học 2018 Câu Với giá trị x số 4; x ;  theo thứ tự lập thành cấp số nhân? B x   A x  36 13 Lời giải Cấp số nhân: 4; x;    C x  D x  36 x 9   x  36  x  6   Chọn C x 4 Nhận xét: ba số a; b ; c theo thứ tự lấp thành cấp số nhân  ac  b Câu 10 Tìm b  để số A b  1 ; b; theo thứ tự lập thành cấp số nhân C b  B b  Lời giải Cấp số nhân ; b;   2  b D b  2  b    Chọn B Câu 11 Tìm tất giá trị x để ba số x 1; x ; x  theo thứ tự lập thành cấp số nhân A x   B x   C x   D x  3 Lời giải Cấp số nhân x 1; x; x    2 x 12 x  1  x  x   x   Chọn A Câu 12 Tìm x để ba số  x ;  x ; 33  x theo thứ tự lập thành cấp số nhân A x  B x  D x  3; x  C x   1  x 33  x   9  x   x  Chọn B Lời giải Cấp số nhân  x;  x; 33  x  Câu 13 Với giá trị x, y số hạng 2; x; 18; y theo thứ tự lập thành cấp số nhân?  x  A   y  54  x  10 B   y  26  x  6 C   y  54  x  6 D   y  54 18  x  x  6    x 2  Vậy Lời giải Cấp số nhân: 2; x; 18; y     18  y  324  54 y    x 18  x  Chọn C  x; y   6;54  x; y   6; 54  Câu 14 Cho cấp số nhânsố hạng x ; 12; y; 192 Mệnh đề sau đúng? A x  1; y  144 B x  2; y  72 C x  3; y  48 D x  4; y  36 12   y 144   x 12  x  3 x   y     Chọn C Lời giải Câp số nhân: x; 12; y; 192   y 192   y  48    y  2304 y 12 Giảng dạy: nguyễn bảo vương - 0946798489 Page | 32 Tài liệu toán 11 năm học 2018 Cõu 15 Thờm hai số thực dương x y vào hai số 320 để bốn số 5; x ; y; 320 theo thứ tự lập thành cấp số nhận Khẳng định sau đúng?  x  25  A      y  125  x  20  B      y  80  x  15  C      y  45  x  30  D      y  90 u1      x  q       x  20 Lời giải Cấp số nhân: 5; x; y; 320    Chọn B   x   y  80    y u u q        x3  320  u4  u1q    25  Câu 16 Ba số hạng đầu cấp số nhân x  6; x y Tìm y , biết cơng bội cấp số nhân A y  216 B y  324 C y  1296 D y  12 Lời giải Cấp số nhân x  6; x y có cơng bội q  nên ta có  u1  x  6, q   x  36   x  u  u q   x  6     Chọn C     36 1296  y  u3  u2 q  36 x  y  36   5  Câu 17 Hai số hạng đầu của cấp số nhân x  x 1 Số hạng thứ ba cấp số nhân là: A x 1 B x  C x  x  x  D x  x  x 1 Lời giải Công bội cấp số nhân là: q x 1  x 1 x 1 Vậy số hạng thứ ba cấp số nhân là:  Chọn C 4 x 12 x 1  x3  x  x 1  Câu 18 Dãy số sau cấp số nhân? u1  A  un 1  un  1, n  u1  1 B  un 1  3un , n  u1  2 C  un 1  2un  3, n      u1    D        sin , u  n      n  n 1   Lời giải un  cấp số nhân  un1  qun   Chọn B Câu 19 Cho dãy số un  với un  5n Khẳng định sau đúng? A un khụng phi l cp s nhõn Giảng dạy: nguyễn bảo vương - 0946798489 Page | 33 Tài liệu toán 11 năm học 2018 B un l cấp số nhâncơng bội q  số hạng đầu u1  C un  cấp số nhâncơng bội q  số hạng đầu u1  D un  cấp số nhâncơng bội q  15 số hạng đầu u1  15  Chọn C Lời giải un  5n cấp số nhân công bội q  u1   2 Câu 20 Trong dãy số un  cho số hạng tổng quát un sau, dãy số cấp số nhân? A un  n 2 B un  Lời giải Dãy un  3n2 1 3n C un  n  1  9.  cấp số nhân có   n D un  n  u1       Chọn A  q     Câu 21 Trong dãy số un  cho số hạng tổng quát un sau, dãy số cấp số nhân? A un   3n B un   3n C un  3n D un  7.3n u1  21 Lời giải Dãy un  7.3n cấp số nhân có    Chọn D  q  Câu 22 Cho dãy số un  cấp số nhân với un  0, n   * Dãy số sau cấp số nhân? A u1 ; u3 ; u5 ; C B 3u1 ; 3u2 ; 3u3 ; 1 ; ; ; D u1  2; u2  2; u3  2; u1 u2 u3 Lời giải Giả sử un  cấp số nhân công bội q, Dãy u1 ; u3 ; u5 ; cấp số nhân công bội q Dãy 3u1 ; 3u2 ; 3u3 ; cấp số nhân công bội 2q Dãy 1 1 ; ; ; cấp số nhân công bội u1 u2 u3 q Dãy u1  2; u2  2; u3  2; cấp số nhân Chọn D Nhận xét: Có thể lấy cấp số nhân cụ thể để kiểm tra, ví dụ un  2n Câu 23 Cho cấp số nhânsố hạng 3; 9; 27; 81; Tìm số hạng tổng quát un cấp số nhân cho A un  3n1 B un  3n Giảng dạy: nguyễn bảo vương - 0946798489 C un 3n 1 D un   3n Page | 34 Tài liệu toán 11 năm học 2018 u1 Lời giải Câp số nhân 3; 9; 27; 81;     un  u1q n1  3.3n1  3n q    Chọn B Câu 24 Một cấp số nhânsố hạng, số hạng đầu số hạng thứ sáu 486 Tìm cơng bội q cấp số nhân cho A q  C q  B q  3 D q  2 u1    486  u6  u1q  2q  q  243  q  Lời giải Theo giải thiết ta có:  u6  486 Chọn A Câu 25 Cho cấp số nhân un  có u1  3 q  Mệnh đề sau đúng? A u5   27 16 B u5   16 27 C u5  16 27 D u5  27 16 u1  3   2 16 16 Lời giải    u5  u1q  3.   3   Chọn B  q   3 81 27  Câu 26 Cho cấp số nhân un  có u1  u2  8 Mệnh đề sau đúng? A S6  130 B u5  256 C S5  256 D q  4      u1      q  4      u1  1 4   1 q   Lời giải   S5  u1   410   Chọn D  1 q 1   u2  8  u1q  2q     1 4     1638 S   1   4    u5  u1q  2.4  512 Câu 27 Cho cấp số nhân un  có u1  q  2 Số 192 số hạng thứ cấp số nhân cho? A Số hạng thứ B Số hạng thứ C Số hạng thứ D Không số hạng cấp số cho n1 Lời giải 192  un  u1q n1  3.2 n1  1 2n1  64  1 26  n  Chọn C Câu 28 Cho cấp số nhân un  có u1  1 q   1 Số 103 số hạng thứ cấp số nhân cho? 10 10 A Số hạng thứ 103 B Số hạng thứ 104 C Số hạng thứ 105 D Không số hạng cấp số cho Giảng dạy: nguyễn bảo vương - 0946798489 Page | 35 Tài liệu toán 11 năm học 2018 n1 Li giải  1  un  u1q n1  1.   10  10103 1 n  10 n1 n chan    n  104 Chọn B n 1  103 Câu 29 Một cấp số nhâncơng bội số hạng đầu Biết số hạng 32805 Hỏi cấp số nhân cho có số hạng? A 18 B 17 C 16 D Lời giải 32805  un  u1q n1  5.3n1  3n1  6561  38  n  Vậy u9 số hạng cấp số nhân, nên cấp số nhân cho có 17 số hạng Chọn B Câu 30 Cho cấp số nhân un  có un  81 un 1  Mệnh đề sau đúng? A q  Lời giải Công bội q  B q  C q  9 D q   un1     Chọn A un 81 Câu 31 Một dãy số xác định u1  4 un   un1 , n  Số hạng tổng quát un dãy số là: A un  n1 n 1 B un  2 C un  4 2n 1  n 1  1 D un  4     u1  4 u1  4 n1  1  Lời giải      un  u1q n1  4.  Chọn D 1   un1   un q     2 Câu 32 Cho cấp số nhân un  có u1  3 q  2 Tính tổng 10 số hạng cấp số nhân cho A S10  511 B S10  1025 C S10  1025 D S10  1023  1 2 u  3 1 q10 Lời giải    S10  u1  3  1023 Chọn D  1 q 1 2   q  2 10 Câu 33 Cho cấp số nhânsố hạng 1; 4; 16; 64;  Gọi Sn tổng n số hạng cấp số nhân Mệnh đề sau đúng? A Sn  n1 B Sn  n 1  n1  C Sn  n 1 D Sn  4 n 1 u  1 q n  n n 1   S n  u1   Lời giải Cấp số nhân cho có  Chọn C 1 q 1 q  Câu 34 Cho cấp số nhânsố hạng 1 ; ; 1; ; 2048 Tính tổng S tất số hạng cấp số nhân cho A S  2047,75 B S  2049,75 C S  4095,75 D S  4096,75 Lời giải Cấp số nhân cho có Gi¶ng dạy: nguyễn bảo vương - 0946798489 Page | 36 Tài liệu toán 11 năm học 2018 u1 1  2048  211  u1q n1  2n1  2n2  n  13    q  Vậy cấp số nhân cho có tất 13 số hạng Vậy S13  u1 1 q13 1 213   2047, 75   Chọn A 1 q 1 n 1 Câu 35 Tính tổng S  2    16  32  64   2 B S  n A S  2n C S  2 1  n  n1 Lời giải Các số hạng 2; 4;  8; 16;  32; 64; ; 2 n  2 với n  1, n   1 n D S  2  2 ; 2 tổng S gồm có n số hạng theo thứ tự lập thành cấp số n nhân có u1  2, q  2 Vậy 1 2 1 2 1 q n  2  2   Chọn D 1 q 1 2 n S  S n  u1 n Câu 36 Một cấp số nhânsố hạng với cơng bội tổng số số hạng 189 Tìm số hạng cuối u6 cấp số nhân cho B u6  104 A u6  32 D u6  96 C u6  48 Lời giải Theo giả thiết:   q  q      u6  u1q  3.25  96 Chọn D   1 q  26     u  189 S u u    1     1 q 1   Câu 37 Cho cấp số nhân un  có u1  6 q  2 Tổng n số hạng cấp số nhân cho 2046 Tìm n A n  C n  11 B n  10 D n  12 Lời giải Ta có 1 2 1 q n n n 2046  S n  u1  6  2 1  2  1024  n  10 Chọn B 1 q 1 2 n   Câu 38 Cho cấp số nhân un  có tổng n số hạng Sn  5n 1 Tìm số hạng thứ cấp số nhân cho A u4  100 B u4  124 Lời giải Ta có 5n1 1  S n  u1 C u4  500 D u4  624 u  q 1 u1  u 1 q n Khi  q n 1    q  q  q 1 1 q u4  u1q  4.53  500 Chn C Giảng dạy: nguyễn bảo vương - 0946798489 Page | 37 Tài liệu toán 11 năm học 2018 Câu 39 Cho cấp số nhân un  có tổng n số hạng Sn  A u5  34 B u5  35 3n  Tìm số hạng thứ cấp số nhân cho 3n1 C u5  35 D u5  35 u1  31 q  u1    n  u1 3n 1   n       1 q    Khi Lời giải Ta có n1  31     S n    q  q  1 q       3  u5  u1q    Chọn A 34 Câu 40 Cho cấp số nhân un  có u2  2 u5  54 Tính tổng 1000 số hạng cấp số nhân cho A S1000   31000 B S1000  31000 1 C S1000  31000 1 D S1000   31000  2  u2  u1q u1   Lời giải Ta có   Khi 54  u5  u1q  u1q.q  2q   q  3 1 q100 1 3 1 3100     Chọn D 1 q 1 3 100 S100  u1 Câu 41 Cho cấp số nhân un  có tổng hai số hạng , tổng ba số hạng 13 Tính tổng năm số hạng cấp số nhân cho, biết công bội cấp số nhân số dương A S5  Lời 181 16 giải S5  u1 B S5  141 C S5  121 D S5  35 16 4  S  u1  u2  u1 1  q    1  q  q   131  q   q  q  0  u1   13  S3  u1 1  q  q   Khi 1 q 1 35   121   Chọn C 1 q 1 Câu 42 Một cấp số nhânsố hạng thứ bảy A 4096 B 2048 1 , công bội Hỏi số hạng cấp số nhân bào nhiêu? C 1024 D 512  q  46   u1   2048   Chọn B Lời giải Ta có   u   u7  u1q  16  Câu 43 Cho cấp số nhân un  có u2  6 u6  486 Tìm cơng bội q cấp số nhân cho, biết u3  Giảng dạy: nguyễn bảo vương - 0946798489 Page | 38 Tài liệu toán 11 A q năm học 2018 B q   C q  D q  6  u2  u1q  q  81  34  q  Chọn D Lời giải  486  u6  u1q  u1q.q  6.q  Câu 44 Cho cấp số nhân u1 ; u2 ; u3 ;  với u1  Tìm công bội q để 4u2 + 5u3 đạt giá trị nhỏ nhất? A q   C q  B q  D q   2 Lời giải Ta có 4u2  5u3  4u1q  5u1q  5q  4q  q      Vậy  5 5 4u2  5u3    q     Chọn A 5 Câu 45 Một cấp số nhânsố hạng thứ hai số hạng thứ sáu 64, số hạng tổng quát cấp số nhân tính theo cơng thức đây? A un  n1 B un  n C un  n 1 D un  2n 4  u2  u1q u     un  u1q n1  2.2n1  2n Lời giải Ta có  4 64  u6  u1q  u1q.q  4q q   Chọn B Câu 46 Cho cấp số nhân un  có cơng bội q Mệnh đề sau đúng? A uk  u1 q k 1 B uk  uk 1  uk 1 C uk  uk 1 uk 2 D uk  u1  k 1 q Lời giải Chọn A Câu 47 Cho cấp số nhân un  có u1  q  Đẳng thức sau đúng? A u7  u4 q B u7  u4 q C u7  u4 q D u7  u4 q  u  u1q Lời giải    u7  u1q .q  u4 q   Chọn A  u u q    Câu 48 Cho cấp số nhân un  có u1  q  Với  k  m, đẳng thức đúng? A um  uk q k B um  uk q m C um  uk q mk D um  uk q m  k Lời giải uk  u1q k 1   um  u1q m1  u1q k 1 .q mk  uk q mk   Chọn C Câu 49 Cho cấp số nhân có 15 số hạng Đẳng thức sau sai? A u1 u15  u2 u14 B u1 u15  u5 u11 C u1 u15  u6 u9 D u1 u15  u12 u4 Lời giải u1 u15  u1 u1 q14  u1q m1 .u1q n1   um un với m  n  16 Chọn C Giảng dạy: nguyễn bảo vương - 0946798489 Page | 39 Tài liệu toán 11 năm học 2018 Cõu 50 Cho cấp số nhân có n số hạng n  k  55 Đẳng thức sau sai? A u1 un  u2 un1 B u1 un  u5 un4 C u1 un  u55 un55 D u1 un  uk unk 1 Lời giải u1un  u1 u1q n1  u1q k 1 .u1q m1   uk um với k  m  n  Chọn C u6  192 Câu 51 Tìm số hạng đầu u1 cơng bội q cấp số nhân un , biết  u7  384 u  A  q  u1   B     q  u1   C     q  u  D  q  q  192  u6  u1q  Chọn B  Lời giải  192 384  u7  u1q  u1q  q  192q u1    q  u4  u2  36 Chọn khẳng định đúng? Câu 52 Cho cấp số nhân un  thỏa mãn   u5  u3  72 u1   A     q   u1  B     q  u1   C     q  u1   D     q  q  36  u  u  u q q 1    36   Lời giải  2 u  6   72  u5  u3  u1q q 1  u1q q 1 q  36q  q q 1   Chọn B u20  8u17 Chọn khẳng định đúng? Câu 53 Cho cấp số nhân un  thỏa mãn  u1  u5  272 A q  B q  4 C q  D q  2   q3  u1q19  8u1q16    q  u u     17 Lời giải  20 Chọn A      272        u1  u5  272  u1 1  q   272  u1   q u1  16     Câu 54 Một cấp số nhân có năm số hạng mà hai số hạng số dương, tích số hạng đầu số hạng thứ ba 1, tích số hạng thứ ba số hạng cuối Tìm số hạng đầu u1 cơng bội q cấp số nhân cho 16   u1  A     q   u1    B    q    u1  2   C    q      u   D   q  2 u1  0, u1 ,    q  u2  q      Chọn B Lời giải u1 u3   u12 q  1    u      1 q u3 u5    u12 q  u12 q  q  q  16 16  Giảng dạy: nguyễn bảo vương - 0946798489 Page | 40 Tài liệu toán 11 năm học 2018 u1 u3  u5  65 Câu 55 Cho cấp số nhân un  thỏa  Tính u3 u1  u7  325 B u3  15 A u3  10 C u3  20 D u3  25  u1  u1q  u1q  65  u1 1  q  q   65 1 u  u3  u5  65      Lời giải Ta có        u1 1  q   325 2   u1  u1q  325 u1  u7  325     Lấy 2 chia 1 , ta 1 q6 325    q   q  2 65 1 q  q u  u1    Vậy    u3  u1q  5.4  20 Chọn C     q q      u1  u2  u3  14 Tính u2 Câu 56 Cho cấp số nhân un  thỏa   u1 u2 u3  64 A u2  B u2  C u2  D u2  10 Lời giải Từ u1 u2 u3  64  u1 u1q.u1q  64  u1q   64  u1q  hay u2  u1   u3  14 u1  u3  10 u1  u1     Thay vào hệ ban đầu ta  u3  u1 4.u3  64 u3  u1 u3  16 u1    u   Vậy     u2  u1q  Chọn A  q  q    Câu 57 Cho cấp số nhân un  có cơng bội q thỏa   1 1   1 u1  u2  u3  u4  u5  49  u  u  u  u  u   u1  u3  35 Tính P  u1  4q A P  24 B P  29 C P  34 D P  39 Lời giải Nhận xét: Nếu u1 , u2 , u3 , u4 , u5 cấp số nhân với cơng bội q nhân với cơng bội 1 1 tạo thành cấp số , , , , u1 u2 u3 u4 u5 q      1 5 1 q  q 1   49  u1  1 Do từ giả thiết ta có  q 1   u1     q   u  u q  35 2   Gi¶ng dạy: nguyễn bảo vương - 0946798489 Page | 41 Tài liệu toán 11 năm học 2018 Phng trỡnh u1 q 1 49  q 1      u1 q  49  u1q  7 q 1 u1  q q 1 Với u1q  7 Thay vào 2 , ta u1   35  u1  42 Suy q   : vô lý 42 u1  28  u1  28     Với u1q  Thay vào 2 , ta u1   35  u1  28 Vậy   Khi u1  4q  29 Chọn B  q q      2  u1  u2  u3  26 Câu 58 Cho cấp số nhân un  có cơng bội q thỏa  Tìm q biết q   u1  u22  u32  364  A q  4 C q  B q  D q  Lời giải Ta có u  q  q 2  26  u1 1  q  q   26   u1  u2  u3  26  1          2 2 u  q  q  364 2   u1  u2  u3  364  u1 1  q  q   364      Lấy 1 chia 2 , ta 1  q  q  1 q2  q4   26 1  1  3q  7q  q  7q    q    q       364 q  q     t  1 loaïi  Đặt t  q  , t  Phương trình trở thành 3t  7t 10     t   10 q  Với t   10 10 , suy q     3q 10q    q  q  Vì q  nên q  Chọn D q 3 Câu 59 Các số x  y, x  y, x  y theo thứ tự lập thành cấp số cộng; đồng thời số x 1, y  2,  x  y theo thứ tự lập thành cấp số nhân Tính x  y A x  y  40 B x  y  25 C x  y  100 D x  y  10  x  y   8 x  y   5 x  y  Lời giải Theo giả thiết ta có   x 1 x  y    y  22    x  y    x  y  x  6     2         y  2 3 y 13 y  y    y  2 0   y  2 Suy x  y  40 Chọn A Câu 60 Ba số x ; y; z theo thứ tự lập thành cấp số nhân với công bội q khác 1; đồng thời số x ; y; z theo thứ tự lập thành cấp số cộng với cơng sai khác Tìm giá trị q Giảng dạy: nguyễn bảo vương - 0946798489 Page | 42 Tài liệu toán 11 A q năm học 2018 B q C q   D q  3  y  xq; z  xq x   Lời giải   x  xq  xq  x 3q  4q  1    3q  4q       x  3z  2 y  Nếu x   y  z   công sai cấp số cộng: x; y; z (vơ lí) q   Nếu 3q  4q      1 Chọn A  q  q  q   Câu 61 Cho dãy số tăng a, b, c c   theo thứ tự lập thành cấp số nhân; đồng thời a, b  8, c theo thứ tự lập thành cấp số cộng a, b  8, c  64 theo thứ tự lập thành cấp số nhân Tính giá trị biểu thức P  a  b  2c A P  184 B P  64 C P  92 D P  32 ac  b ac  b 1      a  2b  16  c Lời giải Ta có a  c  b  8  2   2 a c  64  b  8 ac  64a  b  8 3   Thay (1) vào (3) ta được: b  64a  b  16b  64  4a  b  4  c 8  a  2b  16  c a   Kết hợp (2) với (4) ta được:  5 4a  b   4c  60 b   Thay (5) vào (1) ta được:  c  36  c  8 c  4c  60  9c  424c  3600    100  c  36 c   c   2 Với c  36  a  4, b  12  P  12  72  64 Chọn B Câu 62 Số hạng thứ hai, số hạng đầu số hạng thứ ba cấp số cộng với công sai khác theo thứ tự lập thành cấp số nhân với cơng bội q Tìm q A q  C q   B q  2 D q  Lời giải Giả sử ba số hạng a; b; c lập thành cấp số cộng thỏa yêu cầu, b; a; c theo thứ tự lập thành cấp số nhân cơng bội q Ta có a  c  2b b    bq  bq  b   q2  q   a  bq; c  bq  Nếu b   a  b  c  nên a; b; c cấp số cộng công sai d  (vơ lí) Nếu q  q    q  q  2 Nếu q   a  b  c (vơ lí), q  2 Chn B Giảng dạy: nguyễn bảo vương - 0946798489 Page | 43 Tài liệu toán 11 năm học 2018 Cõu 63 Cho bố số a, b, c, d biết a, b, c theo thứ tự lập thành cấp số nhân cơng bội q  ; b, c, d theo thứ tự lập thành cấp số cộng Tìm q biết a  d  14 b  c  12 A q  18  73 19  73 B q  24 24 C q  20  73 24 D q  21  73 24 Lời giải Giả sử a, b, c lập thành cấp số cộng cơng bội q Khi theo giả thiết ta có: b  aq, c  aq   1 aq  d  2aq b  d  2c   a  d  14  2  a  d  14   a q  q   12 3 b  c  12  Nếu q   b  c   d (vơ lí) Nếu q  1  b  a; c  a  b  c  (vơ lí)  0, q   1, từ (2) (3) ta có: d  14  a a  Vậy q  12 thay vào (1) ta được: q  q2 12q 14q  14q 12 24q    12q  q 13q   q  q2 q  q2 q  q2  q  112q 19q  6   q  Vì q  nên q  19  73 24 19  73 Chọn B 24 Câu 64 Gọi S   99  999   999 ( n số ) S nhận giá trị sau đây? A S  10 n 1 B S  10     10 n 1 10 n 1   n C S  10    10 n 1   n D S  10    n Lời giải Ta có S   99  999   99   10 1  10 1   10 1 n so  10  10   10 n  n  10 10 n  n Chọn C 10 Câu 65 Gọi S   11  111   111 ( n số 1) S nhận giá trị sau đây? A S  10 n 1  B S  10   81  10 n 1 81 10 n 1   n C S  10 81 Giảng dạy: nguyễn bảo vương D S  - 0946798489  10 n 1   n 10     Page | 44 Tài liệu toán 11 năm học 2018    10 n 1  n  Chọn D Lời giải Ta có S  9  99  999   99   10     10 n so   Câu 66 Biết S   2.3  3.32   11.310  a  A P  b 21.3b Tính P  a  4 C P  B P  D P  Lời giải Từ giả thiết suy 3S   2.32  3.33   11.311 Do 2 S  S  3S    32   310 10.311  Vì S  1 311 21.311 21 11.311     S   311 1 2 4 21.311 21.3b 1 11   a  a  , b  11   P    Chọn C 4 4 4 Câu 67 Một cấp số nhân có ba số hạng a, b, c (theo thứ tự đó) số hạng khác công bội q  Mệnh đề sau đúng? A 1  a bc B Lời giải Ta có ac  b  1  b ac C 1  c ba D 1   a b c 1    Chọn B b ac Câu 68 Bốn góc tứ giác tạo thành cấp số nhân góc lớn gấp 27 lần góc nhỏ Tổng góc lớn góc bé bằng: A 56 B 102 C 252 D 1680 Lời giải Giả sử góc A, B, C, D (với A  B  C  D ) theo thứ tự lập thành cấp số nhân thỏa u cầu với cơng bội q Ta có q   A  B  C  D  360  A1  q  q  q   360    A   A  D  252   D  27 A    Aq  27 A  D  Aq  243 Chọn C Câu 69 Người ta thiết kế tháp gồm 11 tầng Diện tích bề mặt tầng diện tích mặt tầng bên diện tích mặt tầng nửa diện tích đế tháp (có diện tích 12 288 m ) Tính diện tích mặt A m B m C 10 m D 12 m Lời giải Diện tích bề mặt tầng (kể từ 1) lập thành cấp số nhâncơng bội q  12 288  144 Khi u1  2 diện tích mặt u11  u1q10  6144    Chọn A 210 Câu 70 Một du khách vào chuồng đua ngựa đặt cược, lần đầu đặt 20000 đồng, lần sau tiền đặt gấp đôi lần tiền đặt cọc trước Người thua lần liên tiếp thắng lần thứ 10 Hỏi du khác thắng hay thua bao nhiêu? B Thua 20000 ng A Hũa Giảng dạy: nguyễn bảo vương - 0946798489 Page | 45 Tài liệu toán 11 năm học 2018 C Thắng 20000 đồng D Thua 40000 đồng Lời giải Số tiền du khác đặt lần (kể từ lần đầu) cấp số nhân có u1  20 000 công bội q  Du khách thua lần nên tổng số tiền thua là: S9  u1  u2   u9  u1 1  p  1 p  10220000 Số tiền mà du khách thắng lần thứ 10 u10  u1 p  10240000 Ta có u10  S9  20 000  nên du khách thắng 20 000 Chọn C Giảng dạy: nguyễn bảo vương - 0946798489 Page | 46 ... (hoặc vài số hạng) đứng trước Dãy số tăng, dãy số giảm Dãy số gọi dãy tăng Dãy số gọi dãy giảm Dãy số bị chặn Dãy số gọi dãy bị chặn có số thực Dãy số gọi dãy bị chặn có số thực cho cho Dãy số. .. 2n Vấn đề Dãy số đơn điệu – Dãy số bị chặn Phương pháp: Để xét tính đơn điệu dãy số ta xét : * Nếu dãy tăng * Nếu dãy giảm Khi ta xét * Nếu dãy tăng * Nếu dãy giảm Để xét tính bị chặn dãy số ta... chặn không bị chặn dãy giảm C Dãy số un  bị chặn B Dãy số un  2n  dãy tăng D Dãy số un  không bị chặn  1 C Dãy số un  1   dãy giảm  n n Giảng dạy: nguyễn bảo vương - 0946798489

Ngày đăng: 06/02/2018, 17:01

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w