1. Trang chủ
  2. » Cao đẳng - Đại học

Phương pháp tọa độ và các ứng dụng

88 226 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 88
Dung lượng 284,56 KB

Nội dung

LỜI CẢM ƠN Em xin chân thành cảm ơn thầy Nguyễn Năng Tâm tận tình giúp đỡ em suốt thời gian em thực đề tài Xin chân thành thầy, tổ Hình học - Khoa toán, Trường Đại học Sư phạm Hà Nội II tạo điều kiện giúp đỡ em hoàn thành đề tài Xin chân thành cảm ơn gia đình bạn bè tạo điều kiện thuận lợi cho em trình thực đề tài Em xin chân thành cảm ơn Xuân Hòa, ngày 05 tháng 05 năm 2013 Sinh viên Đinh Thị Ly LỜI CAM ĐOAN Tơi xin cam đoan khóa luận cơng trình nghiên cứu riêng tơi Trong nghiên cứu, thừa kế thành nghiên cứu nhà khoa học, nhà nghiên cứu với chân trọng biết ơn Những kết nêu khóa luận chưa cơng bố cơng trình khác Xuân Hòa, ngày 05 tháng 05 năm 2013 Sinh viên Đinh Thị Ly LỜI NÓI ĐẦU Lý chọn đề tài Tốn học có vai trò quan trọng đời sống thực tiễn, nghiên cứu khoa học Toán học sở tảng để nghiên cứu môn khoa học khác Trong trình học tập, em nghiên cứu chuyên nghành hình học Đây mơn học có tính chặt chẽ, tính lơgic, tính trừu tượng hóa cao độ nên mơn học tương đối khó Với tập hình học lại có nhiều phương pháp giải khác nhau: phương pháp tọa độ, phương pháp vectơ, phương pháp tổng hợp Việc sử dụng phương pháp tọa độ để giải tốn cung cấp cho học sinh cách nhìn mới, kiến thức toán học đại Giúp cho em thấy mối quan hệ 1-1 đại số hình học nhằm phát triển tư tồn diện cho học sinh Phương pháp tọa độ khơng giúp giải toán quỹ tích khó tốn chứng minh mà ta không giải suy luận, cứu cánh ta bí, hiệu thời gian dù tính tốn có phức tạp ta khơng cần nghĩ nhiều Bắt nguồn từ lòng say mê thân giúp đỡ bảo thầy Nguyễn Năng Tâm em chọn đề tài PHƯƠNG PHÁP TỌA ĐỘ VÀ ỨNG DỤNG để làm khóa luận tốt nghiệp Mục đích nghiên cứu Tìm hiểu phương pháp tọa độ ứng dụng phương pháp tọa độ việc giải tốn sơ cấp chứng minh số định lí hình học xạ ảnh Nhiệm vụ nghiên cứu - Nghiên cứu phương pháp tọa độ - Nghiên cứu số ứng dụng phương pháp tọa độ Đối tượng phạm vi nghiên cứu - Đối tượng: phương pháp tọa độ ứng dụng - Phạm vi nghiên cứu: hình học afin, hình học Ơclit, hình học xạ ảnh Phương pháp nghiên cứu - Nghiên cứu lý luận, tài liệu tham khảo - Phân tích, tổng hợp kiến thức phục vụ cho mục đích nghiên cứu Cấu trúc Ngoài phần mở đầu, kết luận, tài liệu tham khảo, khóa luận tốt nghiệp gồm hai chương: - Chương 1: Phương pháp tọa độ - Chương 2: Một số ứng dụng giải toán phương pháp tọa độ MỤC LỤC LỜI NÓI ĐẦU Lý chọn đề tài Mục đích nghiên cứu Nhiệm vụ nghiên cứu 4 Đối tượng phạm vi nghiên cứu .4 Phương pháp nghiên cứu Cấu trúc CHƯƠNG PHƯƠNG PHÁP TỌA ĐỘ 1.1 MỘT VÀI NÉT VỀ HỆ TỌA ĐỘ 1.2 KHÔNG GIAN AFIN .8 1.2.2 Mặt phẳng A không gian A .9 1.3.1 Định nghĩa 10 1.3.2 Một số tính chất 12 1.3.3 Một số công thức hệ tọa độ Đêcac vng góc 13 1.4 KHƠNG GIAN XẠ ẢNH .18 1.4.1 Định nghĩa .18 CHƯƠNG MỘT SỐ ỨNG DỤNG CỦA PHƯƠNG PHÁP TỌA ĐỘ VÀO GIẢI TOÁN 20 2.1 PHƯƠNG PHÁP TỌA ĐỘ 20 2.2 MỘT SỐ BÀI TỐN HÌNH HỌC GIẢI BẰNG HỆ TỌA ĐỘ AFIN 21 2.2.1 Một số tốn hình học phẳng 21 2.2.2 Các tốn khơng gian 25 2.3 MỘT SỐ BÀI TỐN HÌNH HỌC GIẢI BẰNG HỆ TỌA ĐỘ TRỰC CHUẨN 31 2.3.1 Trong mặt phẳng 31 2.3.2 ong không gian .39 2.4 ỨNG DỤNG CỦA MỤC TIÊU XẠ ẢNH .46 KẾT LUẬN .53 MỘT SỐ TÀI LIỆU THAM KHẢO 54 CHƯƠNG PHƯƠNG PHÁP TỌA ĐỘ 1.1 MỘT VÀI NÉT VỀ HỆ TỌA ĐỘ Hệ tọa độ tập hợp điều kiện để xác định vị trí điểm đường thẳng, mặt phẳng hay không gian Khái niệm hệ tọa độ đưa vào địa chất thiên văn để xác định vị trí mặt đất bầu trời Vào kỷ XIV, nhà toán học người Pháp N.Oresme (1323-1382) sử dụng hệ tọa độ mặt phẳng để dựng đồ thị Ông dùng khái niệm kinh độ vĩ độ ứng với khái niệm tung độ hoành độ ta Vào kỷ XVII nhờ cơng trình nhà tốn học người Pháp Descarter, người ta thấy rõ ý nghĩa phương pháp tọa độ: cho phép chuyển tốn hình học ngơn ngữ giải tích ngược lại cho phép mơ tả kết khác tốn học giải tích hình học Ơng mở thời kỳ cho toán học Tọa độ điểm số thứ tự, đặc trưng cho vị trí điểm đường thẳng, mặt phẳng hay không gian Tọa độ điểm gắn liền với hệ tọa độ xác định, bao gồm gốc tọa độ trục tọa độ Tùy theo tính chất việc khảo sát đối tượng hay đối tượng khác mà người ta chọn hệ tọa độ khác 1.2 KHÔNG GIAN AFIN 1.2.1 ghĩa Định nghĩa Cho tập A   khơng gian vectơ V Giả sử có ánh xạ:  : A  A  V n n trường số K thỏa mãn hai điều kiện: i) Với M  A  v V có N   n A  M, N  v ii) Với M , N , P  A Khi đó, ba  A,,V n  ánh xạ liên kết   cho: có:   M , N     N , P    M , P gọi không gian afin liên kết với V n  Kí hiệu: An  V n , An  A,,V n ,      n n v  A  v V n MN    M , N  , M  A  M  A , Định nghĩa Trong không gian afin n chiều    điểm O sở  e ,e1 , ,e  An , trường số K cho     A n Ta gọi số O;e ,e , ,e  hệ tọa độ afin An Điểm O gọi gốc hệ tọa độ    Cơ sở  e ,e , ,e  gọi sở hệ tọa độ Định nghĩa Trong không gian afin n chiều An với hệ tọa độ    O;e1,e2 , ,en  cho điểm M Khi biểu thị     OM  x1.e1  x2.e2   xn en Thì số  x1, x2 , , gọi tọa độ xn  afin điểm M hệ tọa độ cho Ký hiệu: M  x , x , , x  n  hay M  x1, x2 , , xn  Định nghĩa Trong không gian afin n chiều An với hệ tọa độ      O;e1,e2 , ,en  cho vectơ v Khi vectơ biểu thị v dạng:     v  v1 e1  v2 e2   e  Bộ số  v1,v2 , ,vn  gọi tọa độ afin vectơ v  hệ tọa độ chọn Ký hiệu:  v   v1 ,v2, v  hay v  1v ,v2 , v   Nếu M  x1, x2 , , xn  N  y1, y2 , , yn  MN  y1  x1, , yn  xn  1.2.2 Mặt phẳng A không gian A   Mặt phẳng A Hệ tọa độ afin bao gồm điểm gốc O hai vectơ sở e1 e2 ,  Trong e , e2 khác vectơ khơng không phương  x O Không gian A y    e1 e e Hệ tọa độ afin gồm điểm gốc O ba vectơ sở , , e3  Trong e , 2.4 ỨNG DỤNG CỦA MỤC TIÊU XẠ ẢNH Mục tiêu xạ ảnh đến rộng rãi để giải toán sơ cấp hệ tọa độ afin hay hệ tọa độ Đêcac vng góc lại cơng cụ hữu hiệu việc chứng minh số định lý toán học.Chẳng hạn như: Định lí Steiner Xét mặt phẳng xạ ảnh thực a) Cho hai điểm cố định S1 S2 nằm đường ôvan điểm M thay đổi đường ơvan Khi ánh xạ f : S1  S2  biến đường thẳng S1M thành đường thẳng S2 M ánh xạ xạ ảnh khác với phép f : S1  S2  xuyên trục b) Ngược lại : Cho ánh xạ xạ ảnh S  hai chùm phân biệt  S2  Nếu f phép chiếu xuyên trục tập hợp giao điểm đường tương ứng đường ôvan Chứng minh d2 m' S1 a' M E S0 d0 d1 S2 m a Hình 14 a) Gọi d đường thẳng qua S S ; d d tiếp tuyến 2 ôvan S S , S0  d1  d2 Lấy điểm E cố định ôvan khác với S S Nếu chọn S0 , S1 , S2 ; E làm mục tiêu xạ ảnh phương trình ơvan là: x2  x x  Nếu điểm M nằm ôvan, khác với S S tọa độ  x0 : x1 : x2  thỏa mãn phương trình x0  Do x1  Bởi vậy: x2 x0 x0  x1 Nên gọi a  S E , a'SE , rằng: d , d , a, m  x2 ,  d , d x0 mSM , , a ', m ' 1 x0 m '  S M dễ dàng thấy x1 Suy ra:  d0 , d2 , a, m   d1 , d0 , a ', m ' Do f ánh xạ xạ d0 ảnh không tự ứng nên f phép chiếu xuyên trục b Gọi d đường thẳng qua S S , f (d0 )  d1 f (d0 )  d2 Vì f 1 , phép chiếu xuyên trục nên d khơng tự ứng, d , d , d 0 đơi phân biệt Vì ba điểm S0  d1  d2 , S ,1 S ba điểm độc lập Gọi a đường thẳng chùm S1 khác với d d , a '   a  , E  a  a ' Ta chọn S0 , S1 , S2 ; E thẳng m S1 làm mục tiêu xạ ảnh Với đường m '  f  m    S2  , ta đặt đó: d0  (1: : 0) d1  (0 :1: , 0), mm' X d2  (0 : :1) a  (1: : 1) , , m  (x2 : : x0 m '  (x1 : x0 : 0) ), Từ suy ra: d x2 x0 , a, m  , a ', m '    d , d  , 0 x x1 d2   x0 : x1 : x2  Khi a '  (1:1: 0) , a' m' S1 d2 E d0 S0 d1 S2 m a Hình 15 Nhưng f ánh xạ xạ ảnh nên:  d0 , d2 , a, m   d1 , d0 , a ', m ' Vậy x2 x0 hay x2  x x  x0  x1 Đó phương trình đường ơvan tiếp xúc với d d S S Định lí Pappus Trong  cho ba điểm phân biệt A , B , C thuộc đường thẳng d ba điểm phân biệt d  d ' d  d '  S0 A ' B ' , C thuộc đường thẳng d ' Giả sử , ' không trùng với sáu điểm cho Khi ba điểm   BC ' B 'C ,   AC ' A'C ,   BA' B ' A thẳng hàng Chứng minh Chọn mục tiêu xạ ảnh S0 , S1 , S2 ; E  , S1  d S2  d với , ' S1 không trùng với ba điểm A , B , C S không trùng với ba điểm A ' , B ' , C ' , E điểm tùy ý Khi ta có: A(a :1: 0) B(b :1: 0) , C(c :1: , 0) , A'(a ' : : 1) , B '(b ' : :1) , C '(c ' : :1) d C B A  S0  A'  B' C' d' Hình 16 Từ ta tính được:   BC ' B 'C  (bb ' cc ' : b ' c ' : b  c)   AC ' A'C  (cc ' aa ' : c ' a ' : c  a)   AB ' A' B  (aa ' bb ' : a ' b ' : a  b) Cộng ba dòng tọa độ a , b , g lại ta  : : 0 bb ' cc ' cc ' aa ' aa ' bb ' Do a , b, g thẳn g hàng nên b ' c ' c ' a ' a ' b ' b c ca 0ab Định lí Staud Trong P cho đường bậc hai không suy biến (G ), hai cặp đỉnh đối diện hình bốn cạnh toàn phần liên hợp với (G ) cặp đỉnh đối diện lại liên hợp với (G ) Chứng minh Giả sử  A, A' ,  B, B ' ,  C,C ' ba cặp đỉnh đối diện hình bốn cạnh tồn phần mà A liên hợp với A ' B liên hợp với B ' (G ) Chọn mục tiêu xạ ảnh  A, A', B; B ' giả sử (G ) có phương trình: a00 x0  a11 x1 2  a22 x2  2a01 x1 x2  2a02 x0 x2  2a12 x1 x2  Ta có A(1: : 0) , A'(0 :1: 0) , B(0 : : 1) , B '(1:1:1) Từ ta tính C(1: : C '(0 :1:1) 1) Đặt F  x0 , x1 , x2 , y0 , y1 , y2   a00 x0 y0  a11 x1 y1  a22 x2 y2  a01  x0 y1  x1 y0  a02  x0 y2  x2 y0   a12  x1 y2  x2 y1  Vì A liên hợp với A ' nên F (1,0,0,0,1,0)  a01  0 Vì B liên hợp với B ' nên F (0,0,0,0,1,1)  a22  a02  a12  0 Với hai điểm C C ' hợ p với C ' 50 22 02 12 ta có F (1,0,1,0,1,1)  a  a  a  , tức C liên Định lí hình bốn đỉnh tồn phần Trong hình bốn đỉnh tồn phần, hai điểm chéo nằm đường chéo chia điều hòa cặp giao điểm đường chéo với cặp cạnh qua điểm chéo thứ ba 51 Chứng minh Giả sử A BCD hình bốn đỉnh tồn phần Ba điểm chéo là: P  AB  CD , Q  AD  BC  AD  PR , N  BC  PR Ta phải chứng minh:  P, R, M , N   1 Gọi M Trong mặt phẳng P chứa hình bốn đỉnh ta chọn mục tiêu xạ ảnh S , S , S ; E , cho: R  AC  BD S0  A  (1: : 0) S1  B  (0 :1: 0) E  D  (1:1:1) , , N C Q R M A D B P Hình 17 Đường thẳng A B có phương trình x2  , nên điểm P có tọa độ (x0 : x1 : 0) Mặt khác, ba điểm P , D , C thẳng hàng nên: x0 x1 1  hay x0  x1 suy P 1:1:  Tương tự ta tính được: R 1: :1 Phương trình đường thẳng PR là: x0 x1 x2  hay x  x  x  1 Còn đường thẳng BC có phương trình: Suy tọa độ điểm là: x0  N  :1: 1 Phương trình đường thẳng A D là: x0 1 x1 x2 0  hay x2  x1  1 Tọa độ điểm M  AD  PR   :1:1 Từ ta có:  M    P   R  N    P   R hay  P, R, M , N   1 Như vậy, việc sử dụng mục tiêu xạ ảnh nhà tốn học chứng minh định lí tốn học cơng cụ hữu ích việc nghiên cứu không gian xạ ảnh KẾT LUẬN Khái niệm hệ tọa độ đời cho ta phương pháp để giải toán cách hiệu Nhờ có phương pháp mà tốn chứng minh vng góc, thẳng hàng, tìm quỹ tích giả ngắn gọn dễ dàng Khơng phương pháp hữu ích việc chúng minh định lí tốn học Khơng có phương pháp chìa khóa vạn việc giải tất tốn, tốn có nhiều cách giải Có thể lời giải em đưa chưa thực tối ưu nhiều định lí khác khơng gian xạ ảnh chứng minh nhờ phương pháp tọa độ song toán hay định lí em đưa khóa luận để minh họa cho ứng dụng phương pháp Mặc dù, có nhiều cố gắng song lần em làm quen với việc nghiên cứu khoa học nên tránh thiếu sót Em mong muốn thầy cơ, bạn sinh viên đóng góp ý kiến trao đổi để luận văn hoàn thiện tốt Ngày 05 tháng 05 năm 2103 Sinh viên Đinh Thị Ly MỘT SỐ TÀI LIỆU THAM KHẢO Phạm Khắc Ban- Phạm Bình Đơ, Hình học afin hình học Ơclit ví dụ tập, NXB ĐHSP Văn Như Cương- Tạ Mân, Hình học afin hình học Ơclit, NXB Đại học quốc gia Hà Nội 1998 Văn Như Cương, Hình học xạ ảnh, NXBGD 1999 Phạm Bình Đơ, Bài tập hình học xạ ảnh, NXBĐHSP Từ điển Tốn học, Hồng Hữu Như, Lê Đình Thịnh dịch, NXBKH KT 1993 Http: Ebook.ringring.vn ... MỘT SỐ ỨNG DỤNG CỦA PHƯƠNG PHÁP TỌA ĐỘ VÀO GIẢI TOÁN Ở chương em đưa số ví dụ để minh họa cho ứng dụng phương pháp tọa độ 2.1 PHƯƠNG PHÁP TỌA ĐỘ Phương pháp tọa độ phương pháp giải toán cách gắn... em chọn đề tài PHƯƠNG PHÁP TỌA ĐỘ VÀ ỨNG DỤNG để làm khóa luận tốt nghiệp 2 Mục đích nghiên cứu Tìm hiểu phương pháp tọa độ ứng dụng phương pháp tọa độ việc giải tốn sơ cấp chứng minh số định... Nhiệm vụ nghiên cứu - Nghiên cứu phương pháp tọa độ - Nghiên cứu số ứng dụng phương pháp tọa độ Đối tượng phạm vi nghiên cứu - Đối tượng: phương pháp tọa độ ứng dụng - Phạm vi nghiên cứu: hình

Ngày đăng: 31/12/2017, 10:34

TỪ KHÓA LIÊN QUAN

w