Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 17 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
17
Dung lượng
551 KB
Nội dung
CHUYÊN ĐỀ: ĐẬI SỐ TỔHỢP Phương Xuân Trịnh CHUYÊN ĐỀ ĐẠI SỐ TỔHỢP I/ LÝ THUYẾT CƠ BẢN 1) Quy tắc cộng: Có n 1 cách chọn đối tượng A 1 . n 2 cách chọn đối tượng A 2 . A 1 ∩ A 2 = ∅ ⇒ Có n 1 + n 2 cách chọn một trong các đối tượng A 1 , A 2 . 2) Quy tắc nhân: Có n 1 cách chọn đối tượng A 1 . Ứng với mỗi cách chọn A 1 , có n 2 cách chọn đối tượng A 2 . ⇒ Có n 1 .n 2 cách chọn dãy đối tượng A 1 , A 2 . 3) Hoán vị: − Mỗi cách sắp thứ tự n phần tử gọi là một hoán vị của n phần tử. − Số hoán vị: P n = n!. 4) Chỉnh hợp: − Mỗi cách lấy ra k phần tử từ n phần tử (0 < k ≤ n) và sắp thứ tự của chúng gọi là một chỉnh hợp chập k của n phần tử. − Số các chỉnh hợp: k n n! A (n k)! = − 5) Tổ hợp: − Mỗi cách lấy ra k phần tử từ n phần tử (0 ≤ k ≤ n) gọi là một tổhợp chập k của n phần tử. − Số các tổ hợp: k n n! C k!(n k)! = − − Hai tính chất k n k n n C C − = k 1 k k n 1 n 1 n C C C − − − + = 6) Nhị thức Newton n n k n k k n k 0 0 n 1 n 1 n n n n n (a b) C a b C a C a b . C b − = − + = = + + + ∑ − Số hạng tổng quát (Số hạng thứ k + 1): k n k k k 1 n T C a b − + = − Đặc biệt: n 0 1 2 2 n n n n n n (1 x) C xC x C . x C+ = + + + + Tổ Toán Trương THPT Lương Tài 1 CHUYÊN ĐỀ: ĐẬI SỐ TỔHỢP Phương Xuân Trịnh II / MỘT SỐ VÍ DỤ 1. Bài toán đếm. 1.1 Đếm các số tự nhiênđược thành lập. Ví dụ 1. Từ các chữ số 1, 2, 3, 4, 5, 6, 7 lập được bao nhiêu số tự nhiên gồm 5 chữ số sao cho a) Các chứ số đều khác nhau. b) Chữ số đầu tiên là 3. c)Các chữ số khác nhau và không tận cùng bằng chữ số 4. Giải a) Mỗi số có 5 chữ số khác nhau được thành lập tương ứng với một chỉnh hợp chập 5 của 7 phần tử ⇒ Có 5 7 A = 2520 số b) Gọi số cần thiết lập là abcde Chữ số đàu tiên là 3 ⇒ a có 1 cách chọn b, c, d, e đều có 7 cách chọn ⇒ Có 1.7.7.7.7 = 2401 số. c) Gọi số cần thiết lập là abcde Chữ số cuối cùng khác 4 ⇒ e có 6 cách chọn (trừ số 4) a có 6 cách chọn b có 5 cách chọn c có 4 cách chọn d có 3 cách chọn ⇒ Có 6.6.5.4.3 = 2160 số. Ví dụ 2.(ĐH An ninh 97) Từ bảy chữ số 0, 1, 2, 3, 4, 5, 6 thành lập được bao nhiêu số chẵn có 5 chữ số khác nhau Giải Gói số cần thiết lập là abcde Xét hai trường hợp + Trường hợp 1: Chọn e = 0 ⇒ e có 1 cách chọn Khi đó a có 6 cách chọn b có 5 cách chọn c có 4 cách chọn d có 3 cách chọn ⇒ Có 6.5.4.3 = 360 số. + Trường hợp 2: Chọn e ∈ { 2, 4, 6 } ⇒ e có 3 cách chọn Khi đó a có 5 cách chọn trừ số 0 và e b có 5 cách chọn c có 4 cách chọn Tổ Toán Trương THPT Lương Tài 2 CHUYÊN ĐỀ: ĐẬI SỐ TỔHỢP Phương Xuân Trịnh d có 3 cách chọn ⇒ Có 3.5.5.4.3 = 900 số Vậy có 360 + 900 = 1260 số Ví dụ 3. Từ các chữ số 1, 2, 3, 4, 5, 6, 7 lập được bao nhiêu số có 4 chữ số sao cho số tạo thành gồm các chữ số khác nhau và nhất thiết có chữ số 5. Giải Cách 1: Thành lập số có 3 chữ số khác nhau và không có mặt chữ số 5 ⇒ Có 3 6 A = 120 số Với mỗi số vừa thành lập có 4 vị trí để xen số 5 tạo thành số có 4 chữ số khác nhau và có mặt chữ số 5. ⇒ Có 120.4 = 480 số. Cách 2: − Số cần tìm có 1 trong bốn dạng 5bcd,a5bc,ab5d,abc5 − Mỗi dạng có 120 số ⇒ có 480 số Ví dụ 4: Có bao nhiêu số tự nhiên gồm 2008 chữ số sao cho tổng các chữ số bằng 3. Giải Xét các trường hợp + Trườnghợp 1: Số tạo thành gồm 1 chữ số 3 và 2007 chữ số 0 ⇒ Chỉ có 1 số 3000…000 (2007 chữ số 0) + Trường hợp 2: Số tạo thành gồm 1 chữ số 1, 1 chữ số 2 và 2006 chữ số 0 Chọn chữ số đầu tiên có 2 cách chọn số 1 hoặc 2 Chữ số còn lại có 2007 vị trí để đặt, còn các vị trí khác đặt số 0 ⇒ Có 2.2007 = 4014 số + Trường hợp 3: Số tạo thành gồm 3 chữ số 1 và 2005 chữ số 0 Chọn chữ số đầu tiên là 1 Chọn 2 trong 2007 vị trí để đặt chữ số 1 ⇒ có 2 2007 C = 2007.1003 = 2013021 Vậy có 1 + 4014 + 2013021 = 2017036 số Ví dụ 5(ĐHQG TPHCM 2001) Có bao nhiêu số tự nhiên gồm bảy chữ số biết rằng chữ số 2 có mặt đúng hai lần, chữ số ba có mặt đúng ba lần, các chữ số còn lại có mặt không quá một lần. Giải + Coi một dãy gồm 7 chữ số tương ứng với một số gồm 7 chữ số (Kể cả bắt đầu bằng 0). Khi đó ta thành lập số bằng cách xếp các chữ số vào 7 vị trí Chọn 2 trong 7 vị trí để xếp chữ số 2: có 2 7 C cách Tổ Toán Trương THPT Lương Tài 3 CHUYÊN ĐỀ: ĐẬI SỐ TỔHỢP Phương Xuân Trịnh Chọn 3 trong 5 vị trí còn lại để xếp chữ số 3: có 3 5 C cách Chọn 2 trong 8 chữ số 0, 1, 4, 5, 6, 7, 8, 9 để đặt vào 2 vị trí còn lại có 2 8 A cách ⇒ Có 2 7 C . 3 5 C . 2 8 A = 11 760 cách. + Cần phải loại các trường hợp chữ số 0 đứng đầu. Lập luận tương tự cho 6 vị trí ⇒ có 2 6 C . 3 4 C . 1 7 A = 420 số Vậy có 11 760 − 420 = 11 340 số. 1.2 Đếm số phương án. Ví dụ 6: (ĐH Thái nguyên 99) Một lớp học có 25 nam và 15 nữ. Cần chọn một nhóm gồm ba học sinh. Hỏi có bao nhiêu cách: a) Chọn 3 học sinh bất kì. b) Chọn 3 học sinh gồm 2 nam và một nữ. c) Chọn 3 học sinh trong đó có ít nhất 1 nam. Giải a) Mỗi cách chọn là một tổhợp chập3 của 40 ⇒ Số cách chọn là: 3 40 C 9880= cách. b) Chọn 1 nam có 1 25 C 25= cách Chọn 2 nữ có 2 15 C 105= cách ⇒ Có 25.105 = 2625 cách chọn c) Chọn 3 học sinh bất kì có 9880 cách Chọn 3 học sinh nữ có 3 15 C 455= cách ⇒ Có 9880 − 455 = 9425 cách chọn có ít nhất 1 nam. Ví dụ 7: (ĐHSP Quy Nhơn 97) Cho hai đường thẳng song song a và b. Trên a lấy 17 điểm phân biệt, trên b lấy 20 điểm phân biệt. Tính số tam giác có các đỉnh là 3 trong số 37 điểm đã chọn ở trên. Giải Cách 1 Mỗi tam giác được hình thành bởi ba điểm không thẳng hàng Số bộ ba điểm từ 37 điểm trên là: 3 37 C Số bộ ba điểm thẳng hàng trên a là: 3 17 C Số bộ ba điểm thẳng hàng trên b là: 3 20 C Vậy số tam giác tạo thành là: 3 37 C − 3 17 C − 3 20 C = 11 340 tam giác Tổ Toán Trương THPT Lương Tài 4 CHUYÊN ĐỀ: ĐẬI SỐ TỔHỢP Phương Xuân Trịnh Cách 2: Mỗi tam giác được tạo thành bởi một điểm trên đường thẳng này và hai điểm trên đường thẳng kia. Xét 2 trường hợp + TH1: Tam giác tạo thành bởi 1 điểm trên a và 2 điểm trên b: có 2 20 17.C + TH2: Tam giác tạo thành bởi 2 điểm trên a và 1 điểm trên b: có 2 17 20.C ⇒ Số tam giác là: 2 20 17.C + 2 17 20.C = 11 340 Ví dụ 8: (ĐH Cảnh sát nhân dân) Cho tam giác ABC. Xét bộ gồm 4 đường thẳng song song với AB, 5 đường thẳng song song với BC và 6 đường thẳng song song với CA trong đó không có ba đường thẳng nào đồng quy. Hỏi các đường thẳng trên tạo được bao nhiêu tam giác và bao nhiêu tứ giác (không kể hình bình hành). Giải a) Mỗi tam giác được tạo thành bởi ba đường thẳng thuộc ba nhóm khác nhau ⇒ Số tam giác là 4.5.6 = 120 b) Mỗi hình thang không phải hình bình hành được tạo thành bởi hai đường thẳng thuộc nhóm này và một đường thẳng thuộc mỗi nhóm còn lại ⇒ Số hình thang là 2 1 1 1 2 1 1 1 2 4 5 6 4 5 6 4 5 6 C .C .C C .C .C C .C .C 720+ + = hình thang 2. Giải phương trình, bất phương trình và hệ đại số tổhợp Ví dụ 1: (CĐSP TPHCM99) Tìm k thỏa mãn: k k 2 k 1 C C 2C 14 14 14 + + + = Giải ĐK k N k 12 ∈ ≤ Phương trình tương đương với 14! 14! 2.14! k!(14 k)! (k 2)!(12 k)! (k 1)!(13 k)! + = − + − + − ⇔ 1 1 2 (14 k)(13 k) (k 2)(k 1) (k 1)(13 k) + = − − + + + − ⇔ (k + 2)(k + 1) + (14 − k)(13 − k) = (k + 2)(14 − k) ⇔ k 2 − 12k + 32 = 0 ⇔ k = 4, k = 8 (Thỏa mãn) Vậy phương trình có nghiệm: k = 4, k = 8 Tổ Toán Trương THPT Lương Tài 5 CHUYÊN ĐỀ: ĐẬI SỐ TỔHỢP Phương Xuân Trịnh Ví dụ 2: (ĐH Hàng hải 99) Giải bất phương trình: n 3 C 1 n 1 4 14P A 3 n 1 − − > + Giải ĐK: 4≤ n+1 ⇔ n ≥ 3, n nguyên dương n 3 C 1 n 1 4 14P A 3 n 1 − − > + ⇔ . n 3 4 14.P C A 3 n 1 n 1 > − − + ⇔ ( ) ( ) ( ) ( ) ( ) n 1 ! 14.3! n 1 .n. n 1 . n 2 n 3 !2! − > + − − − ⇔ 2 n n 42 0+ − < ⇔ ( ) ( ) n 6 . n 7 0− + < ⇔ −7 < n < 6 Kết hợp với Đk n≥ 3 được tập nghiệm của bất phương trình là: {3, 4, 5}. Ví dụ 3: (ĐHBK HN2001) Giải hệ phương trình: y y 2.A 5.C 90 x x y y 5.A 2.C 80 x x − + = = Giải ĐK: x, y ∈ N * , y ≤ x Đạt y y x x u A , v C= = ⇒ u, v ∈N * ta có hệ u 2.u 5.v 90 5. 2.v 80 − + = = ⇔ u 20 v 10 = = Thay vào ta có y A 20 x y C 10 x = = ⇔ x! (x y)! x! y!(x y)! 20 10 − − = = ⇔ y! 2 x! (x y)! 20 = − = ⇔ y 2 x! (x 2)! 20 = − = ⇔ x(x 1) 20 y 2 − = = ⇔ x 5,x 4 y 2 = = − = Kết hợp điều kiện ⇒ Hệ phương trình có nghiệm x 5 y 2 = = Tổ Toán Trương THPT Lương Tài 6 CHUYÊN ĐỀ: ĐẬI SỐ TỔHỢP Phương Xuân Trịnh 3) Xác định một số hạng của khai triển Newuton. Ví dụ 1: (ĐH Kinh tế quốc dân, 1997) Tìm số hạng không chứa x trong khai triển Newton của 12 1 x x ÷ + Giải Số hạng tổng quát k k 12 k k 12 2k k 1 12 12 1 T C .x C .x x − − + = = ÷ . Số hạng không chứa x tương ứng với 12 − 2k = 0 ⇔ k = 6. Đáp số:số hạng không chứa x phải tìm là: 12.11.10.9.8.7 6 0 C .x 924 12 1.2.3.4.5.6 = = Ví dụ 2:(ĐH và CĐ, khối A, 2003). Tìm hệ số của số hạng chứa 8 x trong khai triển nhị thức Niutơn của n 1 5 x 3 x ÷ ÷ + , biết rằng ( ) n 1 n C C 7 n 3 n 4 n 3 + − = + + + Giải Ta có ( ) (n 4)! (n 3)! n 1 n C C 7 n 3 7(n 3) n 4 n 3 (n 1)!.3! (n)!.3! + + + − = + ⇔ − = + + + + ⇔ (n 4)(n 3)(n 2) (n 3)(n 2)(n 1) 42(n 3)+ + + − + + + = + ⇔ (n 4)(n 2) (n 2)(n 1) 42+ + − + + = ⇔ 3n = 36 ⇔ n = 12 Số hạng tổng quát 12 k 5k k 36 3k 1 k 5 k 2 T C . x C .x 12 12 k 1 3 x ÷ ÷ ÷ − − + = = + . Số hạng chứa x 8 tương ứng với 5k 36 3k 8 2 − + = ⇔ 11k = 88 ⇔ k = 8. Đáp số:Hệ số của số hạng chứa x 8 phải tìm là: 8 C 495 12 = Tổ Toán Trương THPT Lương Tài 7 CHUYÊN ĐỀ: ĐẬI SỐ TỔHỢP Phương Xuân Trịnh Ví dụ 3: Khai triển đa thức: P(x) = ( ) 12 1 2x+ thành dạng : ( ) 12 0 1 2 12 P x a a x a x . a x= + + + + Tìm max ( ) 1 2 12 a ,a , .,a Giải Số hạng tổng quát ( ) k k 2x . k k k T C . C .2 x 12 12 k 1 = = + . Xét hai hệ số liên tiếp k k a C .2 12 k = và k 1 k 1 a C .2 12 k 1 + + = + . Giả sử a k < a k + 1 ⇔ k k 1 k k 1 C .2 C .2 12 12 + < + ⇔ 12! 12! k!.(12 k)! (k 1)!.(11 k)! .2< − + − ⇔ 23 k 8 3 < < Vậy a 0 < a 1 < … < a 8 . Tương tự như trên ⇒ a 8 > a 9 > … > a 12 . Vậy hệ số lớn nhất là: 8 8 8 a C 2 126720 12 = = 4) Tính tổng hoặc chứng minh đẳng thức. Ví dụ 1 : Chứng minh rằng ∀ n, k ∈ N * và n ≥ k ≥ 1 thì: k k 1 n n 1 kC nC − − = Giải Thật vậy ∀ n, k ∈ N * và n ≥ k ≥ 1 ta có: k n n! n(n 1)! kC k k!(n k)! (k 1)!(n k)! − = = − − − = (n 1)! n (k 1)!(n k)! − − − = 1 1 k n nC − − (đpcm) Lưu ý :(Đây là một kết quả có nhiều ứng dụng trong các bài tập chứng minh đẳng thức tổhợp khi chưa có công cụ đạo hàm và tích phân) Ví dụ 2 : (ĐH Quốc gia Hà Nội, khối D, 1997) Tính tổng 6 7 8 9 10 11 11 11 11 11 11 11 S C C C C C C= + + + + + Giải Do 6 5 7 4 11 11 11 11 C C ,C C , .= = nên 5 4 3 2 1 0 0 1 2 10 11 11 11 11 11 11 11 11 11 11 11 11 S C C C C C C 2S C C C .C C= + + + + + → = + + + + (1) Áp dụng khai triển Niu tơn ( ) n n k k n k 0 x 1 C .x = + = ∑ với x = 1, n = 11 được ( ) 11 11 k 0 1 2 10 11 11 11 11 11 11 11 k 0 1 1 C C C C . C C = + = = + + + + + ∑ (2) Từ (1), (2) suy ra 11 10 2S 2 S 2 1024.= → = = Tổ Toán Trương THPT Lương Tài 8 CHUYÊN ĐỀ: ĐẬI SỐ TỔHỢP Phương Xuân Trịnh Đáp số : 10 S 2 1024= = Ví dụ 3 : (ĐH Bách Khoa Hà Nội, 1999) Cho n là số tự nhiên lớn hơn 2, tính tổng : 1 2 3 4 n 1 n S C 2.C 3.C 4.C . ( 1) .n.C n n n n n − = − + − + + − Giải Cách 1: (Sử dụng kết quả ví dụ 1) Áp dụng kết quả ví dụ 1 ta có: 0 2 1 n 1 n n 1 n 1 n n . n 1 C .C n n 1 2.C .C n n 1 ( 1) n.C ( 1) .C n n 1 − − − = = − = − − − − − − Cộng theo vế các đẳng thức trên ta được 0 1 2 3 n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1 n(C C C C ,,, ( 1) C ) n(1 1) 0 1 2 3 4 n 1 n S C 2.C 3.C 4.C . ( 1) .n.C n n n n n − − − − − − − − = − + − + + − = − = − = − + − + + − Cách 2: (Sử dụng đạo hàm) Xét khai triển n 0 1 2 2 n n n n n n (1 x) C xC x C . x C+ = + + + + ⇒ n 1 1 2 n 1 n n n n n.(1 x) C 2xC . nx C − − + = + + + Chọn x = − 1 ⇒ n 1 1 2 n n n n n n.(1 1) C 2C . ( 1) .nC − − = − + + − Vậy : S = 0 Ví dụ 4: (ĐHDL Duy Tân, khối A, 2001) Tính tổng sau : 0 1 2 3 n n n n n n 1 1 1 1 n 1 1 S .C .C C C . C 1 2 3 4 + = + + + + + Giải Cách 1( Sử dụng kết quả ví dụ 1) Âp dụng kết quả ví dụ 1 ta có: k k 1 n n 1 kC nC − − = ⇔ k 1 k n 1 n (k 1)C (n 1)C + + + = + ⇔ k k 1 n n 1 1 1 C C k 1 n 1 + + = + + Thay k = 0, 1, 2 … , n ta có Tổ Toán Trương THPT Lương Tài 9 CHUYÊN ĐỀ: ĐẬI SỐ TỔHỢP Phương Xuân Trịnh 0 1 n n 1 1 2 n n 1 2 3 n n 1 n n 1 n n 1 1 1 C C 1 n 1 1 1 C C 2 n 1 1 1 C C 3 n 1 1 1 . C C n 1 n 1 + + + + + = + = + = + = + + 0 1 2 3 n n n n n n 1 2 3 n 1 n 1 n 1 n 1 n 1 n 1 1 1 1 n 1 1 (C C C . C ) n 1 1 (2 1) n 1 1 S .C .C C C . C 1 2 3 4 + + + + + + + = + + + + + = − + ⇒ = + + + + + Vậy n 1 1 (2 1) n 1 S + − + = Cách 2:(Sử dụng tích phân) Xét khai triển n 0 1 2 2 3 3 n n n n n n n (1 x) C xC x C x C . x C+ = + + + + + 1 1 n 0 1 2 2 3 3 n n n n n n n 0 0 (1 x) dx (C xC x C x C . x C )dx⇒ + = + + + + + ∫ ∫ Ta có: 1 0 1 n 1 n 1 n 0 (1 x) 2 1 (1 x) dx n 1 n 1 + + + − + == = + + ∫ n 1 2 1 n 1 + − ⇒ = + 0 0 2 1 3 2 4 3 n 1 n 1 n n n n n 1 1 1 x n 1 1 .C .x C x C x C . x C 1 2 3 4 + + + + + + + 0 1 2 3 n n n n n n 1 1 1 n 1 1 .C .C C C . C 1 2 3 4 = + + + + + + Vậy Vậy n 1 1 (2 1) n 1 S + − + = Ví dụ 5: Chứng minh đẳng thức sau: 7 7 3 2 7 6 5 4 3 2 2 2 2 2 2 2 1 0 1 2 3 4 5 6 .C .C C C C C C 6 6 6 6 6 6 6 1 2 3 4 5 6 7 − =+ + + + + + Giải Xét khai triển 6 6 0 5 1 4 2 2 3 3 3 2 4 4 5 5 6 6 6 6 6 6 6 6 6 (2 x) 2 C 2 xC 2 x C 2 x C 2 x C 2x C x C+ = + + + + + + Tổ Toán Trương THPT Lương Tài 10 [...]... (ĐH-A-2003) Tìm hệ số của số hạng chứa x8 trong khai triển nhị thức n 1 +1 Newton của: 3 + x5 ÷ , biết rằng: Cnn+ 4 − Cnn+3 = 7(n + 3) ( n là số nguyên x dương, x > 0 ) 57) (ĐH-D-2003) Với n là số nguyên dương, gọi a3n −3 là hệ số của x3n −3 n n trong khai triển thành đa thức của ( x 2 + 1) ( x + 2 ) Tìm n để a3n −3 = 26n TổTo n 16 Trương THPT Lương Tài Phương Xuân Trịnh CHUYÊN ĐỀ: ĐẬI SỐ TỔ HỢP... ? d) nam nữ ngồi xen kẽ và đối diện nhau ? 9) Cho các số 0,1,2,3,4,5,6 Có thể lập được bao nhiêu số gồm 4 chữ số khác nhau được lấy từ các số đã cho, sao cho: a) Số đó chẵn b) Số đó chia hết cho 5 TổTo n 12 Trương THPT Lương Tài Phương Xuân Trịnh CHUYÊN ĐỀ: ĐẬI SỐ TỔHỢP c) Luôn có mặt chữ số 1 và 3 10) Cho các số: 0,1,2,3,4,5,6,7 Có thể lập được bao nhiêu số gồm 5 chữ số khác nhau được lấy từ các... mặt hai lần các số còn lại mỗi số có mặt đúng một lần? 20) Có bao nhiêu số tự nhiên gồm 6 chữ số khác nhau biết rằng: a) các số này chia hết cho 5? b) trong các số này phải có mặt ba chữ số 0,1,2 ? TổTo n 13 Trương THPT Lương Tài Phương Xuân Trịnh CHUYÊN ĐỀ: ĐẬI SỐ TỔHỢP 32) Với sáu số 2,3,5,6,7,8, ta muốn thành lập những số gồm bốn chữ số khác nhau a) Có bao nhiêu số nhỏ hơn 5000 ? b) Có bao nhiêu... không phải là đỉnh ) của các đường chéo ấy 30) Một tổ trực gồm 8 nam sinh và 6 nữ sinh Giáo viên trực muốn chọn một nhóm 5 học sinh Có bao nhiêu cách chọn nếu nhóm này phải có ít nhất một nữ sinh? 29) TổTo n 14 Trương THPT Lương Tài Phương Xuân Trịnh CHUYÊN ĐỀ: ĐẬI SỐ TỔHỢP 31) Giám đốc một công ty muốn chọn một nhóm 5 người vào hội đồng tư vấn Trong công ty có 12 người hội đủ điều kiện để được chọn,... Ckk+1 + Ckk+2 + + Ckk+ m−1 = Ckk+m 44) 0 1 2 m k Cho m ≤ k ≤ n Chứng minh: CmCnk + CmCnk −1 + CmCnk −2 + + Cm Cnk −m = Cm +n 45) 1 Chứng minh rằng: Cn0 − Cn + Cn2 − + ( −1) Cnk + + ( −1) Cnn = 0 TổTo n k 15 n Trương THPT Lương Tài Phương Xuân Trịnh CHUYÊN ĐỀ: ĐẬI SỐ TỔHỢP n −1 2n − 2 46) a) Chứng minh: C C C C ≤ ÷ n −1 0 n 1 n 2 n n n b Chứng minh: C2nn + k C2nn− k ≤ ( C2nn ) 2 47)... có số hạng thứ 4 bằng 200 17 1 + 4 x 3 ÷ Tìm số hạng không chứa x của khai triển 49) Trong khai triển 3 2 x 50) (ĐH-D-2004) Tìm số hạng không chứa x trong khai triển nhị 7 1 thức Newton của 3 x + 4 ÷ với x > 0 x 51) Khi khai triển và rút gọn các đơn thức đồng dạng từ biểu thức: 5 6 7 11 ( 1 + x ) + ( 1 + x ) + ( 1 + x ) + + ( 1 + x ) Ta được một đa thức: P( x ) = A0 + A1 x... 2 = 2 C0 + 2 C1 + 2 C2 + 2 C3 + 2 C4 + 2 C5 + 1 C6 7 1 6 2 6 3 6 4 6 5 6 6 6 7 6 6 5 4 3 2 7 7 Vậy 2 C0 + 2 C1 + 2 C2 + 2 C3 + 2 C4 + 2 C5 + 1 C6 = 3 − 2 (đpcm) 1 6 2 6 3 6 4 6 5 6 6 6 7 6 7 6 0 6 TổTo n 5 11 Trương THPT Lương Tài Phương Xuân Trịnh CHUYÊN ĐỀ: ĐẬI SỐ TỔHỢP BÀI TÂP T Ự L ƯY ỆN : 1) Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 8 ghế nếu: a) họ ngồi chỗ... + 1) ( x + 2 ) Tìm n để a3n −3 = 26n TổTo n 16 Trương THPT Lương Tài Phương Xuân Trịnh CHUYÊN ĐỀ: ĐẬI SỐ TỔHỢP 58) (ĐH-A-2006) Tìm hệ số của số hạng chứa x 26 trong khai triển nhị thức n 1 1 Newton của: 4 + x 7 ÷ , biết rằng: C2 n +1 + C22n +1 + C23n +1 + + C2nn +1 = 220 − 1 ( n là x số nguyên dương, x > 0 ) a + 59) Trong khai triển: 3 b b 3 a 21 ÷ Tìm số hạng có số mũ của a... + Cn 2 3 n +1 (ĐH-D-2002) Tìm số nguyên dương n sao cho: n C + 2C + 4C + + 2 Cn = 243 0 n 67) 1 n 2 n (ĐH-D-2005) n Tính giá trị của biểu thức: M = 2 2 2 2 Cn +1 + 2Cn+ 2 + 2Cn +3 + Cn+ 4 = 149 TổTo n 4 3 An +1 + 3 An , ( n + 1) ! biết rằng: ( n là số nguyên dương ) 17 Trương THPT Lương Tài . x C . x C+ = + + + + Tổ To n Trương THPT Lương Tài 1 CHUYÊN ĐỀ: ĐẬI SỐ TỔ HỢP Phương Xuân Trịnh II / MỘT SỐ VÍ DỤ 1. Bài to n đếm. 1.1 Đếm các số tự. thiết lập là abcde Chữ số đàu tiên là 3 ⇒ a có 1 cách chọn b, c, d, e đều có 7 cách chọn ⇒ Có 1.7.7.7.7 = 2401 số. c) Gọi số cần thiết lập là abcde Chữ số cuối