TỌA ĐỘ MẶT PHẲNG TRONG KHÔNG GIANPHẦN I Bài 1: Lập phương trình mặt phẳng α biết: a.. Lập phương trình mặt phẳng R chứa đường thẳng d và cắt chiều dương của trục tọa độ tại các điểm M,
Trang 1TỌA ĐỘ MẶT PHẲNG TRONG KHÔNG GIAN
PHẦN I Bài 1:
Lập phương trình mặt phẳng ( )α biết:
a Mp( )α đi qua M(3, 2, 1− )và song song với mặt phẳng ( )β có phương trình x−5y z+ =0
b Mặt phẳng ( )α đi qua 2 điểm M(0,1,1 ;) N(−1,0, 2) và vuông góc với mặt phẳng x y z− + + =1 0
Bài 2:
1 Lập phương trình mặt phẳng trung trực của đoạn AB biết A(1,3, 2− )và B(1, 2,1)
2 Lập phương trình mp( )α chứa đường thẳng AB và song song với CD , trong đó
(5,1,3 ;) (1,6, 2 ;) (5,0, 4 ;) (4,0, 6)
3.Lập phương trình mặt phẳng đi qua điểm M0(1,0, 2− )và vuông góc với hai mặt phẳng
( )P : 2x y z+ − − =2 0 và ( )Q x y z: − − − =3 0
Bài 3:
Xét vị trí tương đối của mỗi cặp mặt phẳng cho bởi các phương trình sau:
a x y z+ + − =1 0 và 2x+2y+2z+ =3 0
b 3x−2y+ + =3z 5 0 và 9x−6y− − =9z 5 0
c x y− +2z− =4 0 và 10x−10y+20z−40 0=
Bài 4:
Trong không gian cho hai mặt phẳng ( )P và ( )Q lần lượt có phương trình là:
( )P :2x my− + − + =3z 6 m 0 và ( ) (Q : m+3)x−2y+(5m+1)z− =10 0
Với giá trị nào của m thì:
a Hai mặt phẳng đó song song?
b Hai mặt phẳng đó trùng nhau?
c Hai mặt phẳng đó cắt nhau?
d Hai mặt phẳng đó vuông góc nhau?
Bài 5:
Cho điểm M(1,0,5)và hai mặt phẳng ( ) ( )P & Q có phương trình:
( ) ( )
: 2 3 1 0
Q x y z
− + + = + − + =
a Tính khoảng cách từ điểm ( )M đến mặt phẳng ( )P
b Lập phương trình mặt phẳng ( )R đi qua giao tuyến của ( ) ( )P & Q đồng thời vuông góc với mặt
phẳng( )T có phương trình: 3 x y− + =1 0
Bài 6:
Cho hai mặt phẳng ( )P và ( )Q có phương trình:
( )P x y z: + + − =2 0, ( )Q : 2x−3y z+ + =2 0
a Chứng tỏ ràng hai mặt phẳng ( )P và( )Q vuông góc với nhau.
Trang 2b Lập phương trình mặt phẳng ( )R chứa giao tuyến của ( )P và ( )Q đồng thời đi qua điểm M(1, 2,3).
Bài 7:
Cho hai mặt phẳng ( )P và họ mặt phẳng (Qα β, )có phương trình:
( )
P x y z
Qα β α x y z β x y z
+ + − =
a Chứng tỏ rằng ( )P và(Qα β, )luôn vuông góc với nhau với mọi vàα β
b Xác định mặt phẳng thuộc họ (Qα β, ) sao cho khoảng cách từ điểm M(1,1,1) tới mặt phẳng đó bằng 1
6.
Bài 8:
Viết phương trình mặt phẳng trong mỗi trường hợp sau:
a.Đi qua điểm G(1 2 3, , ) và cắt các trục tọa độ tại các điểm , ,A B C sao cho G là trọng tâm tam giác
ABC.
b Đi qua điểm H(2 1 1, , ) và cắt các trục tọa độ tại các điểm , ,A B C sao cho H là trực tâm tam giác
ABC
c.Đi qua điểm M(1 1 1, , ) cắt chiều dương của các trục tọa độ tại ba điểm A,B,C sao cho tứ diện OABC
có thể tích nhỏ nhất
Bài 9:
Trong không gian cho hai mặt phẳng
( )α : x y2 − + + =3z 1 0 ; ( )β : x y z+ − + =5 0 và điểm M(1 0 5, , )
a.Tính khoảng cách từ điểm M đến mặt phẳng ( )α
b Viết phương trình mặt phẳng đi qua giao tuyến ( )d của ( )α và ( )β đồng thời vuông góc với mặt phẳng ( )Q :3x y− + =1 0
Bài 10:
Cho hai mặt phẳng ( )P và ( )Q có phương trình:( )P :2x y− +2z− =1 0 và ( )Q x: −2y z+ =0
a.Chứng tỏ rằng hai mặt phẳng ( ) ( )P ; Q cắt nhau theo một giao tuyến d.
b Lập phương trình mặt phẳng ( )R chứa đường thẳng d và cắt chiều dương của trục tọa độ tại các
điểm M, N và P sao cho tứ diện OMNP có thể tích bằng 1
6.
Bài 11:
a.Viết phương trình mặt phẳng ( )α chứa trục Ox và cách điểm M(1 2 1, , ) một khoảng bằng 2.
b Viết phương trình mặt phẳng ( )β đi qua hai điểm A(1 0 0, , ) và B(0 2 0, , ) và cách điểm N(3 3 1, , ) một khoảng bằng 3
Bài 12:
Tìm điểm M trên trục Oz trong mỗi trường hợp sau:
a M cách đều điểm A(2 3 4, , ) và mặt phẳng ( )P , biết: ( )P :2x+3y z+ − =17 0
b M cách đều hai mặt phẳng ( ) ( )P1 và P , biết: 2
( )P1 :x y z+ − + =1 0 và ( )P2 :x y z− + + =5 0
BÀI TẬP THAM KHẢO THÊM PHẦN I
Trang 3Bài 1:
Cho tứ diện ABCDvới A(5 1 3, , ;) (B 1 6 2, , ;) (C 5 0 4 và, , ) D(4 0 6, , ).
a. Lập phương trình mặt phẳng (ABC)
b Viết phương trình mặt phẳng qua AB và song song với CD
Bài 2:
Cho phương trình (m2+2m x) (+ m2−m y) (+ m2+1)z−6m2− =3 0 (1)
a Chứng tỏ với mọi m, phương trình (1) là phương trình của một mặt phẳng
b Tìm tọa độ điểm cố định mà (1) luôn đi qua
Bài 3:
Trong không gian cho hai điểm A(1 2 2 và,− , ) B(−2 0 2, , )
a.Lập phương trình tổng quát của mặt phẳng đi qua A, B và vuông góc với mặt phẳng (Oxy)
b.Gọi ( )α là mặt phẳng qua A, B và vuông góc với mặt phẳng 2− +x 3y+2z+ =1 0 Hãy lập phương trình mặt phẳng ( )β qua gốc tọa độ và song song với mặt phẳng ( )α
Bài 4:
Trong không gian Oxyz cho hai mặt phẳng ( )α1 : y+2z− =4 0 và ( )α2 : x y z+ − − =3 0 Lập phương trình của mặt phẳng qua giao tuyến của hai mặt phẳng và song song với mặt phẳng x y z+ + − =2 0
Bài 5:
Trong không gian Oxyz cho điểm M(− −4 9 12, , ) Lập phương trình mặt phẳng qua M cắt các trục Ox,
Oy, Oz lần lượt tại các điểm A,B,C sao cho 4 1 1
OC OA OB
OC OA OB
PHẦN II
Bài 1: Trong không gian Oxyz, cho A(-1;2;3), B(2;-4;3), C(4;5;6)
a) Viết phương trình mp đi qua A và nhận vectơ (1; 1;5)nr − làm vectơ pháp tuyến
b) Viết phương trình mp đi qua A biết rằng hai véctơ có giá song song hoặt nằm trong mp
đó là ar=(1; 2; 1),− br=(2; 1;3)−
c) Viết phương trình mp qua C và vuông góc với đường thẳng AB
d) Viết phương trình mp trung trực của đoạn AC
e) Viết phương trình mp (ABC)
Bài 2: Trong không gian Oxyz, cho A(-1;2;1), B(1;-4;3), C(-4;-1;-2)
a) Viết phương trình mp đi qua I(2;1;1) và song song với mp (ABC)
b) Viết phương trình mp qua A và song song với mp ( )P : 2x y− − − =3z 2 0
c) Viết phương trình mặt phẳng đi qua hai điểm A, B và vuông góc với mặt phẳng
Trang 4( )Q : 2x y− +2z− =2 0
d) Viết phương trình mặt phẳng đi qua A, song song với trục Oy và vuông góc với mặt
phẳng ( )R : 3x y− − − =3z 1 0
e) Viết phương trình mp qua C song song với mp Oyz
Bài 3: Trong không gian Oxyz, viết phương trình mp đi qua M(2;1;4) và cắt các trục Ox, Oy,
Oz tại các điểm A, B, C sao cho: OA = OB = OC
Bài 4: Trong không gian Oxyz, viết phương trình mp đi qua M(2;2;2) cắt các tia Ox, Oy, Oz tại
các điểm A, B, C sao cho thể tích tứ diện OABC nhỏ nhất
Bài 5: Trong không gian Oxyz, viết phương trình mp đi qua M(1;1;1) cắt các tia Ox, Oy, Oz
lần lược tại các điểm A, B, C sao cho tam giác ABC cân tại A, đồng thời M là trọng tâm tam giác
ABC
Bài 6: Trong không gian Oxyz, cho tứ diện ABCD, biết rằng: A(2; 1;6 , − ) (B − − −3; 1; 4 ,)
(5; 1;0 , ) (1;2;1 )
a) Viết phương trình mp chứa A và song song với mp (ABC)
b) Viết phương trình mp cách đều bốn đỉnh của tứ diện đó
Bài 7: Trong không gian Oxyz, cho mp(P): 2x y− +2z− =2 0 và hai điểm A(2; 1;6 ,− )
( 3; 1; 4 )
a) Tính khoảng cách từ A đến mp (P)
b) Viết phương trình mp chứa hai điểm A,B và tạo với mp (P ) một góc có số đo lớn nhất
c) Viết phương trình mặt cầu tâm B tiếp xúc với mp (P)
Bài 8: Trong không gian Oxyz, cho ba mặt phẳng:
( )α : 2x y− −2z− =1 0; ( )β :x−2y z+ − =1 0;( )γ : 2− + +x y 2z− =3 0
a) Trong ba mặt phẳng đó mp nào song song với mp nào?
b) Tìm quỹ tích các điểm cách đều ( )α và( )γ
c) Tính khoảng cách giữa hai mp ( )α và( )γ
d) Tìm quỹ tích các điểm cách ( )β một khoảng bằng 1
e) Viết phương trình mặt cầu có tâm thuộc trục Ox và tiếp xúc với 2 mp( )α và ( )γ
Bài 9: Trong kh.gian Oxyz, cho 2 mặt phẳng ( ) α : 2 x y − − − = 2 z 1 0; ( ) β : x − 2 y z + − = 1 0
a) Tính cosin góc giữa hai mp đó
Trang 5b) Viết phương trình mặt cầu có tâm thuộc Oy tiếp xúc với cả hai mp đó.
c) Viết phương trình mp đi qua giao tuyến của hai mp đó và song song với trục Ox
Bài 10: Trong không gian Oxyz, cho mặt phẳng ( )P : 2x y− +2z− =3 0 và mặt cầu (C ):
(x−1) + +(y 1) + −(z 2) =25
a) Chứng tỏ rằng mặt phẳng (P) và mặt cầu (C ) cắt nhau Tìm bán kính của đường tròn
giao tuyến
b) Lập phương trình các tiếp diện của mặt cầu song song với mặt phẳng (P)
Bài 11: Trong không gian Oxyz, cho hai mặt phẳng ( )α : 2x−2y z+ − =5 0 và mặt cầu (C)
(x−1) + +(y 1) + −(z 2) =25
a) Lập phương trình tiếp diện của mặt cầu song song với Ox và vuông góc với mặt
phẳng ( )α
b) Tính góc giưa mp( )α với Ox
c) Lập phương trình mp đi qua hai A(1;0;1) điểm B(1;-2;2) và hợp với mặt phẳng ( )α một
góc 600
Bài 13: Trong không gian Oxyz, cho bốn điểm A(1;1;2 , 1;2;1 , ) (B ) (C 2;1;1 , ) (D 1;1; 1− )
a) Viết phương trình mặt phẳng ABC
b) Tính góc cosin giữa hai mặt phẳng (ABC) và (ABD)
Bài 14: Trong không gian Oxyz, viết phương trình mặt phẳng đi qua điểm M(2;1;-1) và qua
giao tuyến của hai mặt phẳng x y z− + − =4 0 3và x y z− + − =1 0
Bài 15: Trong không gian Oxyz, viết phương trình mặt phẳng đi qua giao tuyến của hai mp
x+ z− = và x y z+ − + = đồng thời song song với mặt phẳng x y z+ + =0
Bài 16: Trong không gian Oxyz, viết phương trình mp đi qua giao tuyến của hai mặt phẳng
3x y z− + − =2 0 và x+4y− =5 0 đồng thời vuông góc với mp 2x y− + =7 0
Bài 17: Trong không gian Oxyz, cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 2 Gọi I,
J, K lần lượt là trung điểm các cạnh BB’, C’D’và D’A’
a) Chứng tỏ rằng mặt phẳng (IJK) vuông góc với mặt phẳng (CC’K)
b) Tính góc giữa hai mặt phẳng (JAC) và (IAC’)
c) Tính khoảng cách từ I đến mp(AJK)
Bài 18: Trong không gian Oxyz, cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật
2 ;
AB SA= = a AD a= Đặt hệ trục Oxyz sao cho các tia Ox, Oy, Oz lần lượt trùng với các tia
AB, AD, AS
Trang 6a) Từ điểm C vẽ tia CE cùng hướng với tia AS Tìm tọa độ của E.
b) Tính khoảng cách từ C đến mặt phẳng (SBD)
c) Chứng tỏ rằng mặt phẳng (SAB) vuông góc với mặt phẳng (SBC)
d) Tính cosin góc giữa hai mặt phẳng (SBC) và (SDC)
e) Tính thể tích hình chóp S.ABCD
Bài 19: Trong không gian Oxyz, cho tam giác đều ABC cạnh a; I là trung điểm của BC D là
điểm đối xứng với điểm A qua điểm I Dựng đoạn SD = 6
2
a vuông góc với mp (ABC) Chứng minh rằng:
a) mp SAB( )⊥mp SAC( )
b) mp SBC( )⊥mp SAD( )
c) Tính thể tích hình chóp S.ABC