Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 37 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
37
Dung lượng
920 KB
Nội dung
TRƯỜNG THCS CHỢ LẦU TỔ TỐN -TIN Tiết: 20 GV: NGUYỄN HỒ SƠN ngày soạn: / / 2012 §1: SỰ XÁC ĐỊNH ĐƯỜNG TRÒN TÍNH CHẤT ĐỐI XỨNG CỦA ĐƯỜNG TRÒN A) MỤC TIÊU: Qua học sinh cần : ○ Hiểu định nghóa đường tròn, cách xác định đường tròn, đường tròn ngoại tiếp tam giác tam giác nội tiếp đường tròn Nắm đường tròn hình có tâm đối xứng, có trục đối xứng ○ Biết dựng đường tròn qua điểm không thẳng hàng Biết C/m điểm nằm trên, nằm trong, nằm đường tròn B) CHUẨN BỊ CỦA GV & HS: 1) Giáo viên: - Thước thẳng, compa, phấn màu, bìa hình tròn, bảng phụ: viết sẵn tập 2) Học sinh: - Thước kẻ có chia khoảng, compa, ê ke C) CÁC HOẠT ĐỘNG: T G HOẠT ĐỘNG CỦA GV HOẠT ĐÔÏNG CỦA HS GHI BẢNG HĐ1: Nhắc lại đường Tiết 20: SỰ XÁC tròn - Đường tròn ĐỊNH ĐƯỜNG Gv vẽ (O,R) gọi HS nhắc lại tâm O bán kính R TRÒN TÍNH CHẤT định nghóa đường tròn, ký (R > 0): hình ĐỐI XỨNG CỦA 11 hiệu đường tròn gồm điểm ĐƯỜNG TRÒN ’ cách điểm O 1) Nhắc lại đường khoảng tròn: R Ta biết: - HS trả lời - Khi điểm M thuộc đường tròn (O) (Gv vẽ hình R nháp bảng) ta nói A O - Điểm M nằm cách khác nào? Ký hiệu: (O,R) - Với điểm M nằm , nằm hoặc: (O) mặt phẳng có chứa hay nằm (O,R) M có (O,R) OM = RM nằm vị trí tương đối (O,R) - HS nêu hệ với (O,R) ? OM < RM nằm - Ứng với vị trí tương thức: (O,R) OM = R, OM < R đối ta có hệ thức OM > RM nằm ?1 Gọi bán kính đường diễn tả quan hệ độ ngoài(O,R) (O,R) tròn r, ta có: (O,R) OM > R dài OM bán kính R ? (O,R) (O,R) K OH >(O,R) r > OK Củng cố : Cho HS laøm ?1 ⇒ OH > OK O - Dự đoán góc có - HS trả lời ?1 ∆OKH có: → Cả lớp nhận không ? OH > OK - Để so sánh góc không xét · · nên: OKH > OHK 10 em phải sử d định H 2) Cách xác ’ dụng đ/lý ? - Một đường đường tròn: HĐ2: Cách xác định tròn xác đường tròn định biết : O1 ?2 - Nêu cách xác định - Tâm bán A B đường tròn mà kính đường a) O em biết ? tròn đó, → Gv vẽ hình minh hoạ - Một đoạn O2 thẳng đường cách biết nháp Gv đvđ: Ngoài cách kính đường TRƯỜNG THCS CHỢ LẦU GV: NGUYỄN HỒ SƠN TỔ TOÁN -TIN ngày soạn: / / 2012 có cách tròn khác để xác định đường tròn không ? b) Có vô số đường - Ta xét xem đường tròn tròn xác định - Tâm đường tròn biết điểm - Các nhóm nằm đường trung trực đoạn AB chẵn làm ?2 , Cho HS làm ?2 ?3 d1 nhóm lẻ làm ?3 A ?3 nhóm - Tâm đường d2 ?2 a) Tâm đường tròn qua tròn qua điểm điểm A A B nằm O B nằm đâu ? đường trung trực B C Gợi ý: Tâm đường AB tròn có quan hệ - HS vẽ đường tròn qua điểm với điểm AB? - Vì tâm cách AB nên A B Qua ba điểm không - HS trả lời tâm thuộc đường nào? thẳng hàng, ta vẽ → Cả lớp nhận → Gv vẽ hình lên bảng xét b) Có đường đường tròn tròn Tâm */ Chú ý: chúng nằm đường - Không vẽ đường nào? tròn qua điểm - Gv vẽ thêm đường tròn thẳng hàng - Tâm đường tròn qua ?3 Làm để xác 3) Tâm đối xứng, định tâm đường điểm A, B, C trục đối xứng: tròn qua điểm A, B, C ? giao điểm Gợi ý: Đường tròn đường trung ( Sgk trang 99) trước hết qua A, B nên tâm trực ∆ABC nằm đâu? - Đường tròn qua - Không vẽ đường tròn B C nên tâm nằm qua điểm đâu? thẳng hàng Vì 12 - Nếu điểm A B, C thẳng đường trung ’ hàng có vẽ trực đường tròn qua d 2A, B, 4) Bài tập: d1 điểm đoạn thẳng AB, C không ? C BC, AC song song A B Cho ∆ABC vuông A, với trung tuyến AM, AB = 6cm, AC = 8cm → Gv nêu ý a) C/m: A, B, C - HS nhắc lại - Ở lớp ta biết thuộc đường tròn → Cả lớp nhận đường tròn ngoại tâm M tiếp tam giác? Thế xét b) Trên tia đối MA lấy 9’ tam giác nội tiếp đường điểm D, E, F cho tròn ? MD = 4cm, ME = 6cm, MF = - Bắt đầu từ ta hay 5cm Hãy xác định vị trí sử dụng thuật ngữ - Các nhóm điểm D, E, F em cần phải nhớ chẵn làm ?4 , với đường tròn (M) kỹ nhóm lẽ làm ?5 HĐ3: Tâm đối xứng, - Ta phải C/m: trục đối xứng OA’ = R = OA Cho HS laøm ?4 vaø ?5 theo - Sau phút cho đại diện hai nhóm nhóm sửa TRƯỜNG THCS CHỢ LẦU GV: NGUYỄN HỒ SƠN TỔ TOÁN -TIN ngày soạn: / / 2012 Gợi ý: Để C/m điểm A’ - HS nêu kết thuộc (O,R) ta phải C/m hệ luận Sgk thức nào? - Gv sửa minh hoạ nhóm trước lớp - Từ kết ?4 ?5 ta có nhận xét tính chất đối xứng đường tròn ? - HS làm tập Gv dùng bìa hình tròn, củng cố gấp bìa theo đường kính để HS thấy hai phần bìa trùng → đường kính trục đối xứng HĐ4: Củng cố luyện tập Treo bảng phụ viết sẵn tập: - Gv đàm thoại với HS để giải tập HĐ5: HDVN - Học thuộc đ/n, cách xác định đường tròn, nắm t/chất đối xứng khái niệm: đường tròn ngoại tiếp tam 3’ giác tam giác nội tiếp đường tròn - Làm tập: 1, 2, 3, trang 100 Sgk – Đọc thêm: “Có thể em chưa biết” trang 102 Sgk Rút kinh nghiệm cho năm học sau: Tiết: 21 §1: LUYỆN TẬP A) MỤC TIÊU: HS củng cố rèn luyện khái niệm: ○ Định nghóa đường tròn, cách chứng minh điểm nằm đường tròn, đường tròn ngoại tiếp tam giác tam giác nội tiếp đường tròn ○ Biết dựng đường tròn qua điểm cho trước Biết xác định vị trí điểm đường tròn cho trước D) CHUẨN BỊ CỦA GV & HS: 1) Giáo viên: - Thước thẳng, phấn màu, bảng phụ: ghi tập 3, hình vẽ tập tập 2) Học sinh: - Thước kẻ có chia khoảng, compa, ê ke E) CÁC HOẠT ĐỘNG: T G HOẠT ĐỘNG CỦA GV HĐ1: Kiểm tra cũ: HS1: - Phát biểu đ/n đường tròn 12 - Làm tập Sgk ’ trang 99 HS2: - Nêu cách xác định đường tròn HOẠT ĐÔÏNG CỦA HS GHI BẢNG Tiết 21: LUYỆN TẬP A - HS lên bảng trả 1) Bài 3: → Cả lớp theo a) dõi nhận xét B O C TRƯỜNG THCS CHỢ LẦU TỔ TỐN -TIN - Làm tập Sgk trang 100 HĐ2: Sửa tập Làm Sgk trang 100 a) - Gv vẽ ∆ABC vuông A, O trung điểm BC Để C/m O tâm đường tròn ngoại tiếp ∆ABC ta C/m điều gì? - Quay trở lại tập Để C/m điểm nằm đường tròn ta C/m nào? - Nếu sử dụng đ/lý vừa 17 học ta có C/m ’ không? Gv chốt: Ta vận dụng định lý để C/m điểm nằm đường tròn cho trường hợp tam giác vuông có chung cạnh huyền b) Gv vẽ hình cho câu b yêu cầu HS C/m - Nếu đường tròn (O) ta lấy thêm điểm M N theo đ/lý ta suy điều gì? Gv chốt: đ/lý thường sử dụng để giải toán → em cần ghi nhớ thật kỹ Làm trang 100 Sgk: - Gv treo hình vẽ Sgk - Để xác định vị trí điểm (O,2) ta làm nào? GV: NGUYỄN HỒ SƠN ngày soạn: / / 2012 Xét ∆ABC vuông A - HS đọc đề Gọi O trung điểm BC toán ⇒ OA = OB = OC Vậy O tâm đường - Ta phải C/m: tròn qua A, B, C OA = OB = OC Vậy tâm đường tròn - HS trình bày C/m ngoại tiếp tam giác - C/m điểm vuông trung điểm cách điểm cạnhAhuyền tâm đường b) tròn - Được → HS C/m B C O ∆ABC nội tiếp (O) - HS trình bày C/m đường kính BC ⇒ OA = OB = OC - Ta suy ra: Nên ⇒ OA trung ∆BMC, ∆BNC tuyến tam giác vuông OA = ½ BC · · hay BMC BNC Vậy ∆ABC vuông A 2) Bài 4: góc y vuông C -1 -2 O 2 x - Ta so sánh -1 khoảng cách từ B điểm tới O -2 Ta có: OA2 = 12 + 12 = với - HS1: Xác định vị ⇒ OA = < trí điểm A - HS2: Xác định vị Vậy A nằm bên trí điểm B (O,2) - HS3: Xác định vị */ OB2 = 12 + 22 = - Gv yêu cầu HS lên bảng trí điểm C ⇒ OB = > Vậy B nằm bên (O,2) */ OC2 = ( )2 + ( )2 14 =4 ’ - HS thảo luận HĐ3: Luyện tập ⇒ OC = theo nhóm Làm trang 101 Sgk: Vậy C nằm (O,2) trả lời - Gv treo bảng phụ ghi đề 3) Bài 7: (Bảng phụ) tập - Nối (1) → (4) - Yêu cầu HS nhắc lại - Nối (2) → (6) khái niệm đường tròn, hình - Nối (3) → ( )y - Tâm O tròn đường tròn qua - Cho HS hoạt động theo 4) Bài 8: O điểm B,C nằm nhóm đường trung trực BC Làm trang 101 Sgk: A C x B - Để dựng đường tròn - Tâm O nằm tia Ay A TRƯỜNG THCS CHỢ LẦU GV: NGUYỄN HỒ SƠN TỔ TOÁN -TIN ngày soạn: / / 2012 ta cần xác định vị trí tâm - Tâm O giao - Đường tròn qua điểm B,C điểm Ay với - Dựng O giao điểm có tâm nằm đâu? trung trực BC Ay với trung trực BC - Dựng (O,OB) đường - Theo giả thiết tâm O tròn cần dựng nằm đường nào? - Vậy xác định vị trí điểm O? HĐ4: HDVN - Ôn lại định nghóa, nắm cách xác định đường tròn, học thuộc định lý tập 2’ - Xem lại tập giải - Làm tập: 5, 6, trang 100, 101 Sgk Bài tập: 9, 10, 12 trang 129, 130 SBT Rút kinh nghiệm cho năm học sau: Tiết: 22 §2: ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRÒN A) MỤC TIÊU: Qua học sinh cần : o Hiểu đường kính dây lớn dây đường tròn, nắm hai định lý đường kính vuông góc với dây đường kính qua trung điểm dây không qua tâm o Biết vận dụng định lý để chứng minh đường kính qua trung điểm dây, đường kính vuông góc với dây F) CHUẨN BỊ CỦA GV & HS: 1) Giáo viên: - Thước thẳng, compa, phấn màu, bảng phụ: ghi sẵn định lý trang 103 Sgk 2) Học sinh: - Thước kẻ có chia khoảng, compa, ê ke G) CÁC HOẠT ĐỘNG: T G HOẠT ĐỘNG CỦA GV HOẠT ĐÔÏNG CỦA HS HĐ1: Kiểm tra cũ: Hãy nêu đ/lý - HS lên bảng trả tiết trước GHI BẢNG Tiết 22 : DƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRƯỜNG THCS CHỢ LẦU GV: NGUYỄN HỒ SƠN TỔ TOÁN -TIN ngày soạn: / / 2012 - Làm tập: Cho ◊ABCD → Cả lớp theo TRÒN 10 có: dõi nhận I) So sánh độ dài ’ B µ = D µ = 900 C/m: bốn điểm xét đường kính dây : A, B, C, D thuộc 1) Bài toán: gọi A AB đường tròn O dây (O,R) C/m: (Gv vẽ tứ giác ABCD lên AB ≤ 2R bảng) Giải: Qua tập Gv chốt lại */ Dây AB đường kính: cách sử dụng đ/lý để C/m AB = 2R (hiển nhiên) điểm thuộc đường */ Dây AB không tròn - Dây AB đường kính: HĐ2: So sánh dây đường kính Xét ∆AOB ta có: đường kính B không AB < AO + OBA Gv nêu toán trang đường kính R AB < R + R = 2R 102 Sgk R daây AB = 2R ≤ Vậy AB 2R O - Vì AB là1 dây 10 nên AB xảy - Trong ∆AOB có: O ’ trường hợp AB < AO + OB = 2) Định lý 1: (trang 103 Sgk) - Khi dây AB đường kính 2R A em so sánh AB - HS phát biểu II) Quan hệ vuông góc với 2R? nội dung đường kính - Khi dây AB không định lý dây: 1) Định lý 2: đường kính AB có (trang 103 Sgk) C/m: quan hệ với 2R - HS phát biểu */ Dây CD đường kính: lại đ/lý Gv chốt: Hiển nhiên AB qua trường hợp ta thấy trung điểm O CD dây AB lớn */ Dây CD không 2R Vậy ta phát A - Ta có AC đường kính: biểu kết toán đường kính, BD Gọi I giao thành đ/lý ntn? dây đường điểm AB Gv khẳng định: tròn ⇒ AC ≥ BD CD O nội dung đ/lý ∆OCD có: trang 103 Sgk, giải OC = OD (bk)C D I toán chúng - HS vẽ hình vào nên tam ta chứng minh đ/lý B giác cân Lưu ý: Đường kính mà OI đường cao dây đường - Dự đoán: IC = ID ⇒ OI đường tròn - HS thảo luận trung tuyến 13 Củng cố: quay lại theo nhóm bàn đó: IC = ID ’ kiểm tra nối A với C cạnh Vậy AB qua trung điểm I nêu thêm câu hỏi: Hãy → đại diện dây CD so sánh độ dài AC BD nhóm C/m → */ Bài tập 18 trang 130 HĐ3: Định lý lớp nhận xét Sgk: Gv vẽ đường tròn (O), B dây CD, vẽ đoạn thẳng OI vuông góc với CD - Thì AB qua điểm I → Yêu cầu: Các em trung điểm A O có dự đoán đoạn dây CD I thẳng IC ID - Em C/m điều - HS phát biểu C dự đoán nội dung định lý Ta có: OI = IA = ½ OA = 3/2 (cm) B B TRƯỜNG THCS CHỢ LẦU TỔ TOÁN -TIN GV: NGUYỄN HỒ SƠN ngày soạn: / / 2012 - CD đường ∆OIB vuông I nên: - Khi có OI vuông góc với kính CD IB2 = OB2 – OI2 = dây CD ta chứng minh không đường 27 = OI qua trung điểm kính 4 dây CD Vậy + IC = ID (bk) 3 ⇒ IB = (cm) đường kính AB vuông góc - HS lên bảng với dây CD (Gv kẻ đường trình bày chứng Mặt khác ta có: OA ⊥ BC kính AB) ta có minh → Cả lớp điều gì? chứng minh vào I BC → Đó nội dung ⇒ IB = IC = (đl) định lý 10 Ta chứng minh định Vậy: BC = 2.IB = 3 ’ lý (cm) - Gv nêu câu hỏi: CD 2) Định lý 3: ( trang 103 C dây CD xảy - Ta tính đoạn IB Sgk ) IC Vì IB = IC trường hợp nào? + Khi CD đường kính = ½ BC A B - Cả lớp giải thích IC = ID O I + Trường hợp CD không tính trả lời đường kính ta chứng minh D tập Củng cố: Bài 18 trang - Nếu HS trả lời Cho (O), AB đường là”Sai” yêu 130 SBT: kính, Cho đt (O), bán kính OA = cầu minh hoạ CD dây, CI = ID (I cm Dây BC vuông góc với hình vẽ O) OA trung điểm I OA - Nếu HS trả lời ?2 ⇒ AB ⊥ CD “Đúng” gợi Tính độ dài BC O ý HS trả lời ?1 - Để tính độ dài đoạn BC 13 trước hết em phải tính SGK A B M đoạn ? sao? Ta có: AM = MB (M ≠ O) - Hãy tính IB = ? - Bổ sung: “dây ⇒ OM ⊥ AB (đl) - Vậy BC = ? không qua Theo định lý Pytago ta HĐ4: Định lý tâm” Gv đvđ: Ta biết - HS phát biểu có: AM2 = OA2 - OM2 đường kính ⊥ với dây = 132 – 52 = 144 qua trung điểm dây ⇒ AM = 12 ⇒ AB = 24 Vậy ngược lại: - HS đọc nội dung (cm) đường tròn đường kính qua trung điểm tập vẽ dây liệu hình vào - HS thảo luận có vuông góc với dây theo nhóm không? Nếu khẳng định có theo em điều trả lời hay sai? - Vậy ta phải bổ sung thêm điều kiện để mệnh đề trở thành định lý → Hãy phát biểu lại cho hoàn chỉnh nội dung định lý - Gv vẽ hình, tóm tắt định lý → yêu cầu HS nhà chứng minh Củng cố: Yêu cầu HS TRƯỜNG THCS CHỢ LẦU TỔ TỐN -TIN làm ?2 - Hãy tính độ dài AB, biết: GV: NGUYỄN HỒ SƠN ngày soạn: / / 2012 OA = 13cm, AM = MB, OM = 5cm HÑ5: HDVN - Học thuộc định lý liên hệ độ dài đường kính dây Định lý quan hệ vuông góc đường kính 2’ dây - Xem lại tập giải - Làm tập: 10, 11 trang 104 Sgk tập: 19, 21* trang 130, 131 SBT Rút kinh nghiệm cho năm học sau: Tiết: 23 §2: LUYỆN TẬP A) MỤC TIÊU: Giúp học sinh củng cố khắc sâu: ○ Các định lý liên hệ đường kính dây đường tròn ○ Việc vận dụng định lý để giải tập dạng so sánh, tính toán chứng minh ○ Rèn luyện tính xác suy luận chứng minh H) CHUẨN BỊ CỦA GV & HS: 1) Giáo viên: - Thước thẳng, compa, phấn màu, bảng phụ: 2) Học sinh: - Thước kẻ có chia khoảng, compa, ê ke I) CÁC HOẠT ĐỘNG: T G HOẠT ĐỘNG CỦA GV HĐ1: Kiểm tra cũ Phát biểu định lý quan hệ đường kính 8’ với dây cung - Chứng minh định lý (Gv vẽ hình ghi sẵn GT & KL) Gv chốt lại đ/lý học HĐ2: Sửa tập Sửa tập 10 trang 104 Sgk - Gv vẽ hình lên bảng - Để chứng minh điểm: B, 18 E, D, C thuộc ’ đường tròn ta phải chứng minh có điều ? HOẠT ĐÔÏNG CỦA HS GHI BẢNG Tiết 23 : LUYỆN - HS lên bảng TẬP trả 1) Bài 10: A → Cả lớp theo dõi nhận xét D E - HS đọc đề toán - Ta phải C/m: MB = ME = MC = MC -1 HS leân bảng C/m → Cả lớp nhận xét - Gv vẽ đường tròn qua điểm: B, E, D, C yêu cầu - HS trả lời DE HS vẽ vào < BC giải - Hãy so sánh DE BC ? thích B M C a) Gọi M trung điểm BC Ta có: EM = ½ BC DM = ½ BC ⇒ ME = MB = MC = MD B, E, D, C thuộc đường tròn đường kính BC D K b) Trong đường M tròn C DE H dây BC đường kính nên: B O BC ⇒ A DE < 2) Baøi 11: TRƯỜNG THCS CHỢ LẦU TỔ TỐN -TIN - Có xảy trường hợp DE = BC không ? Nếu E ≡ B nghóa ∆ABC vuông D vị trí nào? Sửa tập 11 trang 104 Sgk - Gv hướng dẫn HS vẽ hình - Bài toán gợi ý phải làm gì? - Ta suy đường kẻ OM ⊥ CD ? - Vậy cần biết thêm điều ta suy được: CH = DK ? - Em C/m MH = MK ? - Gv gọi HS nhắc lại C/m ghi bảng Khi giải toán có liên 17 quan đến dây cung ’ đường tròn ta kẻ thêm đường phụ dựa vào đ/lý diễn tả quan hệ chúng HĐ3: Luyện tập Làm tập 19 trang 130 Sbt GV: NGUYỄN HỒ SƠN ngày soạn: / / 2012 - HS suy nghó - D nằm AC nên DE ≠ BC - HS đọc đề toán Kẻ OM ⊥ CD - Kẻ OM ⊥ CD Trong hình thang AHKB ta - Suy ra: MC = MD coù: AO = OB OM // AH // - Cần biết: MH = BK nên: MH = MK MK Vì: OM ⊥ CD - HS trả lời nên: MC = MD → Cả lớp nhận ⇒ CH = DK xét 3) Bài 19 trang 130 Sbt: a) Xét ◊OBDC ta coù: OB = OC = DB = DC = R - HS đọc đề ⇒ ◊OBDC hình thoi A toán phân tích GT & KL O B - HS trình bày - Gv hướng dẫn HS vẽ hình → Cả lớp nhận xét a) Gọi HS lên bảng trình bày câu a b) Gv cho HS hoạt động nhóm c) Gv cho HS hoạt động nhóm - Gv cho HS trình bày theo cách khác H C b) Xét ∆OBD D có: OB = OD = DB = R ⇒ ∆OBD tam giác · - HS thảo luận ⇒ OBD = 60o theo nhóm → mà BC đường chéo đại diện nhóm hình thoi OBDC nên trình bày BC đường phân giác → lớp nhận góc ABD xét · · ⇒ CBD = CBO = 30o Trong ∆ABD ta có: BO đường trung tuyến và: BO = ½ AD ⇒ ∆ABD vuông B · ⇒ OBA = 30o - HS thảo luận c) Trong ∆ABC ta coù: theo nhoùm → · · · ABC = OBA + OBC = 60o đại diện nhóm C/m tương tự ta trình bày có: → lớp nhận · xét ACB = 60o nên suy ra: ∆ABC TRƯỜNG THCS CHỢ LẦU GV: NGUYỄN HỒ SƠN TỔ TOÁN -TIN ngày soạn: / / 2012 10 HĐ5: HDVN - Ôn lại định lý quan hệ đường kính dây, định lý đường tròn ngoại tiếp tam giác vuông 2’ - Xem lại tập giải - Làm tập: 20, 22, 23 trang 131 Sbt Rút kinh nghiệm cho năm học sau: Tiết: 24 §2: LIÊN HỆ GIỮA DÂY VÀ TÂM KHOẢNG CÁCH TỪ DÂY ĐẾN A) MỤC TIÊU: Qua học sinh cần : ○ Hiểu định lý liên hệ dây khoảng cách từ dây đến tâm đường tròn ○ Biết vận dụng định lý để so sánh độ dài hai dây, so sánh khoảng cách từ dây đến tâm ○ Rèn luyện tính xác suy luận chứng minh J) CHUẨN BỊ CỦA GV & HS: 1) Giáo viên: - Thước thẳng, compa, phấn màu, bảng phụ ghi ?3 ï 2) Học sinh: - Thước kẻ có chia khoảng, compa, ê ke K) CÁC HOẠT ĐỘNG: T G HOẠT ĐỘNG CỦA GV HOẠT ĐÔÏNG CỦA HS HĐ1: Kiểm tra cũ - Phát biểu đ/lý quan - HS lên bảng hệ đường kính với trả 3’ dây cung → Cả lớp theo - Gv: Bài học hôm dõi nhận sử dụng định lý để tìm xét hiểu mối liên hệ dây khoảng cách từ dây đến tâm HĐ2: Bài toán - HS đọc đề Gv nêu toán vẽ toán hình - HS trình bày 12 - Gv gọi HS C/m C/m ’ → Cả lớp nhận - Trường hợp có dây xét đường kính, chẳng hạn AB đường kính kết toán có không? Gợi ý: Khi AB đường - H trùng O ta kính em có nhận xét có: vị trí H độ dài OH = , HB = R đoạn OH HB? nên suy ra: GHI BẢNG Tiết 24 : LIÊN HỆ GIỮA DÂY VÀ KHOẢNG CÁCH TỪ DÂY ĐẾN TÂM I) Bài toaùn: (trang 104 Sgk) C K O A H D B Trong tam giác vuông OHB OKD ta coù: OH2 + HB2 = OB2 = R2 OK2 + KD2 = OD2 = R2 ⇒ OH2 + HB2 = OK2 + KD2 */ Chú ý: Kết luận toán dây TRƯỜNG THCS CHỢ LẦU TỔ TOÁN -TIN GV: NGUYỄN HỒ SƠN ngày soạn: / / 2012 23 tuyến nên: · HAC = 30o Chọn (D) 3 cm2 AH = 3.OH = (cm) ⇒ HC = AH.tg 30° = = 3 (cm) ⇒ SABC = BC.AH = HC.AH = 3 (cm2) nên chọn câu trả lời (D) HĐ3: HDVN - Học thuộc - Xem lại tập giải - Làm tập: 28, 29 trang 116 Sgk; tập: 54, 55, 56 trang 135 SBT 2’ - Hướng dẫn 29: Đường tròn (O) phải thoả mãn điều kiện ? Vậy Tâm O phải nằm đường ? Rút kinh nghiệm cho năm học sau: Tiết 30 ÔN TẬP CHƯƠNG II(phần học) I MỤC TIÊU HS ôn tập kiến thức học tính chất đối xứng đường tròn, liên hệ dây khoảng cách từ tâm đến dây, vị trí tương đối đường thẳng đường tròn, Vận dụng kiến thức học vào tập tính toán chứng minh Rèn luyện cách phân tích tìm lới giải toán trình bày lời giải, làm quen với dạng tập tìm vị trí điểm để đoạn thẳng có độ dài lớn II CHUẨN BỊ GV: - Bảng phụ, ghi câu hỏi tập, hệ thống kiến thức - Thước thẳng, compa, phấn màu HS: - Ôn tập theo câu hỏi ôn tập chương II làm tập - Thước thẳng, compa, eâke, SGK TRƯỜNG THCS CHỢ LẦU TỔ TOÁN -TIN III TIẾN TRÌNH DẠY – HỌC A.Ổn định lớp B.Kiểm Tra Bài Cũ C.Nội Dung Bài Mới GV: NGUYỄN HỒ SƠN ngày soạn: / / 2012 24 Hoạt động thầy Hoạt động trò Nội dung Hoạt động : Ôn tập lý thuyết kết hợp kiểm tra ( 18 phút) G: Nối ô cột H1: Lên bảng ghép A Lý thuyết trái với ô cột ô phải để khẳng định đúng: 1)Đường tròn ngoại tiếp tam giác 2)Đường tròn nội tiếp tam giác 3)Tâm đối xứng đường tròn 4)Trục đối xứng đường tròn 5) Tâm đường tròn nội tiếp tam giác 6) Tâm đường tròn ngoại tiếp tam giác a) giao điểm đường phân giác tam giác b) đường tròn qua ba đỉnh tam giác c) giao điểmcác đường trung trực cạnh tam giác d) tâm đường tròn 1-… e) đường kính đường tròn f) đường tròn tiếp xúc với ba cạnh tam giác 5-… 2-… 3-… 4-… 6-… G: Điền vào chỗ (…) để định lí H2: lên điền vào chỗ (…) 1) Trong dây đường tròn, dây lớn … 2) đường tròn: a) Đường kính vuông góc vớ dây qua … b) Đường kính qua trung điểm dây … … c) Hai dây … Hai dây … d) Dây lớn …tâm dây … tâm … G: Nhận xét cho điểm HS1, HS2 G: nêu vị trí tương đối đường thẳng đường tròn? đường kính - Điền hệ thức tương ứng trung điểm dây không qua tâm vuông góc với dây cách tâm cách tâm gần gần ; lớn H3: Trả lời - Đường thẳng không cắt đường tròn - Đường thẳng tiếp xúc với đường tròn - Đường thẳng cắt đường tròn H3: Điền hệ thức : d> R ; d = R ; d < R H4: Điền vào hệ thức bảng PHẦN HƯỚNG DẪN CỦA PHẦN NỘI DUNG THẦY GIÁO CẦN GHI NHỚ VÀ HOẠT ĐỘNG HỌC SINH Hoạt động :Rèn luyện vận dụng kiến thức học để giải tập TRƯỜNG THCS CHỢ LẦU TỔ TOÁN -TIN GV: NGUYỄN HỒ SƠN ngày soạn: / / 2012 25 HS: Đọc vẽ hình tập Bài 30 : ; MOB 30/116 a/ MOA GV : Hướng dẫn HS chứng minh hai góc kề bù câu a Bằng cách nêu OC đường câu hỏi cho HS trả lời phân giác góc - Nêu tính chất đường phân AOM , OD giác hai góc kề bù ? đường phân giác - OD ,OC đường phân giác góc MOB Do OC⊥OD góc ? Hai góc Vậy COD = 900 quan hệ với ntn? b/ CD = CM + MD HS : Cho biết OD OC có quan mà AC = CM ( Tính chất hai hệ ntn với ? Giải thích tiếp tuyến cắt nhau) HS : Một em lên trình bày lời BD = DM( Tính chất hai tiếp giải tuyến cắt nhau) GV : Hỏi em có cách giải Suy CD = AC + BD khác Đứng chỗ trình bày c/ Ta có AC BD = MC MD lời giải Mà tam giác COD vuông O GV : Các em nghiên cứu câu b có OM đường cao nên - CD tổng đoạn CM.MD = AC BD = OM2 = R2 Do thẳng ? Giải thích BD AC = R2 không đổi - Trong tổng ta Bài 32: thay đoạn CM, MD Câu (D) đoạn thẳng ? Vì ? HS : Trình bày theo gợi ý GV : Cho em nghiên cứu câu c HS : Một em lên trình bày lời giải GV : Cho em nhận xét hỏi em có cách trình bày khác Bài toán thay đổi phần kết luận thé ? Về nhà kết luận cho toán với GT đề GV : Cho em làm tập theo nhóm Đại diện nhóm giải thích kết Hoạt động : Củng cố - Trong tập sử dụng kiến thức học ? Nhắc lại Hoạt động : Bài tập nhà TRƯỜNG THCS CHỢ LẦU TỔ TỐN -TIN D Dặn Dò • Ôn tập lí thuyết chương II • Làm : 42, 43 / 128 SGK • Tiết sau ôn tập học kì Tiết 31 GV: NGUYỄN HỒ SƠN ngày soạn: / / 2012 26 ÔN TẬP HỌC KÌ I I MỤC TIÊU Ôn tập cho HS công thức định nghóa ỉt số lượng giác một góc nhọn số tính chất tỉ số lượng giác Ôn tập cho HS hệ thức lượng tam giác vuông kó tính đoạn thẳng, góc tam giác Ôn tập, hệ thống hóa kiến thức học chương II II CHUẨN BỊ GV: - Bảng phụ, đèn chiếu, phim ghi câu hỏi tập, hệ thống kiến thức - Thước thẳng, compa, phấn màu HS: - Ôn tập lí thuyết theo bảng tóm tắt kiến thức chương I chương II làm tập - Thước thẳng, compa, êke, SGK III TIẾN TRÌNH DẠY – HỌC A.Ổn định lớp B.Kiểm Tra Bài Cũ C.Nội Dung Bài Mới Hoạt động Hoạt động Nội dung thầy trò Hoạt động : Ôn tập tỉ số lượng giác (10 phút) G: Hãy nêu công thức định nghóa tỉ số Định nghóa tỉ lượng giác góc nhọn α số lượng giác góc nhọn Bài 1: Khoanh tròn chữ đướng trước kết µ = 900 , B µ = 300 kẻ đường cao AH Cho ∆ ABC có A Cạnh huyền cạnh kề cosα = cạnh huyền cạnh đối tanα = cạnh cạnh kề cotα = cạnh H: Trả lời miệng Bài 1: AH AB b) tan30 = HC c) cosC = AC a) sinB = TRƯỜNG THCS CHỢ LẦU TỔ TOÁN -TIN GV: NGUYỄN HỒ SƠN ngày soạn: / / 2012 AC d) cotBAH = AB A B C H a) sinB baèng AC AH AB a b c d AB AB BC b) tg300 baèng 1 a b c d.1 c) CosC baèng AC HC AC a b c d AB AC HC d) cotgBAH baèng AC BH AC a b c d AB AH AB Bài 2: Trong hệ thức sau, hệ thức ? hệ thức sai ? a) sinα2 = 1- cos α2 cosα b) tgα = sinα c) cosα = sin(1800 − α ) d) cotgα = tgα e) cotgα = tg(900 − α ) Hoạt động : Ôn tập hệ thức lượng 10 phút) G: Cho tam giác ABC H: Tự viết vào đường cao AH 1) b =ab′ ; c =ac′ A c b h b' c' B C H Bài 2: a) Đúng b) Sai c) Sai d) Đúng e) Đúng tam giác vuông ( Các hệ thức cạnh đường cao tam giác vuông 2) h =b′c′ 3) ha=bc 1 4) = + h b c A c b h b' c' B a C H a Hãy viết hệ thức cạnh đường cao tam giác Bài 3: 27 1) b =ab′ ; Bài 3: a) BC = BH + HC = + = 13 AB2 = BC.BH = 13.4 ⇒ AB = 13 (cm) AC2 = BC.HC = 13.9 c =ac′ 2) h =b′c′ 3) ha=bc 1 4) = + h b c Bài 3: TRƯỜNG THCS CHỢ LẦU TỔ TỐN -TIN A E D B C H a) Tính độ dài AB, AC b) Tính độ dài DE, số µ C µ đo B, GV: NGUYỄN HỒ SƠN ngày soạn: / / 2012 ⇒ AC = 13 (cm) b) AH2 = BH.HC = 4.9 = 36cm ⇒ AH = 6cm Xét tứ giác ADHE µ =E µ = 900 có µA = D ⇒ ADHE hình chữ nhật ⇒ DE = AH = 6cm Trong tam giác vuông ABC AC 13 sinB = = ≈ 0,8320 BC 13 µ ≈ 56019′ ⇒ C µ ≈ 330 41′ ⇒B A E D B H C Hoaït động : Ôn tập lí thuyết chương II (8 phút) G: Xem lại phân ôn tập chương II ôn G: H: Trả lời - Định nghóa đường - Đường tròn (O, R) tròn với R >0 hình gồm điểm cách điểm O khoảng - Nêu cách xác định R đường tròn - Đường tròn xác định biết : + Tâm bánh kính + Ba điểm không G: Thế tiếp thẳng hàng tuyến đường tròn H: Trả lời ? G: Tiếp tuyến đường tròn có tính chất ? H: Vẽ hình ghi GT, KL G: Phát biểu định tinh chất hai tiếp cắt ? B A 2 O H: Traû lời C G: dấu hiệu nhận biết tiếp tuyến ? G: Vị trí tương đối hai đường tròn ? 28 TRƯỜNG THCS CHỢ LẦU TỔ TOÁN -TIN GV: NGUYỄN HỒ SƠN ngày soạn: / / 2012 Hoạt động : Luyện tập (17 phút) G: Hướng dẫn HS vẽ H: Đọc đề Bài 4: hình vẽ hình theo hướng dẫn giáo viên · a) OC phân giác a) Chứng minh COD = 90 · AOM -Ghi lại chứng minh HS trình bày OD phân giác · -Bổ sung cho hoàn E MOB chỉnh · · Maø AOM + MOB =1800 ⇒ OC ⊥ OD hay b) Chứng minh : · COD = 900 CD = AC + BD c) Chứng minh : AC.BD không đổi -AC.BD tích ? -Tại CM.MD không đổi ? b) CM = CA, MD = DB (t/c tieáp tuyeán) ⇒ CM + MD = CA + BD ⇒ CD = AC + BD c) Ta coù AC.BD = CM.MD tam giác vuông COD cóOM ⊥ CD ⇒ CM.MD = OM2 = R2 ⇒ AC.BD = R2 (không đổi) D Dặn Dò Ôn tập kó định nghóa, định lí, hệ thức chương I, II Làm lại cácbài tập, chuần bi cho thi học kì I F 29 TRƯỜNG THCS CHỢ LẦU TỔ TỐN -TIN GV: NGUYỄN HỒ SƠN ngày soạn: / / 2012 Tiết 32 30 TRẢ BÀI KIỂM TRA HỌC KÌ I I MỤC TIÊU: H/s thấy ưu, khuyết điểm thông qua việc trả kiểm tra học kì, từ có hướng học tập tốt học kì II II CHUẨN BỊ: Bài kiểm tra học kì, chất lượng, ưu, khuyết điểm làm III TIẾN HÀNH: 1.Ổn định lớp: Trả bài: Thống kê chất lượng: 1.Điểm kiểm tra học kì: Lớp SS 92 94 37 34 2.Điểm trung bình môn: Lớp SS 37 34 Điểm 35 32 Dưới 3,5 0 Điểm 11 12 Trên 30 30 Điểm 0 Trên 6,5 14 16 Trên 8 Ưu điểm: -Có kỉ chứng minh hình học -Đa số điểm trung bình Khuyết điểm: -Bài tập chứng minh tiếp tuyến: dùng kết luận (phần chưa biết) để chứng minh -Bài tập trắc nghiệm: Không cẩn thận làm bài, so sánh cosα với cotgα Cần tích cực học tập nửa học kì II, Tăng cường làm tập rèn luyện kỉ chứng minh Sửa thi: Học sinh sửa thi vào (như phần đáp án) TRƯỜNG THCS CHỢ LẦU TỔ TỐN -TIN Tiết: 33 GV: NGUYỄN HỒ SƠN ngày soạn: / / 2012 31 §7: VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN V) MỤC TIÊU: Qua học sinh cần: ○ Nắm vị trí tương đối hai đường tròn, tính chất hai đường tròn tiếp xúc nhau, hai đường tròn cắt ○ Biết vận dụng tính chất hai đường tròn cắt nhau,tiếp xúc vào tập tính chứng minh ○ Rèn luyện tính xác phát biểu vẽ hình tính toán W) CHUẨN BỊ CỦA GV & HS: 1) Giáo viên: - Thước thẳng, phấn màu, bảng phụ: hình vẽ sẵn vị trí tương đối đường tròn 2) Học sinh: - Thước kẻ có chia khoảng, compa, ê ke X) CÁC HOẠT ĐỘNG: T HOẠT ĐỘNG CỦA GV G 15 HĐ1: Kiểm tra 15 phút ’ HĐ2: Ba vị trí tương đối hai đường tròn - Giữa đường thẳng với đường tròn có trường hợp số điểm chung, đường tròn xảy trường hợp số điểm chung? Ta tìm hiểu qua ?1 trang 117 Sgk : - Vì hai đường tròn phân biệt có điểm chung? HOẠT ĐÔÏNG CỦA HS GHI BẢNG Tiết 33: VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN - HS lắng nghe I) Ba vị trí tương đối suy nghó hai đường tròn: 1) Hai đường tròn cắt nhau: - HS đọc ?1 Sgk - Số điểm chung 2, điểm chung gọi hai - Vì qua điểm giao điểm không thẳng hàng ta vẽ - Đoạn thẳng nối hai giao đường điểm gọi dây chung tròn Do A hai đường tròn 10 có từ điểm O O' ’ chung trở lên chúng trùng nhau, B đường tròn Cho 2) Hai đường tròn tiếp xúc nhau: nên hai đường tròn phân biệt - Số điểm chung 1, - Vì đường tròn phân có điểm chung gọi tiếp điểm biệt có quá hai điểm điểm chung nên chúng có chung thể xảy trường - Có trường hợp hợp số điểm chung? số điểm O O' A chung là: Không - Gv vẽ đường tròn (O) có điểm chung, cố định, yêu cầu HS cầm có điểm đường tròn (O’) thép chung, có hai sơn trắng minh hoạ cho điểm chung A O O' trường hợp số điểm chung đường tròn - Gv treo hình vẽ - HS lên bảng 1) Hai đường tròn sẵn trường hợp minh hoạ TRƯỜNG THCS CHỢ LẦU TỔ TỐN -TIN số điểm chung giới thiệu vị trí với khái niệm giao điểm, tiếp điểm, dây chung HĐ3: Tính chất đường nối tâm - Gv kéo dài đầu đoạn thẳng OO’ hình giới thiệu: 5’ đường nối tâm, đoạn nối tâm - Ta biết đường kính trục đối xứng đường tròn, đường nối tâm OO’ trục đối xứng hai đường tròn nên trục đối xứng hình gồm hai đường tròn Gv yêu cầu HS làm ?2 - Từ kết ?2 Gv khẳng định quan hệ giao điểm, tiếp điểm với đường nối tâm giới thiệu đ/lý trang 119 Sgk HĐ4: Củng cố & luyện 13 tập ’ Nêu vị trí tương đối hai đường tròn số điểm chung tương ứng - Phát biểu định t/c đường nối tâm Gv yêu cầu HS làm ?3 (Gv treo bảng phụ) a) Hãy xác định vị tương đối hai đường tròn (O) (O’)? Và giải thích sao? b) Gv: Nối A,B cắt OO’ I - A có quan hệ với B ? - Căn vào mối quan hệ có chứng minh BC // OO’ không ? - Làm tương tự ta chứng minh điều ? - Hãy C/m: C, B, D thẳng hàng GV: NGUYỄN HỒ SƠN ngày soạn: / / 2012 32 → Cả lớp nhận không giao nhau: - Số điểm chung là: xét O O' O O' - HS quan sát lắng nghe II) Tính chất đường nối tâm: - Đường thẳng OO’ gọi đường nối tâm trục đối xứng - HS trả lời ?2 hình gồm đường tròn - HS đọc định lý - Đoạn thẳng OO’gọi trang 119 Sgk đoạn nối tâm - HS trả lời */ Định lý: (Trang 119 Sgk) ?3 A - HS đọc ?3 Sgk - Hai đường tròn (O) (O’) cắt A B O C I B O' D a) Hai đường tròn (O) (O’) cắt A B b) C/m: BC // OO’: - A đối xứng với Gọi I giao điểm AB OO’ B qua OO’ Xét ∆ABC ta có: - Được → HS AO = OC (bk) đứng chỗ AI = IB (t/c đường chứng minh nối tâm) - Chứng minh BD// Nên OI đường trung OO’ bình ∆ABC ⇒ BC // OI hay BC // OO’ - HS traû lời chứng minh (1) * Chứng minh tương tự ta có: BD // OO’ (2) Từ (1) (2) ta suy ra: C, B, D thẳng hàng 2’ HĐ4: HDVN - Học thuộc - Xem lại tập giải - Làm tập: 33, 34 trang 119 Sgk, tập: 64, 66, 67 trang 137, 138 SBT TRƯỜNG THCS CHỢ LẦU GV: NGUYỄN HỒ SƠN TỔ TOÁN -TIN ngày soạn: / / 2012 · · - Hướng dẫn 33: (Bảng phụ) C/m: AOC ⇒ OC // O’D = AO'D 33 Rút kinh nghiệm cho năm học sau: Tiết: 34 §8: VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN (tiếp) Y) MỤC TIÊU: Giúp học sinh: ○ Nắm hệ thức đoạn nối tâm bán kính hai đường tròn ứng với vị trí tương đối hai đường tròn Hiểu khái niệm tiếp tuyến hai đường tròn ○ Biết vẽ hai đường tròn tiếp xúc ngoài, tíếp xúc trong, biết vẽ tiếp tuyến chung hai đường tròn ○ Biết xác định vị trí tương hai đường tròn dựa vào hệ thức đoạn nối tâm bán kính Z) CHUẨN BỊ CỦA GV & HS: 1) Giáo viên: - Thước thẳng, phấn màu, bảng phụ: bảng tóm tắt , hình vẽ tiếp tuyến chung 2) Học sinh: - Thước kẻ có chia khoảng, compa, ê ke AA) CÁC HOẠT ĐỘNG: T G HOẠT ĐỘNG CỦA GV HĐ1: Kiểm tra cũ Chữa tập 34 trang 119 8’ Sgk (Gv đưa hình vẽ sẵn hai trường hợp lên bảng phụ) HS1: Trường hợp I nằm O O’ HS2: Trường hợp O’ nằm O I HĐ2: Hệ thức đoạn nối tâm bán kính Nhắc lại vị trí tương 20 đối hai đường tròn ’ mà ta biết tiết trước - Gv thông báo: Trong mục ta xét hai đường tròn (O , R) (O’, r) R ≥ r’ - Ngoài yếu tố R, r có yếu tố có liên quan trực tiếp đến vị trí tương đối đường tròn ? → đặt OO’ = d 1) Có nhận xét quan hệ d, R, r ? Gợi ý: - Nhận biết d, R, r hình - d, R, r tạo thành HOẠT ĐÔÏNG CỦA HS - HS lên bảng trả → Cả lớp theo dõi nhận xét - HS nhắc lại vị trí tương đối đường tròn GHI BẢNG Tiết 34: VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN (tiếp) I) Hệ thức đoạn nối tâm bán kính : Ta xét hai đường tròn (O ; R) (O’; r) R ≥ r , đặt OO’ = d 1) Hai đường tròn cắt nhau: A R O - Khoảng cách hai tâm OO’ r O' d B R–rR+r */ Đặc biệt: đường - Ta có: tròn đồng taâm OO’ = OA - O’B AB = R – r – AB d=0 - Trong trường hợp đựng ⇒ d < R - r O ≡ O' quan hệ d, R, r - Ta có: OO’= nào? ⇒ d=0 4) Bảng tóm tắt: (Trang 121 Sgk) 3) Gv giới thiệu thuật ngữ đựng - Trong trường hợp em có nhận xét quan hệ d, R, r ? - Trong trường hợp đựng O ≡ O’ đoạn nối tâm OO’ ? → trường hợp ta nói HS đọc to bảng đường tròn đồng tâm tóm tắt Sgk 8’ - Gv cho biết dùng phương pháp phản chứng ta dễ dàng chứng minh mệnh đề đảo mệnh đề Từ ta có bảng tóm tắt vị trí tương đối hai đường tròn trang 121 Sgk (bảng phụ ) Khi xét vị trí tương đối 7’ hai đường tròn ta cần - Ở hình 96 có m1, m2 phải tính trước tổng hiệu bán kính để so tiếp tuyến (O) (O’) sánh với khoảng cách d xem thử xảy trường hợp - Các tiếp tuyến d1, d2 hình 95 kết luận vị trí A II) Tiếp tuyến chung hai đường tròn: - Tiếp tuyến chung hai đường tròn đường thẳng tiếp xúc với hai đường tròn d1 O O' - d1, d2 tiếp tuyến chung ngoaøi m1 O d2 O' m2 - m1, m2 laø tiếp tuyến TRƯỜNG THCS CHỢ LẦU TỔ TỐN -TIN tương đối HĐ3: Tiếp tuyến chung - Gv đưa hình 95, 96 Sgk lên bảng phụ giới thiệu hình 95 d1, d2 tiếp tuyến chung (O) (O’) Hỏi : hình 96 có tiếp tuyến chung hai đường tròn không ? GV: NGUYỄN HỒ SƠN ngày soạn: / / 2012 35 không cắt đoạn chung nối tâm, III) Bài tập: tiếp tuyến chung Bài 35: m1, m2 hình 96 (Học sinh điền vào cắt đoạn nối bảng phụ) tâm OO’ - HS trả lời ?3 - HS - Các tiếp tuyến chung điền vào bảng hình 95, 96 quan hệ với đoạn nối tâm OO’khác nào? - Gv giới thiệu tiếp tuyến chung tiếp tuyến chung Củng cố : Cho HS làm ?3 - GV đưa hình vẽ lên bảng phụ HĐ4: Củng cố Làm tập 35 trang 123 Sgk HĐ5: HDVN - Học thuộc bảng tóm tắt vị trí tương đối hai đường tròn hệ thức, tính chất đường nối tâm 2’ Xem lại tập giải - Làm tập: 36, 37 trang 123 Sgk, tập: 74, 76 trang 139 SBT - Đọc mục: “Có thể em chưa biết” trang 124, 125 Sgk Tiết: 35 §8: LUYỆN TẬP BB) MỤC TIÊU: Giúp học sinh: ○ Củng cố kiến thức vị trí tương đối hai đường tròn, t/c đường nối tâm, tiếp tuyến chung hai đường tròn ○ Rèn luyện kỹ vẽ hình, phân tích chứng minh thông qua tập ○ Thấy vài ứng dụng thực tế vị trí tương đối hai đường tròn, đường thẳng đường tròn CC) CHUẨN BỊ CỦA GV & HS: 1) Giáo viên: - Thước thẳng, phấn màu, bảng phụ: viết sẵn tập 40 trang 123 Sgk 2) Học sinh: - Thước kẻ có chia khoảng, compa, ê ke DD) CÁC HOẠT ĐỘNG: HĐ1: Kiểm tra cũ ( 10’) HS1 : Điền vào ô trống bảng sau : (bảng phụ) R r 2 d Hệ thức Vị trí tương đối Tiếp xúc 3, TRƯỜNG THCS CHỢ LẦU TỔ TOÁN -TIN 5 1, HS 2: Sửa tập 36 trang 123 Sgk GV: NGUYỄN HỒ SƠN ngày soạn: / / 2012 Ở 36 T HOẠT ĐÔÏNG GHI BẢNG G HOẠT ĐỘNG CỦA GV CỦA HS HĐ2: Luyện tập Tiết 35 : LUYỆN TẬP Sửa 37 trang 123 Sgk: - HS xung phong sửa tập 37 1) Bài 37: → Cả lớp nhận 6’ xét Gv chốt việc kẻ đường phụ để sử dụng tính chất A B đường kính với dây C D H cung Kẻ OH ⊥ CD ta coù: HA = HB ; HC = HD Neân suy ra: AC = BD HS đọc Làm 38 trang 123 Sgk: 2) Bài 38: - Gv yêu cầu học sinh thảo tập 38 HS thảo luận a) Tâm đường luận 3’ 3’ sau tròn có bán kính cm trả lời → Cả lớp tiếp xúc với - Gv minh hoạ hình vẽ 8’ bảng phụ ghi lại nhận xét đường tròn (O ; cm) nằm (O ; cm) trả lời HS b) Tâm đường tròn có bán kính cm Làm 38 trang 123 Sgk: tiếp xúc với đường - Gv hướng dẫn HS vẽ hình - HS đọc tròn (O ; cm) nằm a) Yêu cầu học sinh phân tập 39 - HS vẽ hình vào (O ; cm) tích đề toán 3) Bài 39: - HS phân tích · toán → Cả a) C/m: BAC = 90o : lớp nhận xét Ta có IA = IB ; IA = IC boå sung: (tctt) + IA = IB ; IA = IC BC ⇒ IA = IB = IC = + OI phân - Căn vào điều giác góc vừa phân tích em ⇒ ∆ABC vuông A BIA, BOA chứng minh · ⇒ BAC = 90o + O’I phân góc BAC góc giác góc vuông B I 15 → Gv ghi lại trả lời HS AIC, AO’C C ’ b) Các em có dự đoán - HS chứng minh → Cả lớp nhận số đo góc OIO’? - Yêu cầu học sinh chứng xét O A O' minh điều dự đoán → Gv ghi lại trả lời HS - Góc OIO’ c) Nếu bán kính (O) · b) Tính: OIO' : R,bán kính (O’) góc vuông r độ dài BC - HS chứng minh Ta có: IO phân giác · → Cả lớp nhận BIA ? · IO’ phân giác AIC Gv chốt lại cách chứng xét (tctt) minh góc vuông thường - HS thực hiện: · · sử dụng cách sau: mà BIA AIC kề - Tam giác có đường trung + Khi IA = R.r buø TRƯỜNG THCS CHỢ LẦU GV: NGUYỄN HỒ SƠN TỔ TOÁN -TIN ngày soạn: / / 2012 37 · tuyến ứng với cạnh Suy ra: BC =2 nên suy ra: OIO' = 90o cạnh tam R.r c) Tính BC: giác vuông Vì: ∆OIO’ vuông - Hai tia phân giác lại có IA đường cao 4’ góc kề bù tạo thành góc nên suy ra: IA2 = OA.AO’ vuông - HS lắng nghe = 9.4 = 36 Làm tập 40 trang 123 ⇒ IA = Sgk: Suy ra: BC = IA = 12 - Gv đưa bảng phụ (cm) hướng dẫn học sinh xác định chiều quay bánh xe tiếp xúc nhau: - Nếu hai bánh xe tiếp 4) Bài 40: xúc hai bánh xe - Ngược chiều Hình 99a, 99b hệ thống quay chiều hay ngược bánh chuyển động chiều ? - Nếu hai bánh xe tiếp - Cùng chiều Hình 99c hệ thống xúc sao? không chuyển động Yêu cầu học sinh viết - HS thực dấu mũi tên trả lời thể chiều quay → Cả lớp nhận bánh xe xét hình xét xem có bất hợp lý từ trả lời toán HĐ5: HDVN - Ôn tập kiến thức toàn chương II - Xem lại tập giải - Trả lời 10 câu hỏi ôn tập chương II trang 126 Sgk 2’ - Làm tập: 41 trang 128 Sgk , tập: 77, 78 trang 139 SBT - Đọc ghi nhớ “Tóm tắt kiến thức cần nhớ” trang 126, 127 Sgk - Chuẩn bị tiết sau ôn tập chương II ôn tập học kỳ I Rút kinh nghiệm cho năm học sau: Tiết 36 ÔN TẬP CHƯƠNG II (Tiếp theo) I MỤC TIÊU Tiếp tục ôn tập củng cố kiến thức học chương II Vận dụng kiến thức học vào tập tính toán chứng minh, trắc nghiệm Rèn kỹ vẽ hình phân tích toán, trình bày toán II CHUẨN BỊ GV: - Bảng phụ, đèn chiếu, phim ghi câu hỏi tập, hệ thống kiến thức - Thước thẳng, compa, phấn màu HS: - Ôn tập theo câu hỏi ôn tập chương II làm tập - Thước thẳng, compa, êke, SGK III TIẾN TRÌNH DẠY – HỌC A.Ổn định lớp B.Kiểm Tra Bài Cũ ... ĐẾN TÂM I) Bài toán: (trang 104 Sgk) C K O A H D B Trong tam giác vuông OHB OKD ta có: OH2 + HB2 = OB2 = R2 OK2 + KD2 = OD2 = R2 ⇒ OH2 + HB2 = OK2 + KD2 */ Chú ý: Kết luận toán dây TRƯỜNG THCS... nhau: - Nếu hai bánh xe tiếp 4) Bài 40: xúc hai bánh xe - Ngược chiều Hình 99 a, 99 b hệ thống quay chiều hay ngược bánh chuyển động chiều ? - Nếu hai bánh xe tiếp - Cùng chiều Hình 99 c hệ thống xúc... định đường tròn, học thuộc định lý tập 2? ?? - Xem lại tập giải - Làm tập: 5, 6, trang 100, 101 Sgk Bài tập: 9, 10, 12 trang 1 29 , 130 SBT Rút kinh nghiệm cho năm học sau: Tiết: 22 ? ?2: ĐƯỜNG KÍNH