1. Trang chủ
  2. » Giáo án - Bài giảng

Chương II. §3. Hàm số bậc hai

15 146 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 1,71 MB

Nội dung

Chương II. §3. Hàm số bậc hai tài liệu, giáo án, bài giảng , luận văn, luận án, đồ án, bài tập lớn về tất cả các lĩnh vự...

Chµo mõng ngµy héi gi¶ng Tr­êng THPT NguyÔn §øc C¶nh. Ch­¬ng 2. Hµm sè bËc nhÊt vµ hµm sè bËc hai Bµi 3 Hµm sè bËc hai ( 2 tiÕt) TiÕt 13 §¹i sè 10 ban c¬ b¶n Líp 10 C4. Bài 3 hàm số bậc hai( tiết 1) 1. Bài tập kiểm tra kiến thức cũ. a/ Hãy vẽ đồ thị hàm số y = x 2 . b/ Hãy vẽ đồ thị hàm số y = - x 2 . ? Nêu tính chất chung hai đồ thị hàm số trên. Bài 3 hàm số bậc hai( tiết 1) Nhận xét : ta thấy hai hàm số trên có đồ thị là một parabol có đỉnh O(0;0) đối xứng nhau qua trục oy. Hàm số y = x 2 có bề lõm quay lên. Nằm phía trên trục ox. Hàm số y = - x 2 có bề lõm quay xuống. Nằm phía dưới trục ox. ? Nêu nhận xét chung về đồ thị của hàm số y = ax 2 . ( a0) Bài 3 hàm số bậc hai( tiết 1) Nhận xét : đồ thị hàm số y = ax 2 . ( a0) ta thấy hàm số trên có đồ thị là một parabol có đỉnh O(0;0) đối xứng nhau qua trục oy. a > 0 có bề lõm quay lên. Nằm phía trên trục ox. a < 0 có bề lõm quay xuống. Nằm phía dưới trục ox. -8 -6 -4 -2 2 4 6 8 -6 -4 -2 2 4 6 8 x y -8 -6 -4 -2 2 4 6 8 -8 -6 -4 -2 2 4 6 8 x y Bài 3 hàm số bậc hai( tiết 1) I/ đồ thị của hàm số bậc hai. Hàm số bậc hai cho bởi công thức: y = ax 2 + bx +c (a 0). 1. Tập xác định R. 2. Đồ thị. Là parabol có đỉnh I(-b/2a;-/4a) có trục đối xứng x= -b/2a. a > 0 có bề lõm quay lên. a < 0 có bề lõm quay xuống Chú ý: Hàm số y = ax 2 chỉ là trường hợp riêng của hàm số y = ax 2 + bx + c khi b = c = 0 (a 0). Xem sự thay đổi của hàm bậc hai VÝ Dô 1. vÏ parabol a/y = x 2 - 4x +3 b/ y = - x 2 +2x +3 a/ Cã ®Ønh I(2;-1); trôc ®èi xøng x= 2 Giao ox ; A(1;0) B( 3; 0) Giao oy : C( 0; 3) Mét sè ®iÓm kh¸c X= 4 => y = 3. X= 5 => y =8 X= -1 => y= 8 -8 -6 -4 -2 2 4 6 8 -8 -6 -4 -2 2 4 6 8 x y Ví Dụ 1. vẽ parabol y = x 2 - 4x +3 Nối các điểm được đồ thị ? Qua VD hãy nêu cách vẽ đồ thị hàm số y = ax 2 + bx +c (a 0). -4 -2 2 4 6 8 -6 -4 -2 2 4 6 8 x y 0 Bµi 3 hµm sè bËc hai Bµi 3 hµm sè bËc hai ( tiÕt 1) ( tiÕt 1) I/ I/ ®å thÞ cña hµm sè bËc hai ®å thÞ cña hµm sè bËc hai . . II/ II/ chiÒu biÕn thiªn cña hµm sè chiÒu biÕn thiªn cña hµm sè bËc hai bËc hai . . Dùa vµo ®å thÞ hµm sè y = ax 2 + bx +c (a ≠0). Ta cã b¶ng biÕn thiªn . X -∞ -b/2a +∞ Y - ∆/4a - ∞ - ∞ a<0 X - ∞ -b/2a +∞ Y + ∞ + ∞ - ∆/4a a>0 §Þnh lý. VÒ sù ®ång biÕn , nghÞch biÕn cña hµm bËc hai. NÕu a>0 th× hµm sè y = ax 2 + bx +c NghÞch biÕn trªn kho¶ng ( - ∞; -b/2a); ®ång biÕn trªn kho¶ng (- b/2a ; + ∞) NÕu a<0 th× hµm sè y = ax 2 + bx +c NghÞch biÕn trªn kho¶ng (- b/2a ; + ∞) ®ång biÕn trªn kho¶ng ( - ∞; -b/2a); VÝ Dô 2. T×m kho¶ng ®ång biÕn , nghÞch biÕn cña hµm sè y = x 2 – 6x - 1 Cã –b/2a = 3 , a= 1> 0 vËy hµm sè NghÞch biÕn trªn kho¶ng ( - ∞; 3); ®ång biÕn trªn kho¶ng (3 ; + ∞) [...]... biến / (- ; 1) và nghịch biến/(1; + ) B đồng biến / (- ; 0) và nghịch biến/(0; + ) C đồng biến /(1; + ) và nghịch biến / (- ; 1) D đồng biến /(0; + ) và nghịch CHÀO MỪNG QUÝ THẦY CÔ VỀ DỰ GIỜ CÙNG LỚP 10A9 HäC HäC Häc Häcn÷a n÷a TỐN TỐNHỌC HỌC Häc Häcm·i m·i TRƯỜNG THPT GIA VIỄN B BÀI CŨ a>0 o y y= ax o x y=a x y a0 o x ax y= x o y • Đồ thị hàm số y = ax2 đường Parabol có đỉnh gốc O(0; 0) • Trục đối xứng trục tung • a > (y ≥ víi mäi x) bỊ lâm quay lªn đỉnh O(0; 0) điểm thấp đồ thị a < (y với x) bề lõm quay xuống đỉnh O(0; 0) điểm thấp đồ thị +c b 2a c x+ +b I y= y= +c ax I ax bx + ax ∆ 4a (a> 0) y= − y= ax + +c bx + ax x= − bx y= y b x= − 2a b 2a +b − x y= +c ax bx + ax O b 2a x+ c y= − I − ∆ 4a I Nếu ta thực số phép “dịch chuyển” parabol y = ax ( a≠ 0) thành đồ thị hàm số ? Tit 15 Đ3.Hàm số bậc hai nh ngha: Hm số bậc hai cho công thức y = ax2 + bx + c, (a ≠ 0) Hàm số có tập xác định: D = ¡ Tiết 15 §3 Hµm sè bËc hai I Đồ thị hàm số bậc hai: Nhận xét:  b  −∆ ∆ = b − 4ac víi Ta biết: y = ax + bx + c = a x + ÷ + 2a  4a  ∆ b ⇒ y=− NÕ x = − 2a 4a u b I ; thuộc đồ thị hàm sè y = ax2 + bx VËy  a a   Δ + c (a ≠ 0) vớ i x, I điểm thấp 4a đồ thị a < y vớ i x, I điểm cao 4a đồ thị a > y ≥ − * Như vậy: I −  b −∆ ;  đồ thị hs y = ax2+bx+c (a ≠ 0) 2a 4a  đóng vai trò đỉnh O(0;0) parabol y = ax2 Tiết 15 Đ3.Hàm số bậc hai I th ca hm số bậc hai: Nhận xét: Đồ thị: - Ta thÊy, ®ồ thị hàm số y = ax2 + bx + c, (a ≠ 0) đường Parabol y = ax2 sau phép “ dịch chuyển ” mặt phẳng toạ độ b −∆  ; + Có đỉnh I a 4a điểm b 2a + Bề lõm quay lên nÕu a > 0; bỊ lâm quay xng díi nÕu a < + Có trục đối xứng đường thngx = => Đồ thị hàm số y = ax2 + bx + c ( a ≠ ) Đ3.Hàm số bậc hai Tit 15 a< 0I y = ax + a> y x = − 2ab bx + c I Đồ thị hàm số bậc hai: Nhận xét: Đồ thị: o b 2a b 2a − ∆ 4a o x y = ax − − y x ∆ 4a x= − b 2a c I + bx + Đồ thị cđa hµm sè y = ax2 + bx + c ( a ) Tit 15 Đ3.Hàm số bậc hai I Đồ thị hàm số bậc hai: Nhận xét: Đồ thị: Cách vẽ: * Vẽ Parabol y = ax2 + bx + c, (a ≠ 0) gồm b −∆  bước: ; Bước Xác định toạ độIđỉnh (có b x= thÓ thay trùc 2a tiÕp  2a b 4a  ®Ĩ tÝnh y) Bước VÏ trơc ®èi x=− 2a xứng Bc Xác định toạ độ giao điểm parabol với trục tung (điểm (0; c )) trơc hoµnh Bước( nÕu VÏcã) parabol (Khi vÏ parabol ý đến dấu hệ Tit 15 Đ3.Hàm số bËc hai I Đồ thị hàm số bậc hai: Nhận xét: Đồ thị: Cách vẽ: * Ví dụ 1: VÏ parabol y = 3x2 2x - 1 −4 II (  ; ; ) B1 ; 3   §Ønh ? ? B2 Trơc ®èi xøng x= y C x= O − B A(0; -1) − 3 A’( x ; - 1) I B3 Giao víi trơc Ox lµ B( 1; 0) vµ C (- ⅓ ; 0) Giao víi Oy lµ A 2  ' điểm ; −1÷ (0; -1) , A qua 3  B4 V th Đ3 Hàm số bậc hai I Đồ thị hàm số bậc hai: Nhận xét: Đồ thị: Cách vẽ: Tiết 15 * Ví dụ 2: B1 §Ønh VÏ parabol y = - x2 + 2x +3 (1;?4) ) II ( ? B2 Trôc ®èi xøng x= B3 Giao víi Oy lµ A (0; 3) A’( ; 3); B4 Giao víi trơc Ox lµ B( -1; 0) vµ C (3 ; 0) Đồ thị CỦNG CỐ: - Hàm số bậc hai: y = ax2 + bx + c, (a ≠ 0) - Đồ thị Parabol có: b −∆  ; + Toạ độ đỉnh: I −  4a  b + Trục đối xứng: x = − 2a  2a + Giao với 0y A(0; c) + Parabol quay bề lõm lên a > 0, quay bề lõm xuống a < Tiết 15: THỊ HÀM HÀM SỐ BẬCSỐ HAI I.ĐỒ BẬC HAI: Hãy điền vào bảng sau y = −x − x− ??? y = 2x − 4x + ??? y = 4x + 4x − ??? 2 ??? ??? ??? ??? ??? ??? NHỮNG PARABOL TRONG TỰ NHIấN V NG DNG TRONG I SNG Xin chân thành cảm ơn ! Chµo mõng ngµy héi gi¶ng Tr­êng THPT NguyÔn §øc C¶nh. Ch­¬ng 2. Hµm sè bËc nhÊt vµ hµm sè bËc hai Bµi 3 Hµm sè bËc hai ( 2 tiÕt) TiÕt 13 §¹i sè 10 ban c¬ b¶n Líp 10 C4. Bài 3 hàm số bậc hai( tiết 1) 1. Bài tập kiểm tra kiến thức cũ. a/ Hãy vẽ đồ thị hàm số y = x 2 . b/ Hãy vẽ đồ thị hàm số y = - x 2 . ? Nêu tính chất chung hai đồ thị hàm số trên. Bài 3 hàm số bậc hai( tiết 1) Nhận xét : ta thấy hai hàm số trên có đồ thị là một parabol có đỉnh O(0;0) đối xứng nhau qua trục oy. Hàm số y = x 2 có bề lõm quay lên. Nằm phía trên trục ox. Hàm số y = - x 2 có bề lõm quay xuống. Nằm phía dưới trục ox. ? Nêu nhận xét chung về đồ thị của hàm số y = ax 2 . ( a0) Bài 3 hàm số bậc hai( tiết 1) Nhận xét : đồ thị hàm số y = ax 2 . ( a0) ta thấy hàm số trên có đồ thị là một parabol có đỉnh O(0;0) đối xứng nhau qua trục oy. a > 0 có bề lõm quay lên. Nằm phía trên trục ox. a < 0 có bề lõm quay xuống. Nằm phía dưới trục ox. -8 -6 -4 -2 2 4 6 8 -6 -4 -2 2 4 6 8 x y -8 -6 -4 -2 2 4 6 8 -8 -6 -4 -2 2 4 6 8 x y Bài 3 hàm số bậc hai( tiết 1) I/ đồ thị của hàm số bậc hai. Hàm số bậc hai cho bởi công thức: y = ax 2 + bx +c (a 0). 1. Tập xác định R. 2. Đồ thị. Là parabol có đỉnh I(-b/2a;-/4a) có trục đối xứng x= -b/2a. a > 0 có bề lõm quay lên. a < 0 có bề lõm quay xuống Chú ý: Hàm số y = ax 2 chỉ là trường hợp riêng của hàm số y = ax 2 + bx + c khi b = c = 0 (a 0). Xem sự thay đổi của hàm bậc hai VÝ Dô 1. vÏ parabol a/y = x 2 - 4x +3 b/ y = - x 2 +2x +3 a/ Cã ®Ønh I(2;-1); trôc ®èi xøng x= 2 Giao ox ; A(1;0) B( 3; 0) Giao oy : C( 0; 3) Mét sè ®iÓm kh¸c X= 4 => y = 3. X= 5 => y =8 X= -1 => y= 8 -8 -6 -4 -2 2 4 6 8 -8 -6 -4 -2 2 4 6 8 x y Ví Dụ 1. vẽ parabol y = x 2 - 4x +3 Nối các điểm được đồ thị ? Qua VD hãy nêu cách vẽ đồ thị hàm số y = ax 2 + bx +c (a 0). -4 -2 2 4 6 8 -6 -4 -2 2 4 6 8 x y 0 Bµi 3 hµm sè bËc hai Bµi 3 hµm sè bËc hai ( tiÕt 1) ( tiÕt 1) I/ I/ ®å thÞ cña hµm sè bËc hai ®å thÞ cña hµm sè bËc hai . . II/ II/ chiÒu biÕn thiªn cña hµm sè chiÒu biÕn thiªn cña hµm sè bËc hai bËc hai . . Dùa vµo ®å thÞ hµm sè y = ax 2 + bx +c (a ≠0). Ta cã b¶ng biÕn thiªn . X -∞ -b/2a +∞ Y - ∆/4a - ∞ - ∞ a<0 X - ∞ -b/2a +∞ Y + ∞ + ∞ - ∆/4a a>0 §Þnh lý. VÒ sù ®ång biÕn , nghÞch biÕn cña hµm bËc hai. NÕu a>0 th× hµm sè y = ax 2 + bx +c NghÞch biÕn trªn kho¶ng ( - ∞; -b/2a); ®ång biÕn trªn kho¶ng (- b/2a ; + ∞) NÕu a<0 th× hµm sè y = ax 2 + bx +c NghÞch biÕn trªn kho¶ng (- b/2a ; + ∞) ®ång biÕn trªn kho¶ng ( - ∞; -b/2a); VÝ Dô 2. T×m kho¶ng ®ång biÕn , nghÞch biÕn cña hµm sè y = x 2 – 6x - 1 Cã –b/2a = 3 , a= 1> 0 vËy hµm sè NghÞch biÕn trªn kho¶ng ( - ∞; 3); ®ång biÕn trªn kho¶ng (3 ; + ∞) [...]... biến / (- ; 1) và nghịch biến/(1; + ) B đồng biến / (- ; 0) và nghịch biến/(0; + ) C đồng biến /(1; + ) và nghịch biến / (- ; 1) D đồng biến /(0; + ) và nghịch Cng trng i hc Bỏch Khoa H Ni y y= ax y o o a>0 x y=a x x a y vớ i x, I điểm thấp đồ thị 4a a < y Vy vớ i x, I điểm cao đồ thị 4a b I ; i vi th ca hs y = ax2 + bx + c (a 0) 2a 4a úng vai trũ nh nh O(0;0) ca parabol y = ax (a 0) th: 2 - Ta thấy, đ th hm s y = ax + bx + c, (a 0), chớnh l ng parabol y = ax sau mt phộp dch chuyn trờn mt phng to y b x= 2a x= b 2a 4a I y= ax (a> 0) I b 2a O I b 2a x 4a I 2 Phộp dch chuyn parabol y = ax thnh th hm s y = ax + bx + c (a 0) th hm s y = ax + bx + c (a 0) l mt parabol cú: đỉnh điểm trc i xng l ng b I ; 2a a thng b x= 2a quay b lừm lờn trờn xung di th hm s y = x - 2x + cú nh l: b I ; a a A ) I (1; ) Chµo mõng ngµy héi gi¶ng Tr­êng THPT NguyÔn §øc C¶nh. Ch­¬ng 2. Hµm sè bËc nhÊt vµ hµm sè bËc hai Bµi 3 Hµm sè bËc hai ( 2 tiÕt) TiÕt 13 §¹i sè 10 ban c¬ b¶n Líp 10 C4. Bài 3 hàm số bậc hai( tiết 1) 1. Bài tập kiểm tra kiến thức cũ. a/ Hãy vẽ đồ thị hàm số y = x 2 . b/ Hãy vẽ đồ thị hàm số y = - x 2 . ? Nêu tính chất chung hai đồ thị hàm số trên. Bài 3 hàm số bậc hai( tiết 1) Nhận xét : ta thấy hai hàm số trên có đồ thị là một parabol có đỉnh O(0;0) đối xứng nhau qua trục oy. Hàm số y = x 2 có bề lõm quay lên. Nằm phía trên trục ox. Hàm số y = - x 2 có bề lõm quay xuống. Nằm phía dưới trục ox. ? Nêu nhận xét chung về đồ thị của hàm số y = ax 2 . ( a0) Bài 3 hàm số bậc hai( tiết 1) Nhận xét : đồ thị hàm số y = ax 2 . ( a0) ta thấy hàm số trên có đồ thị là một parabol có đỉnh O(0;0) đối xứng nhau qua trục oy. a > 0 có bề lõm quay lên. Nằm phía trên trục ox. a < 0 có bề lõm quay xuống. Nằm phía dưới trục ox. -8 -6 -4 -2 2 4 6 8 -6 -4 -2 2 4 6 8 x y -8 -6 -4 -2 2 4 6 8 -8 -6 -4 -2 2 4 6 8 x y Bài 3 hàm số bậc hai( tiết 1) I/ đồ thị của hàm số bậc hai. Hàm số bậc hai cho bởi công thức: y = ax 2 + bx +c (a 0). 1. Tập xác định R. 2. Đồ thị. Là parabol có đỉnh I(-b/2a;-/4a) có trục đối xứng x= -b/2a. a > 0 có bề lõm quay lên. a < 0 có bề lõm quay xuống Chú ý: Hàm số y = ax 2 chỉ là trường hợp riêng của hàm số y = ax 2 + bx + c khi b = c = 0 (a 0). Xem sự thay đổi của hàm bậc hai VÝ Dô 1. vÏ parabol a/y = x 2 - 4x +3 b/ y = - x 2 +2x +3 a/ Cã ®Ønh I(2;-1); trôc ®èi xøng x= 2 Giao ox ; A(1;0) B( 3; 0) Giao oy : C( 0; 3) Mét sè ®iÓm kh¸c X= 4 => y = 3. X= 5 => y =8 X= -1 => y= 8 -8 -6 -4 -2 2 4 6 8 -8 -6 -4 -2 2 4 6 8 x y Ví Dụ 1. vẽ parabol y = x 2 - 4x +3 Nối các điểm được đồ thị ? Qua VD hãy nêu cách vẽ đồ thị hàm số y = ax 2 + bx +c (a 0). -4 -2 2 4 6 8 -6 -4 -2 2 4 6 8 x y 0 Bµi 3 hµm sè bËc hai Bµi 3 hµm sè bËc hai ( tiÕt 1) ( tiÕt 1) I/ I/ ®å thÞ cña hµm sè bËc hai ®å thÞ cña hµm sè bËc hai . . II/ II/ chiÒu biÕn thiªn cña hµm sè chiÒu biÕn thiªn cña hµm sè bËc hai bËc hai . . Dùa vµo ®å thÞ hµm sè y = ax 2 + bx +c (a ≠0). Ta cã b¶ng biÕn thiªn . X -∞ -b/2a +∞ Y - ∆/4a - ∞ - ∞ a<0 X - ∞ -b/2a +∞ Y + ∞ + ∞ - ∆/4a a>0 §Þnh lý. VÒ sù ®ång biÕn , nghÞch biÕn cña hµm bËc hai. NÕu a>0 th× hµm sè y = ax 2 + bx +c NghÞch biÕn trªn kho¶ng ( - ∞; -b/2a); ®ång biÕn trªn kho¶ng (- b/2a ; + ∞) NÕu a<0 th× hµm sè y = ax 2 + bx +c NghÞch biÕn trªn kho¶ng (- b/2a ; + ∞) ®ång biÕn trªn kho¶ng ( - ∞; -b/2a); VÝ Dô 2. T×m kho¶ng ®ång biÕn , nghÞch biÕn cña hµm sè y = x 2 – 6x - 1 Cã –b/2a = 3 , a= 1> 0 vËy hµm sè NghÞch biÕn trªn kho¶ng ( - ∞; 3); ®ång biÕn trªn kho¶ng (3 ; + ∞) [...]... biến / (- ; 1) và nghịch biến/(1; + ) B đồng biến / (- ; 0) và nghịch biến/(0; + ) C đồng biến /(1; + ) và nghịch biến / (- ; 1) D đồng biến /(0; + ) và nghịch KÍNH CHÀO QUÝ THẦY CÔ VÀ CÁC EM HỌC SINH KIỂM TRA BÀI CŨ: 1) y = x − y 2) y = x − y=|x-2| y=|x| x O y=|x|-2 -1 -2 Sketpad Một số hình ảnh Parabol thực tế Tiết 20 HÀM SỐ BẬC HAI HÀM SỐ BẬC HAI Định nghĩa: • Hàm số bậc hai hàm số cho công thức: y = ax + bx + c • Trong a , b , c số , a ≠ • Tập xác định hàm số : Vi dụ: y = 3x + 2x - y = 3x + 2x y = 3x - ¡ Nhận xét trí so với điểm Trục đốivịxứng củaOhàm số y = ax Tọa độ đỉnh parabol ? khác đồ ?thị hàm số Đỉnh parabol điểm O(0;0) y y O O y = ax x ( a > 0) * a>0: O điểm thấp đồ thị x y = ax ( a < ) Hãyhãy nêucho đặcbiết: điểmCác củađồ đồthị thịsau hàmlàsố hàm?số? Em đồvà Chµo mõng ngµy héi gi¶ng Tr­êng THPT NguyÔn §øc C¶nh. Ch­¬ng 2. Hµm sè bËc nhÊt vµ hµm sè bËc hai Bµi 3 Hµm sè bËc hai ( 2 tiÕt) TiÕt 13 §¹i sè 10 ban c¬ b¶n Líp 10 C4. Bài 3 hàm số bậc hai( tiết 1) 1. Bài tập kiểm tra kiến thức cũ. a/ Hãy vẽ đồ thị hàm số y = x 2 . b/ Hãy vẽ đồ thị hàm số y = - x 2 . ? Nêu tính chất chung hai đồ thị hàm số trên. Bài 3 hàm số bậc hai( tiết 1) Nhận xét : ta thấy hai hàm số trên có đồ thị là một parabol có đỉnh O(0;0) đối xứng nhau qua trục oy. Hàm số y = x 2 có bề lõm quay lên. Nằm phía trên trục ox. Hàm số y = - x 2 có bề lõm quay xuống. Nằm phía dưới trục ox. ? Nêu nhận xét chung về đồ thị của hàm số y = ax 2 . ( a0) Bài 3 hàm số bậc hai( tiết 1) Nhận xét : đồ thị hàm số y = ax 2 . ( a0) ta thấy hàm số trên có đồ thị là một parabol có đỉnh O(0;0) đối xứng nhau qua trục oy. a > 0 có bề lõm quay lên. Nằm phía trên trục ox. a < 0 có bề lõm quay xuống. Nằm phía dưới trục ox. -8 -6 -4 -2 2 4 6 8 -6 -4 -2 2 4 6 8 x y -8 -6 -4 -2 2 4 6 8 -8 -6 -4 -2 2 4 6 8 x y Bài 3 hàm số bậc hai( tiết 1) I/ đồ thị của hàm số bậc hai. Hàm số bậc hai cho bởi công thức: y = ax 2 + bx +c (a 0). 1. Tập xác định R. 2. Đồ thị. Là parabol có đỉnh I(-b/2a;-/4a) có trục đối xứng x= -b/2a. a > 0 có bề lõm quay lên. a < 0 có bề lõm quay xuống Chú ý: Hàm số y = ax 2 chỉ là trường hợp riêng của hàm số y = ax 2 + bx + c khi b = c = 0 (a 0). Xem sự thay đổi của hàm bậc hai VÝ Dô 1. vÏ parabol a/y = x 2 - 4x +3 b/ y = - x 2 +2x +3 a/ Cã ®Ønh I(2;-1); trôc ®èi xøng x= 2 Giao ox ; A(1;0) B( 3; 0) Giao oy : C( 0; 3) Mét sè ®iÓm kh¸c X= 4 => y = 3. X= 5 => y =8 X= -1 => y= 8 -8 -6 -4 -2 2 4 6 8 -8 -6 -4 -2 2 4 6 8 x y Ví Dụ 1. vẽ parabol y = x 2 - 4x +3 Nối các điểm được đồ thị ? Qua VD hãy nêu cách vẽ đồ thị hàm số y = ax 2 + bx +c (a 0). -4 -2 2 4 6 8 -6 -4 -2 2 4 6 8 x y 0 Bµi 3 hµm sè bËc hai Bµi 3 hµm sè bËc hai ( tiÕt 1) ( tiÕt 1) I/ I/ ®å thÞ cña hµm sè bËc hai ®å thÞ cña hµm sè bËc hai . . II/ II/ chiÒu biÕn thiªn cña hµm sè chiÒu biÕn thiªn cña hµm sè bËc hai bËc hai . . Dùa vµo ®å thÞ hµm sè y = ax 2 + bx +c (a ≠0). Ta cã b¶ng biÕn thiªn . X -∞ -b/2a +∞ Y - ∆/4a - ∞ - ∞ a<0 X - ∞ -b/2a +∞ Y + ∞ + ∞ - ∆/4a a>0 §Þnh lý. VÒ sù ®ång biÕn , nghÞch biÕn cña hµm bËc hai. NÕu a>0 th× hµm sè y = ax 2 + bx +c NghÞch biÕn trªn kho¶ng ( - ∞; -b/2a); ®ång biÕn trªn kho¶ng (- b/2a ; + ∞) NÕu a<0 th× hµm sè y = ax 2 + bx +c NghÞch biÕn trªn kho¶ng (- b/2a ; + ∞) ®ång biÕn trªn kho¶ng ( - ∞; -b/2a); VÝ Dô 2. T×m kho¶ng ®ång biÕn , nghÞch biÕn cña hµm sè y = x 2 – 6x - 1 Cã –b/2a = 3 , a= 1> 0 vËy hµm sè NghÞch biÕn trªn kho¶ng ( - ∞; 3); ®ång biÕn trªn kho¶ng (3 ; + ∞) [...]... biến / (- ; 1) và nghịch biến/(1; + ) B đồng biến / (- ; 0) và nghịch biến/(0; + ) C đồng biến /(1; + ) và nghịch biến / (- ; 1) D đồng biến /(0; + ) và nghịch Bài 3: GV: Nguyễn Kiều Phương – THPT TRẦN Q CÁP I.ĐỒ THỊ HÀM SỐ BẬC HAI 1.Hàm số bậc hai? • Là hàm số cho công thức y = ax2 + bx + c ( a ≠ ) • Ví dụ: a) y = 3x2 − 2x −1 b) yLÊy = x2 −mét 2x + 4dơ c) vµi y =− xvÝ vỊ hµm sè bËc hai? I.ĐỒ THỊ HÀM SỐ BẬC HAI Câu hỏi: Trong hàm số sau, đâu hàm số bậc hai? y = 2x2 – y = (m + 1)x2 + 2x – m (m tham số) y = (m2 + 1)x2 – 3x (m tham số) y = - 4t2 + 3t – (t biến số) 1; 3; I.ĐỒ THỊ HÀM SỐ BẬC HAI Đồ thị hàm số bậc hai y a Nhắc lại đồ thị hàm số y = ax2 (a ≠ 0) y O x a>0 a Chµo mõng ngµy héi gi¶ng Tr­êng THPT NguyÔn §øc C¶nh. Ch­¬ng 2. Hµm sè bËc nhÊt vµ hµm sè bËc hai Bµi 3 Hµm sè bËc hai ( 2 tiÕt) TiÕt 13 §¹i sè 10 ban c¬ b¶n Líp 10 C4. Bài 3 hàm số bậc hai( tiết 1) 1. Bài tập kiểm tra kiến thức cũ. a/ Hãy vẽ đồ thị hàm số y = x 2 . b/ Hãy vẽ đồ thị hàm số y = - x 2 . ? Nêu tính chất chung hai đồ thị hàm số trên. Bài 3 hàm số bậc hai( tiết 1) Nhận xét : ta thấy hai hàm số trên có đồ thị là một parabol có đỉnh O(0;0) đối xứng nhau qua trục oy. Hàm số y = x 2 có bề lõm quay lên. Nằm phía trên trục ox. Hàm số y = - x 2 có bề lõm quay xuống. Nằm phía dưới trục ox. ? Nêu nhận xét chung về đồ thị của hàm số y = ax 2 . ( a0) Bài 3 hàm số bậc hai( tiết 1) Nhận xét : đồ thị hàm số y = ax 2 . ( a0) ta thấy hàm số trên có đồ thị là một parabol có đỉnh O(0;0) đối xứng nhau qua trục oy. a > 0 có bề lõm quay lên. Nằm phía trên trục ox. a < 0 có bề lõm quay xuống. Nằm phía dưới trục ox. -8 -6 -4 -2 2 4 6 8 -6 -4 -2 2 4 6 8 x y -8 -6 -4 -2 2 4 6 8 -8 -6 -4 -2 2 4 6 8 x y Bài 3 hàm số bậc hai( tiết 1) I/ đồ thị của hàm số bậc hai. Hàm số bậc hai cho bởi công thức: y = ax 2 + bx +c (a 0). 1. Tập xác định R. 2. Đồ thị. Là parabol có đỉnh I(-b/2a;-/4a) có trục đối xứng x= -b/2a. a > 0 có bề lõm quay lên. a < 0 có bề lõm quay xuống Chú ý: Hàm số y = ax 2 chỉ là trường hợp riêng của hàm số y = ax 2 + bx + c khi b = c = 0 (a 0). Xem sự thay đổi của hàm bậc hai VÝ Dô 1. vÏ parabol a/y = x 2 - 4x +3 b/ y = - x 2 +2x +3 a/ Cã ®Ønh I(2;-1); trôc ®èi xøng x= 2 Giao ox ; A(1;0) B( 3; 0) Giao oy : C( 0; 3) Mét sè ®iÓm kh¸c X= 4 => y = 3. X= 5 => y =8 X= -1 => y= 8 -8 -6 -4 -2 2 4 6 8 -8 -6 -4 -2 2 4 6 8 x y Ví Dụ 1. vẽ parabol y = x 2 - 4x +3 Nối các điểm được đồ thị ? Qua VD hãy nêu cách vẽ đồ thị hàm số y = ax 2 + bx +c (a 0). -4 -2 2 4 6 8 -6 -4 -2 2 4 6 8 x y 0 Bµi 3 hµm sè bËc hai Bµi 3 hµm sè bËc hai ( tiÕt 1) ( tiÕt 1) I/ I/ ®å thÞ cña hµm sè bËc hai ®å thÞ cña hµm sè bËc hai . . II/ II/ chiÒu biÕn thiªn cña hµm sè chiÒu biÕn thiªn cña hµm sè bËc hai bËc hai . . Dùa vµo ®å thÞ hµm sè y = ax 2 + bx +c (a ≠0). Ta cã b¶ng biÕn thiªn . X -∞ -b/2a +∞ Y - ∆/4a - ∞ - ∞ a<0 X - ∞ -b/2a +∞ Y + ∞ + ∞ - ∆/4a a>0 §Þnh lý. VÒ sù ®ång biÕn , nghÞch biÕn cña hµm bËc hai. NÕu a>0 th× hµm sè y = ax 2 + bx +c NghÞch biÕn trªn kho¶ng ( - ∞; -b/2a); ®ång biÕn trªn kho¶ng (- b/2a ; + ∞) NÕu a<0 th× hµm sè y = ax 2 + bx +c NghÞch biÕn trªn kho¶ng (- b/2a ; + ∞) ®ång biÕn trªn kho¶ng ( - ∞; -b/2a); VÝ Dô 2. T×m kho¶ng ®ång biÕn , nghÞch biÕn cña hµm sè y = x 2 – 6x - 1 Cã –b/2a = 3 , a= 1> 0 vËy hµm sè NghÞch biÕn trªn kho¶ng ( - ∞; 3); ®ång biÕn trªn kho¶ng (3 ; + ∞) [...]... biến / (- ; 1) và nghịch biến/(1; + ) B đồng biến / (- ; 0) và nghịch biến/(0; + ) C đồng biến /(1; + ) và nghịch biến / (- ; 1) D đồng biến /(0; + ) và nghịch TỰ CHỌN NÂNG CAO CHƯƠNG TRÌNH CHUẨN TIẾT 9: LUYỆN TẬP ĐỒ THỊ HÀM SỐ BẬC HAI GIÁO VIÊN THỰC HIỆN : ĐỖ HỮU HỒNG THU LỚP : 10TN4 Những parabol tự nhiên ứng dụng đời sống Bài tập trắc nghiệm Câu 1: Parabol y = x A C I (−1;0) −2 I( ; ) 3 - x +2 có đỉnh : −1 − I( ; ) 3 B D I (1;1) Câu 2: Parabol y = x -x - có trục đối xứng đường thẳng : A.x = B x = − C x = D x = − Câu 3: Hàm số y = x - 5x + Đồng biến khoảng : (−∞; ) B Đồng ( ; + ∞) C Nghòch biến khoảng D Đồng biến khoảng : A biến khoảng : : ( ; + ∞) (0 ;3) Câu 4: Cho hàm số   Chọn khẳng định : A Hàm số đạt giá trị lớn -1 x = B Hàm số đạt giá trị lớn x = -1 C Hàm số đạt giá trị nhỏ -1 x = D Hàm số đạt giá trị ... I Nếu ta thực số phép “dịch chuyển” parabol y = ax ( a≠ 0) thành đồ thị hàm s no ? Tit 15 Đ3 .Hàm số bậc hai nh nghĩa: Hàm số bậc hai cho công thức y = ax2 + bx + c, (a ≠ 0) Hàm số có tập xác... 15 Đ3 Hàm số bậc hai I th ca hàm số bậc hai: Nhận xét:  b  −∆ ∆ = b − 4ac víi Ta biết: y = ax + bx + c = a x + ÷ + 2a  4a  ∆ b ⇒ y=− NÕ x = − 2a 4a u b −∆  I − ;  thuéc ®å thị hàm số y... 4a  đóng vai trò đỉnh O(0;0) parabol y = ax2 Tit 15 Đ3 .Hàm số bậc hai I th hàm số bậc hai: Nhận xét: Đồ thị: - Ta thÊy, ®ồ thị hàm số y = ax2 + bx + c, (a ≠ 0) đường Parabol y = ax2 sau phép

Ngày đăng: 02/11/2017, 12:05

w