1 Bộ giáo dục và đào tạo Trờng Đại học Vinh === === phạm thị ngọc Tích cực hoá hoạt động nhận thức cho học sinh Tiểu học thông qua gợi động cơ nhằm tìm tòi lời giải cho các bài toán có nội dung hình học ở những lớp cuối bậc Tiểu học Chuyên ngành: Giáo dục học (bậc tiểu học) M số: ã 60 14 10 Luận văn thạc sĩ giáo dục học Ngời hớng dẫn khoa học: GS. TS. Đào Tam Vinh - 2005 2 Mở đầu 1. Lí do chọn đề tài Tính tự giác tích cực của ngời học từ lâu đã trở thành một nguyên tắc của ngành giáo dục nớc ta. Nguyên tắc này không mới nhng vẫn cha thực hiện có hiệu quả trong cách dạy thầy nói trò nghe còn phổ biến nh hiện nay, bởi vậy cần có biện pháp để áp dụng một cách tích cực hơn trong thực tiễn giáo dục. Với sự nghiệp Công nghiệp hoá - Hiện đại hoá đất nớc, sự thách thức trớc nguy cơ tụt hậu bằng cạnh tranh về trí tuệ làm cho các nhà giáo dục nhận thức đợc rằng: không thể duy trì mãi kiểu "dạy - học" thụ động nh xa đợc. Phơng pháp dạy học mới sẽ khắc phục đợc những hạn chế đó thông qua việc tổ chức cho ngời học học tập trong hoạt động và bằng hoạt động. Tính tích cực, tự giác, chủ động của ngời học có thể đạt đợc bằng cách tổ chức cho học sinh (HS) học tập thông qua những hoạt động đợc gợi động cơ để chuyển hoá nhu cầu xã hội thành nhu cầu bản thân mình. Môn Toán ở Tiểu học (TH) đợc xem là một trong những môn học chính vì môn Toán không chỉ là môn học công cụ, cung cấp kiến thức, kĩ năng phơng pháp góp phần xây dựng nền tảng phổ thông văn hoá của ngời lao động mới mà còn giúp HS có phơng pháp suy nghĩ, phơng pháp suy luận, phơng pháp giải quyết vấn đề từ đó có phơng pháp tự học, phát triển trí thông minh sáng tạo (Phạm Văn Đồng). Các bài toán có nội dung hình học góp phần quan trọng trong việc bồi dỡng những phẩm chất của t duy: độc lập, linh hoạt, sáng tạo, phát triển trí tởng tợng không gian cho HS nhất là HS cuối bậc TH. Thực tế cho thấy ở các trờng Tiểu học hiện nay việc dạy học các yếu tố hình học vẫn cha khơi dậy đợc niềm hứng thú cho học sinh. Giáo viên vẫn cha phát huy đợc tính tích cực trong học tập của các em. Tuy nhiên, việc học tập tự giác, tích cực, chủ động và sáng tạo đòi hỏi HS phải có ý thức về mục tiêu đề ra và tạo đợc động lực bên trong thúc đẩy bản thân hoạt động để đạt đợc những mục 3 tiêu đó. Điều này thực hiện trong dạy học không chỉ bằng việc nêu rõ mục tiêu cho HS hớng tới mà quan trọng hơn còn do gợi động cơ. Với mục đích góp phần khắc phục những hạn chế nêu trên và giúp giáo viên (GV) trong việc lựa chọn phơng pháp tác động phù hợp để gợi đợc động cơ trong các hoạt động hình học của HS cuối bậc Tiểu học, tác giả quyết định chọn đề tài Tích cực hoá hoạt động nhận thức cho học sinh Tiểu học thông qua gợi động cơ nhằm tìm tòi Toán chuyên đề hình học lớp 3- ********************************************************************************************************* Các toán có nội dung hình học A GHI NHỚ; Hình vuông: Diện tích hình vuông: S = a x a Biết DT tìm cạnh cách nhẩm Chu vi hình vuông: P = a x Biết chu vi tính cạnh cách lấy chu vi chia - Tăng cạnh lên n lần chu vi tăng n lần, diện tích tăng n x n lần - Nếu cạnh tăng n đơn vị chu vi tăng n x đơn vị Hình chữ nhật: Diện tích: S = a x b Biết DT tìm cạnh cách lấy DT chia cạnh biết Chu vi: P = ( a + b) x Biết chu vi tính cạnh cách lấy nửa chu vi trừ cạnh biết - Nếu số đo cạnh tăng n lần giữ nguyên cạnh DT tăng n lần DT ban đầu - Nếu cạnh gấp lên n lần, cạnh gấp m lần DT tăng lên (n x m) lần DT ban đầu - Nếu cạnh tăng n đơn vị giữ nguyên cạnh lại chu vi tăng n x đơn vị - Nếu cạnh tăng n đơn vị, cạnh tăng m đơn vị chu vi tăng (n + m) x đơn vị - Nếu cạnh tăng n đơn vị, cạnh giảm m đơn vị thì: + Nếu n > m chu vi tăng (n - m) x đơn vị + Nếu n < m chu vi giảm (m- n ) x đơn vị Hình thoi: S = (a x b ): (a b số đo độ dài hai đường chéo) P = Tổng độ dài hai cạnh nhân Hình bình hành: S = a x h (a độ dài cạnh đáy, h độ dài đường cao tương ứng) P = Tổng độ dài hai cạnh nhân * Các dạng bài: + Tính chu vi diện tích biết số đo + Thêm bớt số đo chiều hình, từ chu vi tính diện tích Tính cạnh dựa vào dạng toán tổng - hiệu, tổng - tỉ tính diện tích + Biết DT tỉ số cạnh, tính chu vi Toán chuyên đề hình học lớp 3- ********************************************************************************************************* + Tìm DT cách cắt ghép hình B CÁC DẠNG BÀI TẬP Bài 1: Tính chu vi, diện tích hình vuông có cạnh: a) 9cm b) 15 dm c) 45cm d) 67cm Bài 2: Tính chu vi, diện tích hình chữ nhật có; a) chiều dài 8cm, chiều rộng 6cm b) chiều dài 18cm, chiều rộng 16cm c) chiều dài 35dm, chiều rộng 26dm d) chiều dài 5dm3cm, chiều rộng 3dm4cm Bài 3: Tính chu vi diện tích hình chữ nhật có chiều rộng 15cm, chiều dài chiều rộng 15cm Bài 4: Một hình chữ nhật có chiều dài 60cm, chiều rộng 1/3 chiều dài a) Tính chu vi, diện tích hình chữ nhật b) Chu vi gấp lần chiều rộng Bài 5: Một vườn hình chữ nhật có chiều rộng 30m, chiều dài gấp lần chiều rộng Người ta muốn làm hàng rào xung quanh vườn (có cửa vào, cửa rộng 3m) Hỏi hàng rào dài mét? Bài 6: Một hình chữ nhật có chiếu rộng 12cm, biết chu vi gấp lần chiều rộng Tính diện tích hình Bài 7: a) Biết chu vi hình chữ nhật gấp lần chiều rộng Hỏi chiều dài gấp lần chiều rộng? b) Biết chu vi hình chữ nhật gấp lần chiều rộng Hỏi chiều dài gấp lần chiều rộng? c) Biết chu vi hình chữ nhật gấp 10 lần chiều rộng Hỏi chiều dài gấp lần chiều rộng? d) Biết chu vi hình chữ nhật gấp 12 lần chiều rộng Hỏi chiều dài gấp lần chiều rộng? Bài 8: a) Tính chu vi hình vuông biết diện tích hình vuông 16cm2 Toán chuyên đề hình học lớp 3- ********************************************************************************************************* b) Tính chu vi hình vuông biết diện tích hình vuông 36cm2 c) Tính chu vi hình vuông biết diện tích hình vuông 64cm2 d) Tính chu vi hình vuông biết diện tích hình vuông 81cm2 e) Tính chu vi hình vuông biết diện tích hình vuông 121cm2 Bài 9: a) Tính DT hình vuông biết chu vi hình vuông 36cm b) Tính DT hình vuông biết chu vi hình vuông 88cm c) Tính DT hình vuông biết chu vi hình vuông 96cm d) Tính DT hình vuông biết chu vi hình vuông 116cm e) Tính DT hình vuông biết chu vi hình vuông 224cm Bài 10: Một miếng bìa hình chữ nhật có chiều dài 16cm, chiều rộng 9cm Người ta cắt miếng bìa (dọc theo chiều rộng để hai phần, phần hình vuông phần hình chữ nhật) a) Tính chu vi diện tích bìa hình vuông b) Tính chu vi diện tích bìa hình chữ nhật Bài 11: Một bìa hình vuông cạnh 6cm người ta cắt thành hình tam giác ghép thành hình cá Hỏi diện tích hình cá bao nhiêu? Bài 12: Có miếng bìa hình chữ nhật chiều rộng 10cm, chiều dài 15cm Bạn Bình cắt góc bìa hình vuông cạnh 2cm Tính chu vi hình lại bìa Bài 13: a) Một hình chữ nhật có chu vi 28cm, chiều dài 8cm Tính diện tích hình chữ nhật b) Một hình chữ nhật có chu vi 134cm, chiều dài 46 cm Tính diện tích hình chữ nhật c) Một hình chữ nhật có chu vi 228cm, chiều rộng 45cm Tính diện tích hình chữ nhật d) Một hình chữ nhật có chu vi 166cm, chiều rộng 33cm Tính diện tích hình chữ nhật Bài 14: An có mảnh giấy hình chữ nhật chu vi 18cm, chiều dài 5cm Trên 1cm mảnh giấy An đặt hạt đậu Hỏi mảnh giấy An đặt hạt đậu? Bài 15: Một ruộng hình chữ nhật có chiều dài 24m, chiều rộng 18m.Trên ruộng mét vuông thu hoạch 5kg rau Hỏi ruông thu hoạch kilô- gam rau? Toán chuyên đề hình học lớp 3- ********************************************************************************************************* Bài 16: Một nhà hình chữ nhật có chiều dài 18m, chiều rộng 5m Người ta dùng gỗ để lát sàn mét vuông hết 450 nghìn đồng Hỏi để lát hết sàn nhà hết tiền gỗ? Bài 17: Một ruộng hình chữ nhật có chiều dài 35m, chiều rộng 22m.Trên ruộng 5m2thu hoạch 15kg dưa Hỏi ruông thu hoạch kg dưa? Bài 18: Một hình vuông chu vi 20cm, hình chữ nhật có chiều rộng cạnh hình vuông ...CÁC BÀI TOÁN CÓ NỘI DUNG HÌNH HỌC -Nếu tăng chiều dài của hình chữ nhật lên a đơn vị thì chu vi sẽ tăng lên a x 2 đợn vị ( Vì có 2 chiều dài) -Nếu tăng chiều rộng của hình chữ nhật lên a đơn vị thì chu vi sẽ tăng lên a x 2 đợn vị ( Vì có 2 chiều rộng) -Nếu giảm chiều dài của hình chữ nhật lên a đơn vị thì chu vi sẽ giảm lên a x 2 đợn vị ( Vì có 2 chiều dài) -Nếu giảm chiều rộng của hình chữ nhật lên a đơn vị thì chu vi sẽ giảm lên a x 2 đợn vị ( Vì có 2 chiều rộng) -Nếu gấp một chiều của một hình chữ nhật lên bao nhiêu lần thì diện tích sẽ tăng lên bấy nhiêu lần. -Nếu giảm một chiều của một hình chữ nhật đi bao nhiêu lần thì diện tích sẽ giảm đi bấy nhiêu lần. -Nếu tăng hay giảm cả hai chiều thì diện tích sẽ tăng hay giảm đi tích hai số lần đó. -Trong hình vuông nếu tăng 1 cạnh lên a đơn vị thì chu vi sẽ tăng 4 x a đơn vị. -Trong hình vuông nếu cạnh tăng lên a lần thì diện tích sẽ tăng lên a x a lần . A B 1 2 3 4 5 D C Nhận Xét : Mỗi cạnh bên trong là cạnh chung của hai hình chữ nhật cạnh nhau . Vậy tổng chu vi của 5 hình chữ nhật 1;2;3;4;5 hơn chu vi hình chữ nhật ABCD chính là 4 x 2 = 8 (AD) Trong hình chữ nhật nếu biết diện tích và tỉ số các cạnh ta chia hình chữ nhật thành các hình vuông nhỏ sau đó tính cạnh hình vuông nhỏ từ đó tìm chu vi hình chữ nhật. Bài 1: Một hình vuông có cạnh 10m .Người ta vẽ các hình vuông nhỏ (như hình vẽ) tính tổng diện tích các hình vuông Bài 2: Bài 3:Một thửa ruộng hình chữ nhật có chu vi 100m .Người ta tăng chiều dài lên 1/3 chiều dài thì chu vi hình chữ nhật mới là 120m. Tính diện tích thửa ruộng ban đầu . Bài 4:Một thửa ruộng hình chữ nhật có chu vi 100m .Người ta giảm chiều dài đi 1/3 chiều dài thì chu vi hình chữ nhật mới là 80m. Tính diện tích thửa ruộng ban đầu . Bài 5:Một thửa ruộng hình chữ nhật có chu vi 110m . Nếu tăng chiều rộng 5 m và giảm chiều dài 5 m thì diện tích thửa ruộng không thay đổi .Tính diện tích thửa ruộng Bài 6:Một thửa đất hình vuông trên thửa đất đó người ta đào một cái ao hình vuông cạnh cái ao cách đều cạnh thửa đất .Chu vi cái ao kém chu vi thửa đất là 64 m.Tính diện tích cái ao biết diện tích phần dất còn lại là 600m 2. Bài 7:Bác An có một mảnh đất vườn chữ nhật .ở một góc vườn bác đào một cái ao hình vuông có 1 cạnh cách chiều rộng mảnh vườn 33 m còn cạnh kia cách chiều dài mảnh vườn là 17 m .Biết diện tích phần đất còn lại là 1311m 2 . Tính diện tích mảnh vườn. Bài 8:Một thửa ruộng hình chữ nhật có chu vi 200 m .chiều dài hình chữ nhật hơn 2 lần chiều rộng là 10m.Tính diện tích thửa ruộng. Bài 9:Một thửa ruộng hình chữ nhật có chu vi 160 m .chiều dài hình chữ nhật kém 2 lần chiều rộng là 10m.Tính diện tích thửa ruộng. Bài 10:Một thửa ruộng hình chữ nhật có chu vi 200 m Dọc theo chiều dài người ta ngăn thửa ruộng thành 2 thửa ruộng nhỏ .Biết 1 trong 2 thửa ruộng là hình vuông và chu vi thửa ruộng hình vuông nhỏ hơn chu vi thửa ruộng hình chữ nhật nhỏ là 20m Tính diện tích thửa ruộng ban đầu. Bài 11:Một thửa ruộng hình chữ nhật có chu vi 160 m Dọc theo chiều dài người ta ngăn thửa ruộng thành 2 thửa ruộng nhỏ .Biết 1 trong 2 thửa ruộng là hình vuông và chu vi thửa ruộng Sáng kiến kinh nghiệm Sáng kiến kinh nghiệm : MỘT SỐ BIỆN PHÁP NÂNG CAO CHẤT LƯỢNG GIẢI CÁC BÀI TOÁN CÓ NỘI DUNG HÌNH HỌC CHO HỌC SINH LỚP 5 Một số biện pháp nâng cao chất lượng giải các bài toán có nội dung hình học cho học sinh lớp 5 1 Sáng kiến kinh nghiệm PHẦN I: PHẦN MỞ ĐẦU 1/Lí do chọn đề tài: Bậc tiểu học là bậc học nền tảng. Mỗi môn học ở Tiểu học đều góp phần vào việc hình thành và phát triển những cơ sở ban đầu rất quan trọng của nhân cách các em. Trong các môn học ở tiểu học, cùng với môn tiếng Việt, môn Toán có vị trí hết sức quan trọng bởi vì: - Các kiến thức kỹ năng của môn Toán ở Tiểu học có nhiều ứng dụng trong đời sống, chúng rất cần thiết cho người lao động, rất cần thiết để học các môn học khác ở tiểu học và chuẩn bị cho việc học tốt môn Toán ở bậc Trung học. - Môn Toán giúp học sinh nhận biết những mối quan hệ về số lượng và hình dạng không gian của thế giới hiện thực. Nhờ đó mà học sinh có được phương pháp nhận thức một số mặt của thế giới xung quanh và biết cách hoạt động có hiệu quả trong học tập và trong đời sống . - Môn Toán góp phần rất quan trọng trong việc rèn luyện phương pháp suy nghĩ, phương pháp giải quyết vấn đề; góp phần bước đầu phát triển năng lực tư duy, khả năng suy luận hợp lí và diễn đạt đúng cách phát hiện và cách giải quyết các vấn đề đơn giản, gần gũi trong cuộc sống; kích thích trí tưởng tượng, gây hứng thú học tập Toán; góp phần phát triển trí thông minh, cách suy nghĩ độc lập, linh hoạt; khả năng ứng xử và giải quyết những tình huống nảy sinh trong học tập và trong cuộc sống; nhờ đó mà hình thành và phát triển cho học sinh các phẩm chất cần thiết và quan trọng của người lao động mới trong xã hội hiện đại Trong chương trình Toán ở Tiểu học, giải toán là một mảng lớn, nó được dạy song song với việc rèn luyện kỹ năng tính toán cho học sinh, giải toán lớp 4+5 củng cố kỹ năng các bài giải toán hợp có lời văn ở lớp 3 nâng số lượng phép tính, trình bày bài giải các bài toán đơn, toán hợp với số tự nhiên, phân số, số thập phân, số đo đại lượng, bổ sung các bài toán về vận tốc, quãng đường, thời gian trong chuyển động thẳng đều. Đặc biệt các bài toán giải có nội dung hình học chiếm phần nhiều trong dạy toán có nội dung hình học ở lớp 4-5. Đối với các bài toán có nội dung hình học ở các lớp giai đoạn đầu chỉ yêu cầu học sinh quan sát các biểu tượng mà nhận ra các hình đơn giản, tính diện tích với các số đo cho sẵn(lớp 3). Một số biện pháp nâng cao chất lượng giải các bài toán có nội dung hình học cho học sinh lớp 5 2 Sáng kiến kinh nghiệm Đến lớp 4-5, yêu cầu về các yếu tố hình học đã được nâng cao, trong đó việc giảng dạy các bài toán thuộc loại này thực sự đã làm cho học sinh phát triển được năng lực tư duy ,đã góp phần tích cực vào việc giúp cho học sinh nắm chắc hơn kiến thức và các kỹ năng cơ bản của hình học, tạo khả năng giải toán một cách sáng tạo và linh hoạt. Hoạt động giải toán nhất là các bài toán liên quan đến hình học của học sinh Tiểu học là hoạt động trí tuệ đầy khó khăn, phức tạp đòi hỏi phải có một hệ thống kĩ năng cần thiết đáp ứng. Đối với học sinh Tiểu học, việc chiếm lĩnh tri thức và hình thành kỹ năng là hai mặt không thể tách rời của quá trình học tập. Thậm chí, có thể nói rằng bậc Tiểu học là bậc học của kỹ năng. Việc hình thành kỹ năng giải toán nói chung và kỹ năng giải toán có nội dung hình học nói riêng là con đường tốt nhất để trẻ chiếm lĩnh những thao tác trí tuệ nhằm phát triển chính bản thân mình. Việc giải toán có liên quan đến hình học giúp học sinh nắm vững công thức tính, biết nhận dạng nhanh các hình, các em giải được các bài toán thực tiễn liên quan đến việc vận dụng trực tiếp công thức tính. Ngoài ra nó còn giúp các em có cơ sở ban đầu về hình học để các em học tốt ở cấp học trên và trong ứng dụng thực tế. Trong thực tế việc tiếp thu kiến thức và hình thành kĩ năng môn Toán là vấn đề khó với nhiều học sinh. Việc nắm vững kiến thức và giải quyết các bài tập có nội dung hình học lại càng khó hơn đặc biệt đối với đối tượng học sinh trung Khóa luận tốt nghiệp Trần Thị Hương Quế MỤC LỤC MỞ ĐẦU Lí chon đề tài Mục đích nghiên cứu Nhiệm vụ nghiên cứu Phương pháp nghiên cứu Bố cục khóa luận NỘI DUNG Chương 1: Cơ sở lí luận 1.1 Phân loại toán có nội dung hình học 1.1.1 Các toán nhận dạng hình 1.1.2 Các toán chu vi diện tích hình 1.1.2.1 Các toán vận dụng công thức tính chu vi diện tích hình 1.1.2.2 Các toán giải phương pháp diện tích 1.1.3 Các toán cắt ghép hình 10 1.1.3.1 Các toán ghép hình 10 1.1.3.2 Các toán cắt hình 11 1.1.4 Các toán hình học không gian 13 1.2 Phương pháp tìm lời giải toán 14 Chương 2: Một số sai lầm học sinh giải toán có nội dung hình học 17 2.1 Sai lầm kiến thức 17 2.1.1 Nêu khái niệm hình hình học sai 17 2.1.2 Gọi tên hình sai 18 2.2 Sai lầm kĩ 18 2.2.1 Vẽ hình không tỉ lệ vẽ vào trường hợp đặc biệt 18 2.2.2 Sai lầm thay đổi vị trí hình 19 2.2.3 Sai lầm đếm hình 19 2.3 Sai lầm suy luận, nhận định 21 2.3.1 Sai công thức 21 2.3.2 Căn sử dụng không xác 22 -1- Khóa luận tốt nghiệp Trần Thị Hương Quế 2.4 Một số sai lầm khác 23 2.4.1 Sai lầm đơn vị đo 23 2.4.2 Xét thiếu trường hợp 24 Chương 3: Một số tập minh họa 27 3.1 Sai lầm kiến thức 27 3.1.1 Nêu khái niệm hình hình học sai 27 3.1.2 Gọi tên hình sai 27 3.2 Sai lầm kĩ 27 3.2.1 Vẽ hình không tỉ lệ vẽ vào trường hợp đặc biệt 27 3.2.2 Sai lầm thay đổi vị trí hình 34 3.3 Sai lầm suy luận, nhận định 36 3.3.1.Sai công thức 42 3.3.2 Căn sử dụng không xác 49 3.4 Một số sai lầm khác 60 3.4.1.Sai lầm đơn vị đo 60 3.4.2 Xét thiếu trường hợp 64 TÀI LIỆU THAM KHẢO -2- Khóa luận tốt nghiệp Trần Thị Hương Quế LỜI CẢM ƠN Trong trình triển khai thực đề tài:“ Một số sai lầm học sinh tiểu học giải toán có nội dung hình học”, tác giả khóa luận thường xuyên nhận giúp đỡ, tạo điều kiện thầy, cô giáo khoa Giáo dục Tiểu học đặc biệt Th.s Dương Thị Hà – người hướng dẫn khoa học Tác giả khóa luận xin bày tỏ lòng biết ơn gửi lời cảm ơn chân thành tới thầy, cô giáo giúp tác giả hoàn thành khóa luận Hà Nội, ngày 15 tháng 05 năm 2013 Tác giả khóa luận Trần Thị Hương Quế -3- Khóa luận tốt nghiệp Trần Thị Hương Quế LỜI CAM ĐOAN Tôi xin cam đoan khóa luận tốt nghiệp kết nghiên cứu hướng dẫn Th.s Dương Thị Hà Kết thu hoàn toàn trung thực không trùng với kết nghiên cứu tác giả khác Hà Nội, ngày 25 tháng 05 năm 2013 Tác giả khóa luận Trần Thị Hương Quế -4- Khóa luận tốt nghiệp Trần Thị Hương Quế MỞ ĐẦU Lí chọn đề tài Giáo dục nói chung giáo dục Tiểu học nói riêng mối quan tâm hàng đầu xã hội Thực tế cho thấy giáo dục Tiểu học phận thiếu hệ thống giáo dục quốc dân Đây bậc học đặt vi mạch cho phát triển kết nối với bậc học Một môn học quan tâm ưu tiên hàng đầu trường Tiểu học, môn Toán Mục tiêu dạy học môn Toán không có kiến thức ban đầu số học, số tự nhiên, phân số, số thập phân, đại lượng thông dụng, số yếu tố hình học thống kê dơn giản; hình thành kỹ thực hành tính, đo lường, giải toán có nhiều ứng dụng thiết thực đời sống; góp phần bước đầu phát triển lực tư duy, khả suy luận hợp lí diễn đạt đúng, cách phát giải vấn đề đơn giản, gần gũi sống, kích thích trí tưởng tượng gấy hứng thú học tập toán, hình thành bước đầu phương pháp tự học làm việc có kế hoạch, khoa học, chủ động, linh hoạt sáng tạo; góp phần hình thành rèn luyện phẩm chất, đức tính cần thiết người lao động xã hội đại Trong hoạt động dạy học Toán việc giải toán lại coi nhiệm vụ trung tâm, hoạt động nhằm thực hai mục tiêu là: củng cố, vận dụng tri thức, rèn luyện kỹ năng, kỹ xảo; phát triển tư cho học sinh Do vấn đề rèn luyện kĩ giải toán cho học sinh nhà giáo dục giáo viên quan tâm nghiên cứu Môn Toán Tiểu học có nhiều dạng toán khác nhau: dạng