Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 30 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
30
Dung lượng
3,97 MB
Nội dung
S GD-T QUNG NGI TRNG THPT BA T KIM TRA TIT Mụn: Toỏn Gii Tớch 12A1 Nm hc: 2017 -2018 H v tờn hc sinh: CU P N CU P N ( Thi gian lm bi: 45 phỳt) 10 11 14 15 16 17 18 19 20 21 22 23 24 12 13 25 Cõu th hỡnh di l ca hm s no y x -1 O -2 A y = - x4 + 2x2 B y = - x3 + 3x C y = x3 - 3x D y = x4 - 2x2 Cõu Cho hm s y = x3 - 2x2 + 3x +1 cú th l ( C ) Tip tuyn ca ( C ) song song vi ng thng D : y = 3x +1 cú phng trỡnh l: A y = 3x - B y = 3x - 26 C y = 3x - D y = 3x - Cõu Hm s y = - x3 + 3x2 + 9x + ng bin trờn khong: A ( 3;+Ơ ) B ( - 3;1) C ( - Ơ ;- 3) 29 D ( - 1;3) Cõu Cho hm s y = f ( x) xỏc nh, liờn tc trờn Ă v cú bng bin thiờn: x- Ơ y' y+Ơ - + - +Ơ -Ơ Khng nh no sau õy l ỳng ? A Hm s cú giỏ tr cc i bng B Hm s cú GTLN bng 1, GTNN bng - C Hm s cú hai im cc tr D th hm s khụng ct trc honh Cõu Giỏ tr nh nht ca hm s y = x - 5+ A - B Cõu Hm s y = - x4 - 3x2 +1 cú: A Mt cc i v hai cc tiu C Mt cc i nht x ộ1 ự ở2 ỷ ;5ỳ trờn on ờ ỳ bng: C - D - B Mt cc tiu v hai cc i D Mt cc tiu nht 2x - Cõu Giỏ tr ca m ng thng d : x + 3y + m= ct th hm s y = ti hai im M , x- N cho tam giỏc AMN vuụng ti im A ( 1;0) l: A m= B m= C m= - D m= - Cõu Vi tt c giỏ tr no ca m thỡ hm s y = mx +( m- 1) x +1- 2m ch cú mt cc tr: A m B mÊ ộ mÊ D ờm C Ê mÊ Cõu 9: Hm s no sau õy l hm s nghch bin trờn Ă ? A y = x x + B y = x + x x + C y = x + x D y = Cõu 10 Khng nh no sau õy l ỳng v tớnh n iu ca hm s y = x x + ? A Hm s nghch bin trờn khong ( 0;2) C Hm s nghch bin trờn khong ( 0; + ) x+3 x +1 B Hm s ng bin trờn khong ( 0;2) D Hm s ng bin trờn khong ( ;2) Cõu 11 Hm s y = x + x + ng bin trờn khong no ? A (;0) B (0; +) C (1; +) D (1;0) Cõu 12 Tỡm giỏ tr ca m hm s y = x 3mx + ( 2m + 1) x t cc tr ti x = A m = B m = C m = D Khụng tn ti m m Cõu 13 Cú bao nhiờu giỏ tr ca th hm s y = x 2(m + 1) x + m cú im cc tr A, B, C cho BC = , ú A l im cc tr thuc trc tung, B v C l im cc tr cũn li A B C D 2x cú ng tim cn ng v ng tim cn ngang l ? x 1 B x = 2, y = C x = 2, y = D x = , y = 2 Cõu 14 th hm s y = A x = 2, y = Cõu 15 th hm s y = x + x + + x cú bao nhiờu ng tim cn ngang ? A B C D 3 Cõu 16 Cho th hm s ( C) y = x x + Khng nh no sau õy l sai ? A th (C) nhn im I (0;3) lm tõm i xng B th (C) ct trc honh ti hai im phõn bit C th (C) tip xỳc vi ng thng y = D th (C) ct trc tung ti mt im Cõu 17 Cho th hm s ( C) y = x x Khng nh no sau õy l sai ? A th (C) nhn trc tung lm trc i xng B th (C) ct trc honh ti hai im phõn bit C th (C) cú im cc tr to thnh mt tam giỏc vuụng D th (C) tip xỳc vi ng thng y = Cõu 18 Bng bin thiờn sau ca hm s no ? x y' - + - 0 + 0 + - y - -4 A y = x x B y = x + x C y = x x D y = x + x Cõu 19 Gi A, B l giao im ca hai th ( C ) : y = di on AB l: A AB = 2x v ng thng d : y = 2x Khi ú x1 B AB = 2 C AB = 10 D AB = Cõu 20.S giao im ca th hm s y = ( x 3)( x + x + 4) vi trc honh l : A B C D Cõu 21 Tip tuyn ca th hm s y = A y = x + B y = x + x+2 ti giao im vi trc Ox cú phng trỡnh : x +1 C y = x D y = x Cõu 22 Cho hm s y = ax3 + bx2 + cx + d ( a 0) cú th nh hỡnh v di õy Khng nh no sau õy v du ca a, b, c, d l ỳng nht ? A a, d > B a > 0, c > > b C a, b, c, d > 3x Cõu 23 th hm s y = cú s ng tim cn l ? x 7x + A B C D a, d > 0, c < D x2 + x + Cõu 24 Kớ hiu m v M ln lt l giỏ tr ln nht giỏ tr nh nht ca hm s y = trờn x+ M on 0;3 Tớnh giỏ tr ca t s m A B C D 3 m+1) x + 2m+ ( Cõu 25 Vi cỏc giỏ tr no ca tham s m thỡ hm s y = nghch bin trờn khong x+m ( - 1;+Ơ ) ? A m< B m> ộ m< C ờm> D 1Ê m< S GD-T QUNG NGI TRNG THPT BA T KIM TRA TIT Mụn: Toỏn Gii Tớch 12A1 Nm hc: 2017 -2018 H v tờn hc sinh: CU P N CU P N ( Thi gian lm bi: 45 phỳt) 10 11 14 15 16 17 18 19 20 21 22 23 24 Cõu th hỡnh bờn l th ca hm s no bn hm s di õy ? A y = x+2 x- B y = x- x +1 C y = 2- x x +1 D y = 12 13 25 y x- x- -1 O Cõu H s gúc ca tip tuyn th hm s y = x- x +1 x ti giao im ca th hm s vi trc tung bng: A B C - Cõu Cho hm s y = f ( x) cú th nh hỡnh v bờn D - y Khng nh no sau õy l sai: A Hm s ng bin trờn khong ( - Ơ ;3) v ( 1;+Ơ ) B Hm s t cc tr ti cỏc im x = v x = x C Hm s ng bin trờn khong ( - Ơ ;0) v ( 1;+Ơ ) -1 O D Hm s nghch bin trờn khong ( 0;1) Cõu Cho hm s y = f ( x) liờn tc trờn Ă v cú bng bin thiờn nh hỡnh di õy S mnh sai cỏc mnh sau õy? I Hm s ng bin trờn cỏc khong ( - Ơ ;- 5) v ( - 3;- 2) II Hm s ng bin trờn khong ( - Ơ ;5) III Hm s nghch bin trờn khong ( - 2;+Ơ ) IV Hm s ng bin trờn khong ( - Ơ ;- 2) A B C Cõu Hm s A x = x- y= 2x +1 D t giỏ tr ln nht trờn on [ 0;2] ti: B x = C x = D x = - Cõu th hm s no sau õy khụng cú cc tr ? A y = x3 - x2 - x B y = - x3 + x2 +1 C y = - x3 + x2 - x D y = x3 + x2 - x +1 Cõu Tỡm m ng thng d : y = x - m ct th hm s ( C ) : y = ti hai im phõn bit x- A, B cho AB = A m= B m= C m= 4- x x - 3x - C Cõu S ng tim cn ca th hm s y = D m= l: A B D Cõu Cho hm s y = f ( x) liờn tc trờn Ă v phng trỡnh f ( x ) = cú ba nghim thc phõn bit Xột cỏc hỡnh di õy, nhng hỡnh no cú th l th ca hm s f ( x ) ? (1) (2) (3) (4) A v B 1, v C v D v Cõu 10 Tỡm tng giỏ tr ln nht v nh nht ca hm s f (x) = 2x + 4x + 10 trờn on [0; 2] ? A 12; B 12 C D x + 4x + Cõu 11 Tỡm giỏ tr ln nht ca hm s f ( x ) = trờn on [ 1;3] x+3 14 26 f ( x ) = A max B max f ( x ) = C max f ( x ) = D max f ( x ) = [ 1;3] [ 1;3] [ 1;3] [ 1;3] 3 m y = f x = x mx + m x + ( ) ( ) Cõu 12 Tỡm cho hm s t cc i ti x = A m = B m = C m = D m x +1 Cõu 13: Cho th hm s (C): y = , cỏc kt lun sau, kt lun no ỳng: x +x2 A th hm s (C) cú mt tim cn ng l x = v mt tim cn ngang l trc honh B th hm s (C) cú hai tim cn ng l x = v x = mt tim cn ngang l trc honh C th hm s (C) cú mt tim cn ngang l trc tung v hai tim cn ng l x = 2v x = D th hm s (C) cú mt tim cn ngang l trc tung v mt tim cn ng nht l x=1 mx + Cõu 14: Vi giỏ tr no ca m thỡ hm s y = tng trờn tng khong xỏc nh ? x A m > B m < C m > D m < Cõu 15: Gi M v m ln lt l GTLN v GTNN ca hm s y = x x trờn xỏc nh Khi ú M m bng: A B C D ỏp s khỏc Cõu 16 th hỡnh bờn l th ca hm s no bn hm s di õy? A y = x4 + B y = x3 3x2 + y C y = x4 - 2x2 + D y = x4 + 2x2 + x O Cõu 17 Cho hm s y = 2x +1 x- cú th l ( C ) Phng trỡnh tip tuyn ca ( C ) cú h s gúc bng l: A y = - 5x + v y = - 5x + 22 B y = 5x + v y = - 5x + 22 C y = - 5x + v y = - 5x - 22 D y = - 5x - v y = - 5x + 22 Cõu 18 Hm s y = - x - x - nghch bin trờn khong: A ( 0;+Ơ ) B ( - Ơ ;0) C ( - 1;+Ơ ) D ( - Ơ ;1) Cõu 19 Giỏ tr ln nht ca hm s y = 5- 4x trờn on [- 1;1] bng: A B C D x +3 - m= cú nghim õm: Cõu 20 Tỡm tt c giỏ tr ca m phng trỡnh x- B - < m- C - Ê mÊ D Cõu 21 Tỡm m hm s y = - x3 + 3x2 + m- cú giỏ tr cc i l ymax , giỏ tr cc tiu l ymin tha ymax ymin = : m= hoc m= A m= - hoc m= - B C m= - hoc m= D m= hoc m= - y = f ( x ) Cõu 22 Cho hm s cú bng bin thiờn sau: Khng nh no di õy l khng nh sai ? A th hm s cú mt tim cn ngang y = C f ( x) = yCT v max f (x) = yCẹ B Hm s t cc i v cc tiu D Hm s ng bin trờn khong ( 2; + ) 2x2 + x + x +1 C yCT = Cõu 23 Tỡm giỏ tr cc tiu yCT ca hm s y = A yCT = B yCT = D yCT = Cõu 24 Tỡm giỏ tr nh nht ca hm s y = x + x + trờn on [ 4; 1] A miny = B miny = C miny = 28 D miny = [ 4;1] [ 4; 1] [ 4; 1] Cõu 25 th ca hm s no di õy cú tim cn ng ? x2 x2 + x + A y = x + x + B y = C y = x + x +1 x2 [ 4; 1] D y = x + x + S GD-T QUNG NGI TRNG THPT BA T KIM TRA TIT Mụn: Toỏn Gii Tớch 12A1 Nm hc: 2017 -2018 H v tờn hc sinh: CU P N CU P N ( Thi gian lm bi: 45 phỳt) 10 11 14 15 16 17 18 19 20 21 22 23 24 12 13 25 Cõu th hỡnh bờn l th ca hm s no sau õy? y = x3 - 3x2 +1 A y B y = - x4 + 2x2 - x -1 C y = - x4 + 2x2 +1 D Cõu Hm s y = A y = x4 - 2x2 +1 Cõu th hm s y = A O x2 +1 x4 + 3x2 + cú bao nhiờu ng tim cn ? B 2x - x- C D nghch bin trờn khong no ? ( - Ơ ;+Ơ ) B ( - Ơ ;4) C ( 0;+Ơ ) D ( 3;4) Cõu Giỏ tr ln nht ca hm s y = x2 + l: - A B C D 10 Cõu Tỡm tt c cỏc giỏ tr ca m PT x4 - 2x2 +1+ m= cú bn nghim phõn bit - 1< m< A m D Cõu Tỡm m hm s y = x3 + mx2 +( m2 - 4) x + t cc tiu ti x = A m= - B m= - C m= D Khụng cú m Cõu th ( C ) ca hm s y = A M ( 0;0) x - 2016 2x +1 B M ( 0;- 2016) ct trc tung ti im M cú ta ? C M ( 2016;0) D ( 2016;- 2016) ax + b cú th ( C ) th ( C ) nhn ng thng y = lm tim cn x2 ngang v ( C ) i qua im A ( 3;1) Tớnh giỏ tr ca biu thc P = a + b A P = B P = C P = D P = ( a 0) Cõu Cho th ca hm s y = ax + bx + c nh hỡnh v Khng nh no sau õy l khng nh ỳng ? Cõu Cho hm s y = A a < 0, b > 0, c > B a > 0, b < 0, c < Cõu 10 Cho hm s x +1 y= 2x - C a > 0, b > 0, c < D a < 0, b > 0, c < Chn phng ỏn ỳng cỏc phng ỏn di õy ? y= A [- 1;2] y= B max [- 1;0] y= C [ 3;5] 11 D max y = [- 1;1] Cõu 11 Trong cỏc hm s sau, hm s no va cú khong ng bin va cú khong nghch bin trờn xỏc nh ca nú ( I) y= 2x +1 x +1 A ( I ) ( II ) y = - x4 + x2 - B ( II ) ( III ) y = x3 + 3x - C ( II ) ; ( III ) D ( I ) ; ( III ) Cõu 12 Tỡm im cc tiu ca th hm s y = - x3 + 3x2 + A ( 0; 2) B M ( 0;4) Cõu 13 Cho hm s y = f ( x) = C M ( 2;0) 3x +1 1- 2x D (0; 4) Khng nh no di õy l khng nh ỳng ? A th hm s y = f ( x) cú tim cn ngang l y = B th hm s y = f ( x) cú tim cn ng l x = C th hm s y = f ( x) cú tim cn ngang l y = - D th hm s y = f ( x) khụng cú tim cn Cõu 14 th hm s y = x3 - 3x2 - 2x ct trc honh ti bao nhiờu im ? A B C D Cõu 15 ng thng y = m ct th hm s y = x3 - 3x + ti ba im phõn bit khi: < m< A Ê m< B m> C < mÊ D Cõu 16 Cho hm s y = - x + 3x +1 , cú th l ( C ) Vit phng trỡnh tip tuyn ca th hm s ( C ) ti im A ( 3;1) A y = 20- 9x Cõu 17 Hm s y = A mÊ B 9x + y- 28 = m x + x2 + x + 2017 ỡù m< B ùớù mạ ùợ C y = 9x + 20 D 9x - y + 28 = cú cc tr v ch khi: ỡù mÊ C ùớù mạ ùợ D m v m B m > C m < 4 Cõu 22 Hm s no sau õy ng bin trờn Ă A y = x- x+2 B y = x3 - x - x C y = x4 - 4x - D m < D v m y = x3 + 3x2 + 3x - Cõu 23 Hm s bc ba y = ax3 + bx2 + cx + d cú th cú bao nhiờu cc tr ? A 1, hoc B hoc C 0, hoc D Cõu 24 Gi A, B, C ln lt l ba im cc tr ca thỡ hm s y = 2x4 - 4x2 +1 Tớnh din tớch ca tam giỏc ABC A B C D Cõu 25 Bit rng th hm s y = ax +1 bx - cú tim cn ng l x = v tim cn ngang l y = Tớnh giỏ tr ca biu thc P = a + b A P =1 B P = C P = D P = S GD-T QUNG NGI TRNG THPT BA T KIM TRA TIT Mụn: Toỏn Gii Tớch 12A1 Nm hc: 2017 -2018 H v tờn hc sinh: CU P N CU P N ( Thi gian lm bi: 45 phỳt) 10 11 14 15 16 17 18 19 20 21 22 23 24 12 13 25 Cõu ng cong hỡnh di õy l th ca hm s no ? 2x 2x + 2x C y = D y = x+2 x+2 x2 x+2 Cõu th hm s y = cú bao nhiờu ng tim cn ? x2 + A B C D Cõu Tỡm iu kin ca a, b, c hm s y = ax + bx + cx + d (a 0) ng bin trờn Ă A a > 0, b 3ac B a < 0, b 3ac C a < 0, b 3ac D a > 0, b 3ac 2x Cõu Tỡm giỏ tr cc tiu yCT ca hm s y = x + x A yCT = 3 B yCT = C yCT = 3 D yCT = 3 A y = 2x + x2 B y = Cõu Bit ng thng d : y = x + ct th ( C ) ca hm s y = x + 3x + ti im nht, kớ hiu ( x0 ; y0 ) l ta ca im ú Tỡm y0 A y0 = B y0 = C y0 = D y0 = x + 2x trờn on [ 0;3] x+2 12 17 14 f ( x ) = 12 A max f ( x ) = B max C max f ( x ) = D max f ( x ) = 0;3 [ ] [ 0;3] [ 0;3] [ 0;3] 5 x +1 Cõu Tỡm tt c cỏc giỏ tr thc ca a cho th hm s y = cú ỳng mt tim x xa + a cn ng A a = B a = hoc a = C a = hoc a = D a = 2 Cõu Tỡm giỏ tr ln nht ca hm s f ( x ) = TRNG THPT BA T Mụn: Toỏn Gii Tớch 12A1 Nm hc: 2017 -2018 H v tờn hc sinh: CU P N CU P N ( Thi gian lm bi: 45 phỳt) 10 11 14 15 16 17 18 19 20 21 22 23 24 12 13 25 Cõu 1: th hm s sau l ca hm s no? A y = x + x B y = x + x + C y = x + x + D y = x + x + 1 Cõu 2: S im cc tr ca th hm s y = x x + l ? A B C D x Cõu 3: Cho hm s sau: y = , nhng mnh no ỳng cỏc mnh sau ? x3 (1) : Hm s luụn nghch bin trờn D = Ă \ { 3} (2) : th hm s cú tim cn ng l x = ; tim cn ngang l y = (3) : Hm s ó cho khụng cú cc tr (4): th hm s nhn giao im I ( 3;1) ca ng tim cn lm tõm i xng A (1),(3),(4) B (3),(4) C (2),(3),(4) D (1), (4) x Cõu 4: Hm s y = ng bin trờn khong no ? x +1 A ( ; 1) B ( 1; + ) C ( 1;1) D ( ; 1) v ( 1; + ) Cõu 5: Cho hm s y = x x + Giỏ tr cc i ca hm s bng ? A B C -1 D Cõu 6: Tỡm giỏ tr nh nht ca hm s y = x x x + trờn [ 4; 4] f ( x ) = 21 A Min [ 4;4] f ( x ) = 14 B Min [ 4;4] f ( x ) = 11 C Min [ 4;4] f ( x ) = 70 D Min [ 4;4] x 3mx (C) ct ng thng y = mx ( d ) ti im phõn bit? x3 19 19 19 19 A m < B m < v m C m > D m v m 12 12 12 12 2x2 + Cõu 8: th hm s y = cú bao nhiờu tim cn ? x 2x A B C D Cõu ng cong hỡnh v di õy l th ca mt hm s bn hm s c lit kờ bn ỏp ỏn A, B, C, D di õy Hi hm s ú l hm s no ? Cõu 7: Tỡm m hm s y = A y = x2 + x B y = x3 + 5x + C y = x4 2x2 + D y = x4 + 2x2 + Cõu 10 Hm s y = x3 2x2 + x + ng bin trờn khong no ? A ; ữ v ( 1;+ ) B ; ữ C ( ;1) v ( 2;+ ) D ;1ữ 3 Cõu 11 Cho hm s y = f (x) xỏc nh v liờn tc trờn Ă v cú bng bin thiờn sau: Khng nh no sau õy l khng nh sai ? A Hm s cú ba cc tr B Hm s t giỏ tr cc i ti x = v x = 16 C Hm s t giỏ tr cc i ti x = D Giỏ tr cc i ca hm s yCẹ = x + 2x Cõu 12 Cho hm s f ( x) = Khng nh no sau õy l khng nh ỳng ? x+ A Hm s luụn nghch bin trờn Ă B Hm s luụn nghch bin trờn Ă \ { 2} C Hm s luụn ng bin trờn Ă D Hm s ng bin trờn khong ( ; 2) v ( 2; + ) x2 ax + b vi a, b l cỏc s thc th hm s ó cho cú im cc i x1 l A(0; 1) Tớnh giỏ tr ca biu thc P = 2a + b A P = B P = C P = D P = x+ Cõu 14 Tỡm ng tim cn ngang ca th hm s y = x2 + 1 A y = B y = C y = D y = 2 20x + 10x + Cõu 15 Tỡm giỏ tr nh nht ca hm s y = trờn on 3; 3x2 + 2x + 13 153 A B C D 22 x Cõu 16 Bit rng ng thng y = x ct th hm s y = ti im nht, kớ hiu im ú x l ( x0; y0 ) Tỡm y0 Cõu 13 Cho hm s y = A y0 = B y0 = C y0 = D y0 = Cõu 17 Cho hm s y = x + x + x + , khng nh no sau õy ỳng v tớnh n iu ca hm s: A Hm s ng bin trờn ( ;1) v ; + ữ B Hm s ch nghch bin trờn ; + ữ C Hm s ng bin trờn 1; ữ D Hm s nghch bin trờn ( ; 1) v ; + ữ Cõu 18 Cho hm s y = f ( x ) = x cú th (C) Khng nh no sau õy l ỳng? x2 A th (C) cú mt tim cn ng l x = v khụng cú tim cn ngang B th (C) cú ỳng mt tim cn ng l x = v mt tim cn ngang l y = C th (C) cú hai tim cn ng l x = 2; x = v mt tim cn ngang l y = D th (C) cú hai tim cn ng l x = 2; x = v khụng cú tim cn ngang Cõu 19 Hm s y = x x + 12 x + nghch bin trờn khong no? A ( ;1) B ( 1; ) C ( 2;3) D ( 2; + ) Cõu 20 Trong cỏc hm s sau hm s no ng bin trờn Ă ? A y = 3sin ( x ) B y = x + 3x + C y = x + x + D y = x + x + 13 Cõu 21 Cho hm s y = x + x v cỏc kt qu sau: (I): yCT = ti x = (II): yCD = ti x = (III): yCD = ti x = Kt lun no ỳng: A Ch I B Ch II C Ch III Cõu 22 Tỡm giỏ tr nh nht ca hm s y = y=6 A [ 2;4] A y = [ 3;5] 28 x2 + trờn on [ 2; 4] x y = B [ 2;4] Cõu 23 Tỡm giỏ tr nh nht ca hm s y = B y = [ 3;5] D C I, II, III y = C [ 2;4] D y = [ 2;4] 19 5x + trờn [ 3;5] x2 y = C [ 3;5] y=5 D [ 3;5] Cõu 24 Cho th ca hm s y = ax + bx + c (a 0) nh hỡnh v Khng nh no sau õy l khng nh ỳng ? A a < 0, b > 0, c > B a > 0, b < 0, c < C a > 0, b > 0, c < 2x Cõu 25 Tỡm cỏc khong ng bin ca hm s y = x+2 A ( ; ) v ( 2; + ) B ; ữ v ; + ữ C ; ữ v ; + ữ D ( ; ) v ( 2; + ) D a < 0, b > 0, c < S GD-T QUNG NGI TRNG THPT BA T KIM TRA TIT Mụn: Toỏn Gii Tớch 12A1 Nm hc: 2017 -2018 H v tờn hc sinh: CU P N CU P N ( Thi gian lm bi: 45 phỳt) 10 11 14 15 16 17 18 19 20 21 22 23 24 12 13 25 Cõu S im cc tr ca hm s y = ax + bx + cx + d (a 0) cú th l ? A B hoc C hoc D hoc hoc Cõu Tỡm giỏ tr nh nht ca hm s f ( x ) = + sin x + sin x A B 15 C 17 D x + x + 15 Cõu im M thuc th ( C ) ca hm s y = v M cú ta l cỏc s nguyờn x+3 Hi cú bao nhiờu im M tha bi toỏn ? A B C D Cõu Cho hm s y = x + mx + ( 2m 1) x Mnh no sau õy l sai ? A m < thỡ hm s cú hai cc tr B Hm s luụn luụn cú cc i v cc tiu C m thỡ hm s cú cc i v cc tiu D m > thỡ hm s cú cc tr 2x +1 Cõu Tp xỏc nh ca hm s y = l: x A D = Ă B D = ( ;3) C D = ; + ữ\ { 3} D D = ( 3; + ) x +1 Cõu Tỡm m th hm s y = cú ỳng mt ng tim cn ng x + 2mx + 3m + A m { 5; 1; 4} B m ( 1; ) C m ( ; 1) ( 4; + ) D m { 1; 4} Cõu Hm s y = x x + 12 x + nghch bin trờn khong no ? A ( ;1) B ( 1; ) C ( 2;3) D ( 2; + ) Cõu th hm s y = x + x 13 x + cú bao nhiờu im cc tr ? A B C D Cõu Vi giỏ tr no ca m ng thng y = x + m i qua trung im ca on ni hai im cc tr ca th hm s y = x x + x ? A m = B m = C m = D m = 3 Cõu 10 Tỡm giỏ tr ln nht, giỏ tr nh nht ca hm s y = x x trờn on [ 1; 4] l: A max y = 51; y = B max y = 51; y = [ 1;4] [ 1;4] y = 51; y = C max [ 1;4] [ 1;4] Cõu 11 Cho hm s y = f ( x) cú bng bin thiờn: [ 1;4] [ 1;4] y = 1; y = D max [ 1;4] [ 1;4] Khng nh no sau õy l khng nh ỳng ? A th hm s cú tim cn ng y = v tim cn ngang x = B th hm s cú nht mt tim cn C th hm s cú ba tim cn D th hm s cú tim cn ng x = v tim cn ngang y = x2 x + Cõu 12 Hm s y = nghch bin trờn khong no ? x A ( ;1) B ( 1; ) C ( 2; + ) D ( ;0 ) Cõu 13 Kớ hiu m v M ln lt l GTNN, GTLN ca hm s y = x + 12 3x Tớnh t s m M m m m m = = = = B C D M M M M Cõu 14 S giỏ tr cc tr ca hm s y = x x l: A B C D Vụ s Cõu 15 Giỏ tr ln nht ca hm s y = x x + x l: 104 A -4 B C 100 D Khụng tn ti 27 Cõu 16 S im cc tr ca hm s y = x x + x l: A B C D Vụ s 2x Cõu 17 Chn phỏt biu ỳng núi v tim cn ca th hm s y = x+2 A Tim cn ngang l ng thng y = B Tim cn ng l ng thng x = C Tim cn ng l ng thng y = D Tim cn ngang l ng thng y = Cõu 18 Khong ng bin ca hm s y = x x + x l: A ( ;3) B ( 1; + ) C ( 1;3) D ( 3; + ) Cõu 19 Tõm i xng ca th hm s y = x x + x cú ta l: 3 1 A I 2; ữ B I 2; ữ C I 2; ữ D I 2; ữ 3 Cõu 20 Hm s no di õy cú bng bin thiờn sau: A x y' + 0 yCẹ + + + y A y = x 3x + B y = x3 + 3x + C y = x x D y = x x + Cõu 21 th hm s no sau õy khụng cú ba tim cn ? x +3 x2 + x + x3 + x x3 + A y = B y = C D y= y= 2x 2x x2 x3 x 3x + x +1 Khng nh no sau õy l khng nh ỳng ? Cõu 22 Cho hm s f ( x ) = 5x A Hm s luụn nghch bin trờn Ă B Hm sú luụn nghch bin trờn hai khong ; ữ v ; + ữ C Hm s ng bin trờn Ă D Hm s ng bin trờn hai khong ; ữ v ; + ữ Cõu 23 Cho hm s f ( x) = x + + x Khng nh no sau õy l khng nh ỳng ? A f ( x ) = v max f ( x ) = [ 2;2] [ 2;2] f ( x ) = v max f ( x ) = 2 C [ 2;2] 2;2 [ ] B f ( x ) = v max f ( x ) = [ 2;2] f ( x ) = v max f ( x ) = D [ 2;2] 2;2 [ Cõu 24 Giao im hai ng tim cn ca th hm s y = ( ) A T 1; B T ( ) 3;1 [ 2;2] C T ( 1;3) ] x3 + 3x + cú ta l ? x3 D T ( 3;1) Cõu 25 Tỡm tt c giỏ tr thc ca tham s m cho hm s y = x3 3x2 + 3mx + 20m+ 17 ng bin trờn Ă A m ( ; + ) B m ( 1; + ) C m 1; + ) D m ( ;1 S GD-T QUNG NGI TRNG THPT BA T KIM TRA TIT Mụn: Toỏn Gii Tớch 12A1 Nm hc: 2017 -2018 H v tờn hc sinh: CU P N CU P N ( Thi gian lm bi: 45 phỳt) 10 11 14 15 16 17 18 19 20 21 22 23 24 12 13 25 2x luụn: x A ng bin trờn Ă B Nghch bin trờn Ă C ng bin trờn tng khong xỏc nh D Nghch bin trờn tng khong xỏc nh Cõu Giỏ tr cc i ca hm s y = x + x x l: Cõu Hm s y = A B + C 32 D 32 x2 + x + l: x B ( ; 1) v ( 3; + ) Cõu 3: Khong ng bin ca hm s y = A ( ; 3) v ( 1; + ) C ( 3; + ) D ( 1;3) Cõu 4: ng thng ( d ) : y = x + ct th (C) ca hm s y = x ti hai im Gi x x1 , x ( x1 < x ) l honh giao im ca hai th hm s, tớnh y 3y1 A y 3y1 = 25 C y 3y1 = D y 3y1 = 27 Cõu Mt vt ri t vi phng trỡnh chuyn ng S = gt , ú g = 9,8m / s v t tớnh bng giõy (s) Vn tc ca vt ti thi im t = 5s bng: A 25m / s B 49m / s C 10m / s D 18m / s 2x Cõu Hm s y = luụn: x A ng bin trờn Ă B Nghch bin trờn Ă C ng bin trờn tng khong xỏc nh D Nghch bin trờn tng khong xỏc nh Cõu Hm s y = ( m 3) x 2mx + khụng cú cc tr khi: m = A m B C m = D m = m = Cõu Hm s no sau õy ng bin trờn Ă ? A y = tan x B y 3y1 = 10 B y = 2x4 + x2 C y = x3 3x + Cõu Gi Q l giỏ tr ln nht v K l giỏ tr nh nht ca hm s y = D y = x3 + x2 + trờn on [ 1; 2] Khi ú x +1 24Q + 27 K 1997 l: 3929 3925 3927 3923 A B C D 2 2 Cõu 10: th hm s no sau õy luụn nm di trc honh A y = x + 3x B y = x 2x + x C y = x + 2x D y = x 4x + giỏ tr ca biu thc x2 + x + l: x B ( ; 1) v ( 3; + ) Cõu 11: Khong ng bin ca hm s y = A ( ; 3) v ( 1; + ) C ( 3; + ) D ( 1;3) ti hai im Gi x x1 , x ( x1 < x ) l honh giao im ca hai th hm s, tớnh y 3y1 A y 3y1 = B y 3y1 = 10 C y 3y1 = 25 D y 3y1 = 27 Cõu 13: Tớnh tt c cỏc giỏ tr ca tham s m hm s y = ( m + 1) x x + ( 2m + 1) x + cú cc tr ? A m ;0 B m ;0 ữ\ { 1} C m ;0 ữ D m ;0 \ { 1} Cõu 14 Kt lun no sau õy l khụng ỳng v th hm s y = ax + bx + cx + d ( a ) ? A th hm s bc ba luụn ct trc honh ti ớt nht mt im B th hm s bc ba nhn im cú honh l nghim ca PT y " = lm tõm i xng C Nu PT y ' = cú nghim phõn bit thỡ th hm s bc ba cú im cc i, im cc tiu D th hm s bc ba khụng cú im cc tr v ch phng trỡnh y ' = vụ nghim x + 3x + Cõu 15 Hm s y = ng bin trờn: x +1 A ( ; 1) v ( 1; + ) B ( ; 1) ( 1; + ) C ng bin vi mi x D ( 1;1) Cõu 12: ng thng ( d ) : y = x + ct th (C) ca hm s y = x Cõu 16 Cho th hm s y = f ( x ) = x x nh hỡnh v T th suy c s nghim ca phng trỡnh x x = m vi m ( 3; ) l: A B C D Cõu 17 Bit th hm s y = x + bx + c ch cú mt im cc tr l im cú ta ( 0; 1) thỡ b v c tha iu kin no ? A b v c = B b < v c = C b v c > D b > v c tựy ý Cõu 18 Vi giỏ tr no ca m thỡ ng thng y = x + m i qua trung im ca on ni im cc tr ca th hm s y = x x + x ? A B C D Cõu 19 Gi M v m ln lt l GTLN v GTNN ca hm s y = x x trờn xỏc nh Khi ú M m bng ? A B C D ỏp s khỏc Cõu 20 th ca hm s y = x x ct: A ng thng y = ti hai im B ng thng y = ti hai im C ng thng y = ti ba im D trc honh ti mt im Cõu 21: Cho hm s y = f ( x ) xỏc nh, liờn tc trờn Ă v cú bng bin thiờn: + x y' + + 0 + y + 20 Khng nh no sau õy l khng nh ỳng ? A Hm s cú ba cc tr v giỏ tr nh nht bng 20 C Hm s ng bin trờn khong ( ;1) D Hm s t cc i ti x = v t cc tiu ti x = x Cõu 22: th hm s y = cú bao nhiờu ng tim cn ? x +1 A B C D 3 Cõu 23: Cho hm s y = x 3x + Vit phng trỡnh ng thng qua hai im cc tr ca th hm s A y = 2x B y = 2x + C y = 2x + D y = 2x Cõu 24: th hm s bc v th hm s bc trựng phng cú chung c im no sau õy A u tn ti c im cc i v im cc tiu B u cú tõm i xng C th hm s u cú dng parabol D u cú trc i xng Cõu 25: Hm s y = x x + B Hm s cú giỏ tr ln nht bng A Nghch bin trờn ( -1 ; 1) C ng bin trờn (;0) B ng bin trờn (1; +) D Nghch bin trờn (-1 ; 0) S GD-T QUNG NGI TRNG THPT BA T KIM TRA TIT Mụn: Toỏn Gii Tớch 12A1 Nm hc: 2017 -2018 H v tờn hc sinh: CU P N CU P N ( Thi gian lm bi: 45 phỳt) 10 11 14 15 16 17 18 19 20 21 22 23 24 12 13 25 Cõu 1: Tng ca GTLN v GTNN ca hm s y = x x x + 35 trờn on 4;4 l : A -1 B 48 C -26 D 23 ax + Cõu 2: Hóy xỏc nh a,b hm s y = cú th nh hỡnh v: x+b A a = 1; b = B a = b = C a = 1; b = Cõu 3: Giỏ tr nh nht ca hm s y = sinx( + cosx) trờn on [ 0; A B 2 C D a = b = ] l: D 2x + ti im cú honh x = l: x A y = x B y = 3x + C y = x + D y = x + Cõu 5: Giỏ tr ln nht ca hm s f ( x ) = x + 2x + trờn on [ 0;3] l: A B 18 C D Cõu 4: Phng trỡnh tip tuyn ca th y = Cõu 6: Giỏ tr nh nht ca hm s f ( x ) = x 2x + l: A B 2 C D 3 Cõu 7: Giỏ tr ln nht v GTNN ca hm s y = x x x + 40 trờn on [ 5;5] ln lt l A 45; 115 B 13; 115 C 45;13 D 115; 45 Cõu 8: Cho hm s y = x + x 1024 Trong cỏc mnh sau, mnh no sai? A th hm s qua A(0; 1024) C lim f ( x) = +; lim f ( x) = x + x B Hm s cú cc tiu D th cú im cú honh tha y '' = Cõu 9: Tỡm GTLN ca hm s y = x + x trờn 5; ? A B 10 C Cõu 10: Phng trỡnh x x = m + m cú nghim phõn bit D ỏp ỏn khỏc A m > 21 B < m < C < m < D < m < Cõu 11: Phng trỡnh tip tuyn ca ng cong (C) y = x x ti im cú honh x = l A y = x B y = x + C y = x + D y = x Cõu 12: Cho hm s y = x x + mx + ng bin trờn ( 0; + ) giỏ tr ca m l A m B m C m 12 D m 12 Cõu 13: im no sau õy thuc th hm s y = x + x + m honh l nghim ca phng trỡnh y '' = ? A ( 0;0 ) B ( 1;3) C ( 1;1) D ( 0;5 ) Cõu 14: ng cong hỡnh bờn l th ca mt hm s bn hm s c lit kờ bn phng ỏn A, B, C, D di õy Hi hm s ú l hm s no? x +1 x + A y = B y = x2 x 2x + x C y = D y = 2x x2 Cõu 15: Hm s y = x + 8x cú bao nhiờu giỏ tr cc tr ? A B C D Cõu 16: Hi cú tt c cỏc giỏ tr nguyờn ca m th hm s y = x + mx + ( 2m 3m 3) x + 2016 cú cc tr: A B C D Cõu 17: Tỡm tt c cỏc giỏ tr ca m hm s y = x mx + 4mx + 2016 cú hai im cc tr tha x1 x = A m = B Khụng tn ti giỏ tr m tha yờu cu bi toỏn m = C D m = m = 2x + Cõu 18: Tỡm ta giao im M ca th ( C ) : y = v ng thng d : y = x A M ( 4;3) B M ( 3; ) C M ( 4;3) D M ( 3; ) x +5 Cõu 19: Tỡm tt c cỏc ng tim cn ng ca th hm s y = x +1 A th hm s khụng cú ng tim cn ng B x = v x = C x = D x = Cõu 20: Vit phng trỡnh tip tuyn ca th hm s f ( x ) = x + x + ti im cú honh x = A y = 6x + B y = 6x C y = 6x D y = 6x + Cõu 21: Cho hm s y = f ( x ) xỏc nh v liờn tc trờn R v cú bng bin thiờn: + x f '( x) + + f ( x) + Mnh no sau õy l sai: A Hm s ng bin trờn ( ; ) C Giỏ tr ln nht ca hm s trờn R l x = B Hm s nghch bin trờn ( 2; + ) D Hm s t cc tr ti x = ( ) ( ) Cõu 22: Cho hm s y = x x + v cỏc khong: (I) 2;0 , (II) 0; , (III) ( 2; + Hm s ng bin trờn khong no ? A I v II B II v III C III v I D ch I Cõu 23: Giao im cú honh l s nguyờn ca th hm s y = 3x + v th hm s y = x + x + l: A ( 0;1) B ( 0; ) C ( 1;5 ) D ( 1;1) Cõu 24: Tỡm li sai bi toỏn kho sỏt hm s y = Bi gii Tp xỏc nh: Ă \ { 1} S bin thiờn: +) Chiu bin thiờn y ' = x + ca mt bn hc sinh nh sau: x +1 ( x + 1) y' khụng xỏc nh x = ; y' luụn õm vi mi x vy hm s nghch bin trờn ( ; 1) v ( 1; + ) +) Cc tr: Hm s ó cho khụng cú cc tr +) Tim cn: lim y = +; lim+ y = x x Do ú ng thng x = l tim cn ng lim y = x Vy ng thng y = l tim cn ngang +) Bng bin thiờn: x y' y + + A Bi gii trờn sai giai on tỡm iu kin xỏc nh B Bi gii trờn o hm sai C Bi gii trờn sai giai on tỡm tim cn D Bi gii trờn sai bng bin thiờn y = x x + Cõu 25: Cho hm s Kt lun no sau õy l ỳng ? A yCD = B yCD = C yCD = D yCD = ) S GD-T QUNG NGI TRNG THPT BA T KIM TRA TIT Mụn: Toỏn Gii Tớch 12A1 Nm hc: 2017 -2018 H v tờn hc sinh: CU P N CU P N ( Thi gian lm bi: 45 phỳt) 10 11 14 15 16 17 18 19 20 21 22 23 24 Cõu 1: Tỡm giỏ tr nh nht ca hm s y = A y = x 0;2 B y = x 0;2 12 13 25 x2 trờn on 0;2 x+ y = C xmin 0;2 y = 10 D xmin 0;2 Cõu 2: Cho hm s y = x 3x + 2016 Trong cỏc giỏ tr sau giỏ tr no l giỏ tr cc tr ca hm s? A B 2018 C 2017 D -1 Cõu 3: Tỡm ta im cc tiu M ca th hm s y = x 3x + A M ( 1;0 ) B M ( 1;0 ) C M ( 1; ) D M ( 1; ) Cõu 4: Gi M , N ln lt l giỏ tr ln nht, giỏ tr nh nht ca hm s: y = x + x Giỏ tr ca biu thc M + 2N A 2 B 2 C 2 + D 2 + Cõu 5: Trong cỏc kt qu sau, kt qu no nờu ỳng c hai ng thng u l tim cn ca th x hm s y = x A { x = 1; y = 1} B { x = 1; y = 2} C { x = 1; y = 1} D { x = 1; y = 2} Cõu 6: th hm s y = x + 2016 cú s ng tim cn l: x2 A B C Cõu Cho hm s y = f ( x ) cú o hm ti x0 Tỡm mnh ỳng? D A Nu f ' ( x0 ) = thỡ hm s t cc tr ti x0 B Hm s t cc tr ti x0 thỡ f ( x0 ) = C Nu hm s t cc tr ti x0 thỡ f ' ( x0 ) = D Hm s t cc tr ti x0 thỡ f ' ( x ) i du qua x0 Cõu Mt hc sinh kho sỏt s bin thiờn y = x x x + nh sau: I Tp xỏc nh: D = R II x = S bin thiờn: y ' = x x 2; y ' = x=2 lim y = ; lim y = + x III x + Bng bin thiờn: x y' y -1 19 + + + Vy hm s ng bin trờn ( ; 1) ( 2; + ) , nghch bin trờn khong ( 1; ) + IV Li gii trờn sai t bc no? A Li gii trờn sai t giai on I B Li gii trờn sai t giai on II C Li gii trờn sai t giai on III D Li gii trờn sai giai on IV Cõu Xỏc nh a, b hm s y = ax cú th nh hỡnh v: x+b A a = 2; b = B a = 1; b = C a = 1; b = D a = 2; b = Cõu 10 Hm s no sau õy khụng cú cc tr: A y = x B y = x + x C y = x x D y = 3x Cõu 11 Hm s no sau õy khụng cú GTLN trờn on [ 2; 2] ? A y = x + B y = x3 + C y = x + x D y = x x +1 Cõu 12 S nguyờn dng m nh nht ng thng y = x + m ct th hm s ( C ) : y = x x ti hai im phõn bit l: A m = B m = Cõu 13 Cho hai hm s y = C m = D m = 2x x v y = Tp hp cỏc giỏ tr ca tham s m hai x+m x+5 ng tim cn ng ca th hm s trờn trựng l? A { 1;1} B { 3;3} C { 2; 2} D { 0} Cõu 14 S im cc tr ca th hm s y = ax + bx + c ( a > 0; b > ) l: A B C D Cõu 15: Cho hm s y = f ( x ) xỏc nh, liờn tc trờn R v cú bng bin thiờn nh sau: + x y' + + + y + Khng inh no ỳng cỏc khng inh sau? A Hm s t cc tr ti x =1 B Hm s ng bin trờn R C Tp giỏ tr ca hm s l [1; +) D Hm s cú giỏ tr nh nht bng Cõu 16: Hm s y = x + x + ng bin trờn no sau õy ? A R B (; 1) C (1; +) Cõu 17: th bờn l th ca hm s no cỏc hm s sau A y = x + x B y = x x + C y = x + x D y = x x + D R { 1} Cõu 18: Tỡm tng cỏc giỏ tr cc tr ca hm s y = x x + x + 17 11 67 17 A B C D Cõu 19: Tỡm giỏ tr ln nht ca hm s y = x + trờn on [-1;2] x 29 A B C D Khụng tn ti 2x Cõu 20: Cho hm s y = cú th (C) v ng thng (d) y = x + m Tỡm m (C) ct (d) ti x+3 im phõn bit A v B cho AB = 14 A -1 B C -2 D Cõu 21: th hm s y = x 3x + 2x ct th hm s y = x2 3x + ti hai im phõn bit A, B Khi ú di AB l bao nhiờu ? A AB = B AB = 2 C AB = D AB = Cõu 22: Tỡm giỏ tr ln nht ca hm s f ( x) = 3cos x + cos x + cos x A -11 B 13 C 16 D -3 Cõu 23: Trong cỏc hỡnh sau cú cựng chu vi, hỡnh no cú din tớch ln nht? A Hỡnh tam giỏc u B Hỡnh vuụng C Hỡnh ch nht D Hỡnh trũn Cõu 24: Cho hm s f ( x) = x mx + 2m Tỡm m th ca hm s ó cho ct trc honh ti bn im phõn bit m > A m > B m > C D < m > m 2x Cõu 25: Tỡm tim cn ng ca th hm s y = ? x 3x A x = 0; x = B y = C y = D x = ... S GD-T QUNG NGI TRNG THPT BA T KIM TRA TIT Mụn: Toỏn Gii Tớch 12 A1 Nm hc: 2 017 -2 018 H v tờn hc sinh: CU P N CU P N ( Thi gian lm bi: 45 phỳt) 10 11 14 15 16 17 18 19 20 21 22 23 24 12 13 25... TRA TIT TRNG THPT BA T Mụn: Toỏn Gii Tớch 12 A1 Nm hc: 2 017 -2 018 H v tờn hc sinh: CU P N CU P N ( Thi gian lm bi: 45 phỳt) 10 11 14 15 16 17 18 19 20 21 22 23 24 12 13 25 Cõu 1: th hm s sau l... (1; +) D (3; 2) S GD-T QUNG NGI TRNG THPT BA T KIM TRA TIT Mụn: Toỏn Gii Tớch 12 A1 Nm hc: 2 017 -2 018 H v tờn hc sinh: CU P N CU P N ( Thi gian lm bi: 45 phỳt) 10 11 14 15 16 17 18 19 20 21