Bài toán biên đối với một số lớp phương trình truyền sóng trong miền không trơn

136 265 0
Bài toán biên đối với một số lớp phương trình truyền sóng trong miền không trơn

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

B GIO DC V O TO TRNG I HC S PHM H NI * NGUYN THANH TNG BI TON BIấN I VI MT S LP PHNG TRèNH TRUYN SểNG TRONG MIN KHễNG TRN LUN N TIN S TON HC H NI - 2017 B GIO DC V O TO TRNG I HC S PHM H NI * NGUYN THANH TNG BI TON BIấN I VI MT S LP PHNG TRèNH TRUYN SểNG TRONG MIN KHễNG TRN Chuyờn ngnh: Phng trỡnh vi phõn v tớch phõn Mó s: 62 46 01 03 LUN N TIN S TON HC TP TH HNG DN KHOA HC TS V Trng Lng GS.TSKH Nguyn Mnh Hựng H NI - 2017 LI CAM OAN Tụi xin cam oan õy l cụng trỡnh nghiờn cu ca tụi di s hng dn ca TS V Trng Lng v GS TSKH Nguyn Mnh Hựng Cỏc kt qu c phỏt biu lun ỏn l hon ton trung thc v cha tng c cụng b bt c mt cụng trỡnh no khỏc Nghiờn cu sinh Nguyn Thanh Tựng LI CM N Lun ỏn c hon thnh di s hng dn tn tỡnh, chu ỏo ca TS V Trng Lng v GS.TSKH Nguyn Mnh Hựng Ngoi nhng ch dn v mt khoa hc, cỏc thy cũn to ng lc ln giỳp tỏc gi t tin, say mờ v quyt tõm nghiờn cu Tỏc gi xin by t lũng kớnh trng v bit n sõu sc TS V Trng Lng v GS.TSKH Nguyn Mnh Hựng Tỏc gi cng xin c t lũng bit n ln lao ti cỏc thy cụ b mụn Gii tớch, c bit l PGS TS Trn ỡnh K v PGS TS Cung Th Anh ó tn tỡnh ch bo cho tỏc gi quỏ trỡnh nghiờn cu v hon thnh lun ỏn Tỏc gi cm n cỏc bn nghiờn cu sinh ó úng gúp nhiu ý kin quý bỏu cho lun ỏn ca tỏc gi Tỏc gi xin c by t cm n ti Ban Giỏm hiu, phũng Sau i hc, khoa Toỏn - Tin Trng i hc S phm H Ni ó to iu kin thun li tỏc gi hon thnh quỏ trỡnh hc tp, nghiờn cu ca mỡnh Tỏc gi xin c by t cm n n Ban Giỏm hiu Trng i hc Tõy Bc, cỏc thy cụ v cỏc anh ch ng nghip cụng tỏc ti khoa Toỏn-Lý-Tin, Trng TH, THCS & THPT Chu Vn An ó luụn to iu kin thun li, giỳp v ng viờn tỏc gi sut quỏ trỡnh hc v nghiờn cu Sau cựng, tỏc gi by t lũng bit n ti gia ỡnh, ngi thõn v gia ỡnh TS V Trng Lng - nhng ngi luụn yờu thng, chia s, ựm bc, ng viờn tỏc gi vt qua khú khn hon thnh quỏ trỡnh hc v nghiờn cu ca khúa hc NCS Tỏc gi Mc lc Li cam oan Li cm n Mc lc Mt s kớ hiu dựng lun ỏn M U Lch s v lớ chn ti Mc ớch, i tng v phm vi nghiờn cu 11 Phng phỏp nghiờn cu 12 Kt qu ca lun ỏn 12 Cu trỳc ca lun ỏn 13 Chng MT S KIN THC CHUN B 14 1.1 Khụng gian cỏc hm, hi t yu, cỏc nh lý nhỳng 14 1.1.1 Mt s khụng gian hm 14 1.1.2 Hi t yu 17 1.1.3 nh lý nhỳng Sobolev v nh lý nhỳng RellichKondrachov 18 1.2 Mt s bt ng thc 19 1.2.1 Bt ng thc Cauchy v bt ng thc Young 19 1.2.2 Bt ng thc Hăolder 19 1.2.3 Mt s phỏt biu ca bt ng thc Gronwall 20 1.2.4 Bt ng thc Gagliardo-Nirenberg 21 1.3 Mt s kin thc cn bn v lớ thuyt toỏn t 22 1.4 Mt s b nhỳng cú cnh, bi toỏn Dirichlet i vi phng trỡnh elliptic cp hai a din 25 1.4.1 Mt s b nhỳng cú cnh 25 1.4.2 Bi toỏn Dirichlet i vi phng trỡnh elliptic cp hai a din 27 1.5 Mt s b nhỳng v bi toỏn Dirichlet i vi phng trỡnh elliptic mnh nún cú cnh 27 1.5.1 Min nún cú cnh 27 1.5.2 Mt s b nhỳng 28 1.5.3 Bi toỏn Dirichlet i vi h elliptic mnh nún cú cnh 28 1.6 Mt s kin thc cn bn v lớ thuyt na nhúm cỏc toỏn t tuyn tớnh b chn 30 1.7 Mt s kin thc cn bn v o khụng compact v ỏnh x nộn 35 Chng BI TON BIấN BAN U I VI PHNG TRèNH HYPERBOLIC NA TUYN TNH TRONG TR KHễNG TRN 41 2.1 Thit lp bi toỏn 41 2.2 S tn ti v tớnh nht ca nghim yu a phng 44 2.3 S tn ti v tớnh nht ca nghim yu ton cc 59 Chng BI TON DIRICHLET-CAUCHY I VI PHNG TRèNH HYPERBOLIC NA TUYN TNH TRONG CC MIN A DIN 63 3.1 Bi toỏn Dirichlet-Cauchy i vi phng trỡnh hyperbolic na tuyn tớnh cú cnh 63 3.1.1 M u 63 3.1.2 Bi toỏn tuyn tớnh 65 3.1.3 Bi toỏn na tuyn tớnh 81 3.2 Bi toỏn Dirichlet-Cauchy i vi phng trỡnh hyperbolic na tuyn tớnh nún cú cnh 87 3.2.1 M u 87 3.2.2 Bi toỏn tuyn tớnh 88 3.2.3 Bi toỏn na tuyn tớnh 92 Chng PHNG TRèNH TRUYN SểNG NA TUYN TNH VI CU TRC TT DN 107 4.1 Thit lp bi toỏn 107 4.1.1 Vớ d m u 107 4.1.2 Bi toỏn 109 4.2 S tn ti nghim mm ca bi toỏn 111 4.3 S tn ti nghim mm phõn ró ca bi toỏn 118 KT LUN 126 Kt qu t c 126 Kin ngh mt s nghiờn cu tip theo 126 DANH MC CC CễNG TRèNH CễNG B CA LUN N 127 TI LIU THAM KHO 128 MT S K HIU THNG DNG TRONG LUN N Chỳng tụi s dng cỏc ký hiu N l cỏc s t nhiờn, R l s thc Vi mi x = (x1 , ã ã ã , xn ) Rn v a ch s = (1 , ã ã ã , n ) Nn , n ta ký hiu x = x ã ã ã x n v || = i , ! = !2 ! ã ã ã n ! i=1 Vi a ch s = (1 , ã ã ã , n ) N, ta ký hiu D := Dx = Dx11 ã ã ã Dxnn , := x = x11 ã ã ã xnn ! ku v = Cỏc v Thờm na, ta ký hiu utk = k t !( )! khụng gian cỏc hm c ký hiu nh sau: ký hiu (m liờn thụng) b chn Rn vi biờn ký hiu hp ca v QT ký hiu tớch Descartes ca v (0, T ), vi < T ST ký hiu tớch Descartes ca v (0, T ), vi < T K ký hiu nún R3 vi nh ti gc vi biờn K KT ký hiu tớch Descartes ca nún K vi (0, T ) d KT ký hiu tớch Descartes ca i vi (0, T ), ú i l cỏc i=1 mt nhn ca nún K C k () ký hiu khụng gian cỏc hm cú o hm liờn tc n cp k , k C0k () ký hiu khụng gian cỏc hm kh vi cp k cú giỏ compact , k Lp () ký hiu khụng gian Banach gm tt c cỏc hm kh tng cp p, p < theo ngha Lebesgue L () ký hiu khụng gian Banach gm tt c cỏc hm o c v b chn hu khp ni trờn Lp (0, T ; X) ký hiu khụng gian tt c cỏc hm kh tng t [0, T ] vo khụng gian Banach X vi p < L (0, T ; X) ký hiu khụng gian cỏc hm u xỏc nh trờn [0, T ] cú giỏ tr X ng thi vi mi t, u(t) o c v b chn hu khp ni trờn X H k () ký hiu khụng gian Hilbert bao gm tt c hm kh tng a phng u trờn cho D u tn ti thuc Lp () k () ký hiu khụng gian Hilbert bao gm cỏc hm u H k () H cho D u = trờn vi tt c || k k () H k () ký hiu khụng gian i ngu ca H Hm () ký hiu khụng gian Sobolev cú trng R gm cỏc hm v D () khụng gian C0 () c trang b tụ pụ compact cho r+||m D v L2 (), || m, r = |x| Val,p () ký hiu khụng gian Sobolev cú trng a R, l bao úng ca C0 ( \ l0 ), ú l vi biờn gm hai siờu phng , cú giao l a l0 v < p < , Hal () = Val,2 () l (K) ký hiu bao úng ca C0 (K \ S), S = {0} M1 ã ã ã Md , vi V, R, = (1 , ã ã ã , d ) Rd , Mi l cỏc cnh ca nún K M U Lch s v lớ chn ti Cỏc bi toỏn biờn tuyn tớnh i vi phng trỡnh, h phng trỡnh o hm riờng cỏc vi biờn trn [3] ó c cỏc nh toỏn hc nghiờn cu khỏ hon thin na u th k XX Cỏc bi toỏn biờn loi dng cỏc trn ó c nghiờn cu nh phộp phõn hoch n v a bi toỏn ang xột v bi toỏn ton khụng gian v na khụng gian [19, 24, 27] Cỏc bi toỏn biờn khụng dng cỏc hỡnh tr vi ỏy l cú biờn trn c nghiờn cu nh phộp bin i Laplace hoc phộp bin i Fourier a v bi toỏn dng vi tham bin trn T gia th k XX, bi toỏn biờn tng quỏt i vi phng trỡnh elliptic vi biờn k d ó c nghiờn cu, cỏc kt qu quan trng v tớnh t ỳng ca bi toỏn cng nh tớnh trn v tim cn ca nghim vi cỏc im nún trờn biờn ó nhn c [49, 50] Nh khoa hc V.A.Kondratiev ó gii quyt c mt s mang tớnh nguyờn lớ khc phc im kỡ d kiu nún ca bi toỏn biờn tng quỏt i vi phng trỡnh elliptic Tip theo, mt s nh toỏn hc khỏc ó da trờn cỏc phng phỏp ca V.A.Kondratiev nghiờn cu cỏc bi toỏn biờn i vi cỏc h dng cỏc vi cỏc im k d trờn biờn [15, 25, 26, 51, 47, 52, 53] Bi toỏn biờn tng quỏt i vi phng trỡnh elliptic a din ó c V Mazya, J Rossomann nghiờn cu v tớnh gii c cỏc khụng gian L2 Sobolev cú trng, khụng gian Hăolder cú trng cỏc nh din, nún cú cnh, kiu a din [60], nhng kt qu cn bn ca toỏn t pencil ó c ỏp dng vic khng nh tớnh gii c ca bi toỏn Nhng kt qu t c ca bi toỏn biờn tng quỏt i vi phng trỡnh elliptic cỏc cú im nún, cú im lựi, cú cnh, kiu a giỏc l c s quan trng cho cỏc 120 (tc l sup et un (t) X n) cho sup et F (un )(t) X > n Khi ú tR+ tR+ et F1 (un )(t) X et S2 (t) x0 L(X) D(A) + g(un ) D(A) et S2 (t) L(X) x0 D(A) + g ( un C ( )t x0 D(A) + g (R) e C x0 D(A) + g (R) ) (4.48) t et F2 (un )(t) X et S2 (t s)S1 (s) y0 L(X) + h(un ) X X + Ax0 C y0 + h ( un X ) X + Ag(un ) + Ax0 X ds X t + g ( un ) e(2 )s ds e(2 )t C y0 X + h (R) + Ax0 X + g (R) , (4.49) vi mi t 0, iu ny cú c l un BCR (n) õy C1 l hng s dng c lp vi un t et F3 (un )(t) X s et S2 (t s)S1 (s ) L(X) f (, un ( )) X d ds t s e2 (ts) e1 (s ) m( ) un ( ) C et 0 t s e2 (ts) nC et X d ds e1 (s ) m( )d ds, ta thy rng s s e1 (s ) m( )d = e1 (s )+(s ) es m( )d s = es e(1 )(s ) m( )d Kes , 121 iu ny cú c l nh Do ú t e t F3 (un )(t) X t nC Ke e (ts)s nKC ds (4.50) T (4.48)-(4.50), ta cú et F (un )(t) X C2 x D(A) + y0 X + Ax0 X nKC , + (1 + )g (R) + h (R) + vi un BCR (n) v t 0, õy C2 = max{C, C1 } T ú suy 1< sup et F (un )(t) n t0 X C2 n x0 D(A) + y0 X + Ax0 X KC + (1 + )g (R) + h (R) + Qua gii hn n ta thu c iu mõu thun vi (4.43) B 4.4 Gi s (A ), (G ), (H ), (F ) tha Khi ú ta luụn cú F (D) M g + h + g + (D), (4.51) vi tt c cỏc b chn D BCR () Chng minh Cho D M l b chn bt k Ta cú F (D) = F (D) + d F (D) (4.52) Trc ht, ta cú F (D) F1 (D) + F2 (D) + F3 (D) (4.53) Nh B 4.2, ta thu c cỏc ỏnh giỏ sau F1 (D) M g (D), (4.54) F2 (D) 4(h + g ) (D), (4.55) F3 (D) (D) (4.56) T (4.53)(4.56), ta cú F (D) M g + h + g + (D) (4.57) 122 Bõy gi ta ly D BCR () l mt b chn Khi ú vi tt c u D, ta cú et F (u)(t) X t iu ny kộo theo F (u)(t) X et , u D v vi t ln iu ny tng ng vi T ln, ta cú dT F (D) eT Do ú d F (D) = lim dT F (D) = T (4.58) T (4.52), (4.57) v (4.58), ta cú kt lun ca b nh lý 4.2 Gi s cỏc gi thit ca B 4.3 tha v l := M g + h + g ) + < (4.59) Khi ú bi toỏn (4.8), (4.9) cú ớt nht mt nghim mm xỏc nh trờn R+ tha et u(t) X = O(1) t + Chng minh Bi gi thit (4.59), toỏn t nghim F l nộn Thc vy, nu D BCR () l b chn tha (D) F (D) , ú theo B 4.4, ta thu c (D) F (D) l (D) Do ú (D) = 0, nờn D l compact tng i Theo B 4.3, F BCR () BCR () v F liờn tc p dng nh lý 1.15, ỏnh x F xỏc nh bi (4.24) cú im bt ng F ix(F ) BCR () l compact, khỏc iu ny chng t rng bi toỏn (4.8), (4.9) cú nghim u(t) biu din bi (4.16) tha lim u(t) = t minh cho s tn ti nghim mm phõn ró theo tc m ca bi toỏn tng quỏt, ta quay li xột bi toỏn (4.1)(4.4) Nh ó nờu Vớ d mc M u, ta xột biờn theo hai trng hp sau: Min Rn cú biờn trn Khi ú vi X = L2 (), A = x cú () H () sinh C0 na nhúm {T (t)}t0 gii tớch, xỏc nh H compact, n nh m, T (t) L(X) e1 t , vi > l giỏ tr riờng u tiờn ca A Do ú {T (t)}t0 l C0 na nhúm liờn tc chun Ta nhc li cỏc kớ hiu sau: u(t) = u(t, ã), f (t, v) = f (t, ã, v(ã)), n g(u) = k(ã, y)u(0, y)dy, Ci u(ti , ã) h(u) = i=1 123 Ta xột hm phi tuyn f, gi thit rng tn ti hm m L1loc (R+ ) cho |f (t, x, z)| m(t)|z|, (t, x, z) R+ ì ì R Khi ú ta cú f (t, v) X m(t) v X , v X Chỳ ý rng toỏn t G(v) = k(ã, y)v(y)dy l toỏn t kiu Hilbert-Schmidt trờn L2 (), nờn nú l toỏn t compact iu ny ỏp dng cho ỏnh x g xỏc nh bi g(u) = G u(0, ã) cng l toỏn t compact Tng t, ta cú Ag l ỏnh x compact Vỡ vy iu kin (G )(ii) l tha vi g = g = Thờm na, ta thy rng g(u) X k L2 (ì) u(0, ã) X k u(0, ã) L2 (ì) C Do ú (G )(i) tha Tip tc, xột cỏc iu kin i vi hm h, ta cú N h(u1 ) h(u2 ) X N Ci u1 (ti , ã) u2 (ti , ã) X i=1 N Khi ú h() Ci u1 u2 C i=1 Ci (), vi mi b chn D BC(R+ ; X) i=1 N iu ny cho thy gi thit (H )(ii) tha món, õy h = Ci Thờm i=1 na, ta cú ỏnh giỏ N h(u) X N Ci i=1 u(ti , ã) X Ci u , u BC(R+ ; X) i=1 iu ny cho thy gi thit (H )(i) l tha Bi cỏc kt qu thu c trờn, qua tớnh toỏn, ta cú M = 1, = 0, (2 ) , g (r) = k t N e(1 )(t ) m( )d, h (r) = K = sup t0 L2 (ì) r, Ci ) r i=1 p dng nh lý 4.2, bi toỏn (4.1)(4.4) cú ớt nht mt nghim u BC R+ ; L2 () tha et u(t) L2 () = O(1) t + xỏc nh 124 bi cỏc iu kin K < , k L2 (ì) N C i + k + (2 ) L2 (ì) + < i=1 Ta xột bi toỏn (4.1)-(4.4) trờn R2 b chn vi biờn trn tr im gc x = 0, cỏc hm g, h c xột nh trờn Tuy nhiờn i vi hm f, ta gi s nh sau: Cho f1 : R+ ì ì R R, : R+ ì R v f2 : ì R R cho (a) f1 l hm liờn tc tha f(t, x, 0) = v f1 (t, x, z1 ) f1 (t, x, z2 ) m1 (t)|z1 z2 | vi tt c x , z1 , z2 R, õy m1 L2 (R+ ) hoc m1 l hng s; (b) BC R+ , L2 () ; (c) f2 l hm liờn tc v |f2 (x, z)| l(x)|z| vi l L2 () Hm f : R+ ì X X tha f (x, t, v) = f1 (t, v)(x) + f2 (t, v)(x), vi f1 (t, v)(x) = f1 (t, x, v(x)); f2 (x, v(x))dx f2 (t, v)(x) = à(t, x) Xột f1 , ta cú f1 (s, v1 ) f1 (s, v2 ) m1 (s) v1 v2 iu ny a n f1 (s, D) m1 (s)(D) (4.60) vi tt c cỏc b chn D X Xột f2 , s dng bt ng thc Hăolder, ta cú f2 (t, v) X f2 x, v(x) dx à(t)|2X à(t) X |l(x)||v(x)|dx à(t) X l X v X Mt khỏc, vi bt k D X, ta thy rng f2 (s, D) {à(s, ã) : R} iu ny a n f2 (s, D) nm khụng gian mt chiu ca X 125 Do ú f2 (t, V ) = 0, (4.61) vi t R+ T (4.60) v (4.61), ta thu c f (s, D) f1 (s, D) + f2 (s, D) m1 (s)(D) vi mi b chn D X Nh vy, f (t) = m1 (t) Thờm na, ta cú f (ã, t, v) X f1 (t, v) X + f2 (t, v) Do ú m(t) = m1 (t) + à(t) X l X m1 (t) + à(t) X l X v X X Bi cỏc kt qu thu c vớ d ó nờu mc M u ca chng, lp lun tng t nh trng hp biờn trn, ta cng thu c kt qu M = 1, K , g (r) = k (2 ) m1 L2 (R) + 2L 1 ú L = max à(t) t0 X l , N L2 (ì) r, h (r) = Ci ) r, i=1 m1 L2 (R+ ) (21 ) X Tip theo, ta cú L + m1 L2 (R+ ) 1 (21 ) , p dng nh lý 4.2, bi toỏn (4.1)(4.4) cú ớt nht mt nghim u BC R+ ; L2 () tha et u(t) L2 () = O(1) t + xỏc nh bi cỏc iu kin K < , N Ci + k L2 (ì) i=1 + + < k L2 (ì) + (2 ) Kt lun chng Trong chng 4, chỳng tụi ó thit lp c s tn ti nghim mm phõn ró tc theo cp m ca bi toỏn (4.8), (4.9) v a c cỏc vớ d minh cho kt qu t c i vi phng trỡnh truyn súng na tuyn tớnh vi cu trỳc tt dn trờn trn bt k v cú im gúc R2 Kt qu t c tng quỏt hn so vi cựng kt qu [22, 21] trờn hai phng din, th nht l bi toỏn c xột vi iu kin biờn khụng a phng, th hai l bi toỏn c xột vi lp hm phi tuyn rng hn 126 KT LUN Kt qu t c S tn ti v tớnh nht nghim yu trờn [0, +) ca bi toỏn giỏ tr biờn ban u i vi phng trỡnh hyperbolic na tuyn tớnh cp cao cỏc tr khụng trn S tn ti nht v biu din tớnh chớnh quy ca nghim yu trờn [0, T ] (0 < T < +) theo bin thi gian khụng gian Sobolev cú trng ca bi toỏn Dirichlet-Cauchy i vi phng trỡnh hyperbolic na tuyn tớnh cp hai cú cnh, nún cú cnh S tn ti nghim mm phõn ró tc theo cp m phng trỡnh truyn súng na tuyn tớnh vi cu trỳc tt dn cựng iu kin ban u khụng a phng, xột vi lp hm phi tuyn cú giỏ tr khụng gian Banach liờn tc b chn Kin ngh mt s nghiờn cu tip theo Bờn cnh cỏc kt qu ó t c lun ỏn, mt s m cn tip tc nghiờn cu nh: Biu din tim cn ca nghim ca bi toỏn Dirichlet-Cauchy i vi phng trỡnh hyperbolic phi tuyn cỏc cú cnh S tn ti nht, tớnh chớnh quy, biu din tim cn ca nghim ca bi toỏn Dirichlet-Cauchy i vi phng trỡnh hyperbolic phi tuyn a din S tn ti nghim mm ca phng trỡnh truyn súng cú cu trỳc tt dn vi tr vụ hn cựng iu kin ban u khụng a phng 127 DANH MC CễNG TRèNH CễNG B CA LUN N Vu Trong Luong, Nguyen Thanh Tung, "The first initial boundary value problem for nonlinear hyperbolic equations of higher order in cylinders with singular points", International journal of evolution equations 2015, Volume 9, Number 2, pp 167-180 Vu Trong Luong, Nguyen Thanh Tung, "The Dirichlet-Cauchy problem for nonlinear hyperbolic equations in a domain with edges", Nonlinear Analysis 125 (2015) 457-467 Vu Trong Luong, Nguyen Thanh Tung, "Decay mild solutions for elastic systems with structural damping involving nonlocal conditions", ISSN 1063-4541, Vestnik St Petersburg University, Mathematics, 2017, Vol 50, No 1, pp 55-67 128 Ti liu tham kho [1] R A Adams (1975), Sobolev Spaces, Academic Press [2] A Aghajani, D ORegan, A Shole Haghighi (2015), "Measure of Noncompactness on Lp (RN ) and Applications," CUBO A Mathematical Journal, Vol 17, N.01, (85-97) March 2015 [3] M S Agranovich, M I Vishik (1964), "Elliptic Problems with a Paramater and Parabolic Problems of General Form," Usp Math Nauk, 39, No 3, 53-160 [4] R.R Akhmerov, M.I Kamenskii, A.S Potapov, A.E Rodkina, B.N Sadovskii (1992), Mearures of Noncompactness and Condensing Operator, Birkhăauser, Boston-Basel-Berlin [5] N T Anh, T D Ke (2014), "Decay Integral Solutions for Neutral Fractional Differential Equations with Infinite Delays", Math Meth Appl Sci Volume 38, Issue 8, Pages 16011622 [6] J Apell (2005), "Mearures of Noncompactness Condensing Operators and Fixed Points an Application-Oriented Survey", Fixed Point Theory, Volume 6, No 2, 157-229 [7] A A Balinsky, W D Evans (2010), "Some Recent Results on HardyType Inequalities", Applied Mathematics & Information Sciences, 4(2), pp 191-208 [8] J Banas, L Olszowy (2009), "On a Class of Measures of Noncompactness in Banach Algebras and Their Application to Nonlinear Integral Equations", Journal for Analysis and its Applications, Volume 28, Issue 4, pp 475498 [9] P Brenner (1979), "On the Existence of Global Smooth Solutions of Certain Semi-Linear Hyperbolic Equations", Mathematische Zeitschrift, Vol 167, pp 99-136 129 [10] P Brenner, W Wahl (1981), "Global Classical Solutions of Nonlinear Wave Equations", Mathematische Zeitschrift, Vol 176, Num 1, pp.87121 [11] G Chen, D L Russell (1982), "A Mathematical Model for Linear Elastic Systems with Structural Damping", Quart Appl Math 39 pp.433-454 [12] E.A Codington, N Levison (1955), Theory of Odinary Differential Equations, McGraw-Hill, 429p [13] S Coriasco, E Schrohe, J Seiler (2001), "Differential Operators on Conic Manifolds: Maximal Regularity and Parabolic Equations", Bulletin de la Sociộtộ Royale des Sciences de Liốge, Vol 70, 4-5-6, 2001, pp 207-229 [14] G Darbo (1955), "Punti Uniti in Trasformazioni a Codominio Non Compatto", Rend Sem Mat Univ Padova, 24, 84-92 [15] M Dauge (1988), Elliptic Boundary Value Problems on Corner Domains, Lecture Notes in Mathematics, Springer Verlag, Berlin [16] M Del Pino, J Dolbeault (2002), "Best Constants for GagliardoNirenberg Inequalities and Applications to Nonlinear Diffusions", J Math Pures Appl 81 847-875 [17] S.S Dragomir (2003), Some Gronwall Type Inequalities and Applications, Nova Science Publishers, New York, NY, USA [18] K.J Engel, R Nagel (2000), One-Parameter Semigroups for Linear Evolution Equations, Springer-Veriag New York, Inc [19] L C Evans (2010), Partial Differential Equations, Second Edition, Graduate Studies in Mathematics, Volume 19, 749pp; Softcover MSC: Primary 35; Secondary 49; 47, American Mathematical Society [20] L C Evans (1988), "Weak Convergence Methods for Nonlinear Partial Differential Equations," Conference Board of the Mathematical Sciences, Regional conference Series in Mathematics, supported by the National Science Foundation, Number 74 130 [21] H Fan, F Gao (2014), "Asymptotic Stability of Solutions to Elastic Systems with Structural Damping", Electronic Journal of Differential Equations, Vol 2014, No 245 pp.1-9 ISSN: 1072-6691 [22] H Fan, Y Li, P Chen (2013), "Existence of Mild Solutions for the Elastic Systems with Structural Damping in Banach Spaces", Hindawi Publishing Corporation, Abstract and Applied Analysis, Voulume, Article ID 746893, pages [23] H Fan, Y Li (2014), "Analyticity and Exponential Stability of Semigroups for the Elastic Systems with Structural Damping in Banach Spaces", J.Math Anal Appl 410 pp.316-322 [24] G Fichera (1972), " Existence Theorems in Elasticity in Flă ugges Encyclopedia of Physics ", (C Truesdell, Ed.), Vol V a/2, SpringerVerlag, Berlin/New York, 1972 [25] E V Frolova (1994), "An Initial Boundary-Value Problem with a Noncoercive Boundary Condition in Domains with Edges", Zap Nauchn Sem POMI, Boundary-value problems of mathematical, Volume 213, Pages 206223 [26] P Grisvard (1985), Elliptic Problems in Nonsmooth Domains, Boston, Pitman [27] D Ginbarg, N Trudinger (1983), Elliptic Partial Differential Equation of Second Order, Springer -Verlag, Berlin - New York [28] F Huang (1985), "On the Holomorphic Property of the Semigrou Associated with Linear Elastic Systems with Structural Damping", Acta Math Sci (Chinese) pp.271-277 [29] F Huang (1986), "A Problem for Linear Elastic Systems with Structural Damping", Acta Math Sci Sinic pp.107-113 [30] F Huang (1988), "On the Mathematical Model for Linear Elastic Systems with Analytic Damping", SIAM, J Cont, Opt 26 pp.714724 [31] N M Hung (1998), "On the Smoothness of Solution of Dirichlet Problem for Hyperbolic Systems in Domains with Conical or Angular Points", DAN 362(2), 161-164 161-164 131 [32] N M Hung (1999), "Asymptotic Behaviour of Solutions to the First Boundary Value Problem for Strongly Hyperbolic Systems Near a Conical Point of the Boundary" Mat Sb., V.190(1999), N7, 103-126 [33] N M Hung (2007), "The First Initial Boundary Value Problem for Hyperbolic Equations in Infinite Cylinders with Nonsmooth Base" Journal of Science of Hanoi National University of Education Natural sciences, Vol 52, Num 4, pp 13-22 [34] N M Hung, C T Anh (2004), "On the Solvability of the First Initial Boundary Value Problem for Schrăodinger Systems in Infinite Cylinders", Vietnam J Math., 32(1), pp 41- 48 [35] N M Hung, C T Anh (2005), "On the Smoothness of Solutions of the First Initial Boundary Value Problem for Schrăodinger Systems in Domains with Conical Points", Vietnam J Math., Vol 33(2), pp 135 - 147 [36] N M Hung, N T Anh (2008), "Regularity of Solutions of Initial Boundary Value Problems for Parabolic Equations in Domains with Conical Points", J Differential Equations Vol 245, pp 1801-1818 [37] N M Hung, N T Anh (2013), "On Initial-Boundary Value Problems for Hyperbolic Equations in Domains with Conical Points," Hindawi Publishing Corporation, Abstract Applied Analysis, Vol 2013, Art ID 801314, 10 p [38] N M Hung, P T Duong (2004), "On the Smoothness of Generalized Solution for Parabolic Systems in Domain with Conic Point on Boundary", Ucrainian Mathematical Journal V.56(6): 857-864 [39] N M Hung, P T Duong (2004), "On the Smoothness with Sespect to Time Variable of Generalized Solution with Respect to Time Variable of the First Initial Boundary-Value Problem for Strongly Parabolic Systems in the Cylinder with Non-Smooth Base", Ucrainian Mathematical Journal, Vol 56(1), pp 78-87 [40] N M Hung, T T Loan (2004), "On the Asymptotic Behaviour of Solutions of the First Initial Boundary Value Problems for Parabolic Equation", Ukrain Math Zh Vol 54 (12), pp 2080-2087 132 [41] N M Hung, V T Luong (2008), "Unique Solvability of Initial Boundary-Value Problems for Hyperbolic Systems in Cylinders Whose Base is a Cusp Domain", Electron J Diff Eqns., Vol 2008 No 138, pp 1-10 [42] N M Hung, V T Luong (2009), "Regularity of the Solution of the First Initial-Boundary Value Problem for Hyperbolic Equations in Domains with Cuspidal Points on Boundary", Hindawi Publishing Conrporations, Boundary Value Problems, Volume 2009, Article ID 135730, 14 pages [43] N M Hung, J C Yao (2009), "Cauchy-Dirichlet Problem for SecondOrder Hyperbolic Equations in Cylinder with Non-Smooth Base", Nonlinear Anal.T MA70, 741-756 [44] N M Hung, J C Yao (2009), "On the Asymptotic of Solutions of the First Initial Boundary Value Problem for Hyperbolic Systems in Infinite Cylinders with Base Containing Conical Points", Nonlinear Analysis: Theory, Methods & Applications, Volume 71, Issues 5-6, pp 1620-1635 [45] M Kamenskii, V Obukhovskii, P Zecca (2001), Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter ã Berlin ã New York [46] B T Kim, N M Hung (2008), "On the Solvability of the First Mixed Problem for Strongly Hyperbolic System in Infinite Nonsmooth Cylinders", Taiwanese Journal of Mathematics, Vol 12, No 9, pp 26012618 [47] V A Kondratev (1967), "Boundary-Value Problems for Elliptic Equations in Domains with Conic or Corner Points", Trudy Moskov Mat Obshch 16, 209-292 Trans Moscow Math Soc 1967, 227-313 [48] V.A Kondratev (1970), "On the Smoothness of the Solution of the Dirichlet Problem for Second Order Elliptic Equations in Peecewise Smooth Domain", Differ Uravn 1831-1843 (in Russian); English transl: Differential Equations (1970), 1392-1401 [49] V A Kondratev (1977), "Singgularities of the Solution of the Dirichlet Problem for a Second Order Elliptic Equation in a Neighborhood 133 of Edge", Differentsialnye Uravneniya, 13(1977), pp 2026-2032 Differential Equations 13(1977), pp 1411-1415 [50] V A Kondratev (1998), "On the Smoothness of the Solution of the Dirichlet Problem for Second Order Elliptic Equations in a Piecewise Smooth Domain", Russian Mathematical Surveys, Volume 53, Number [51] V A Kozlov, V.G Mazya, J Rossmann (1997), Elliptic Boundary Value Problems in Domains with Point Singularities, Mathematical surveys and monographs, Amer Math Soc Vol 52, 414pp [52] V A Kozlov, V G Mazya (1988), "Spectral Properties of the Operator Bundles Generated by Elliptic Boundary-Value Problems in a Cone", Functional Analysis and Its Applications, Volume 22, Issue 2, pp 114-121 [53] V A Kozlov, V G Mazya and J Rossmann (2001), Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations, Mathematical Surveys and Monographs, Amer Math Soc Vol 85 [54] J L Lions (1969), Quelques Methodes de Resolution des Proble`mes aux Limites Non Lineaires, DunodGauthierVillard Paris [55] Y Louartassi, El Hossine, El Mazoudi, N Elalami (2012), "A New Generalization of Lemma Gronwall-Bellman", Applied Mathematical Sciences, Vol 6, No 13, 621 - 628 [56] S Lubkin (2003), C0 Semigroups and Applicaltions, North-Holland Mathematics Sudies 191 [57] V T Luong, D V Loi (2011), "Initial Boundary Value Problems for Second Order Parabolic Systems in Cylinders with Polyhedral Base", Boundary Value Problems 2011, 2011:56 [58] V T Luong, N T Hue (2014), "On the Asymptotic of Solution to the Dirichlet Problem for Hyperbolic Equations in Cylinders with Edges", Electron J Qual Theory Differ Equ., No 10, pp 1-15 134 [59] A Matsumura (1977), "Global Existence and Asymptotics of the Solutions of the Second Order Quasilinear Hyperbolic Equations with the First Order Dissipation", Publ RIMS, Hyoto Univ 13, pp 349-379 [60] V G Mazya, J Rossmann (2010), Elliptic Equations in Polyhedral Domains, Mathematical Surveys and Monographs 162, Amer Math Soc., Providence, Rhode Island [61] F A Mehmeti, S Nicaise (1998), "NonAutonomous Evollution Equations on Nonsmooth Domains", Math Nachr Vol 192, pp 37-70 [62] A Milani, Y Shibata (1995), "On the Strong Well-Posedness of Quasilinear Hyperbolic Initial-Boundary Value Problems", Funkcialaj Ekvacioj 38 pp.491-503 [63] A Pazy (1983), Semigroups of Linear Operators and Applications to Partial Differential, Springer, Berlin, Germany [64] L E Pay, D H Sattinger (1975), "Saddle Points and Instability of Nonlinear Hyperbolic Equations", Israel J Math Vol 22, pp 273303 [65] M Renardy, R C Rogers (2004), An Introduction to Partial Differential Equations, Springer Verlag New York, Inc Second edition, With 41 Illustrations, Series: Texts in Applied Mathematics, Vol 13 [66] D.H Sattinger (1968), "On Global Solution of Nonlinear Hyperbolic Equations", Arch Rat Mech Anal Vol 30, pp 148-172 ... NGUYỄN THANH TÙNG BÀI TOÁN BIÊN ĐỐI VỚI MỘT SỐ LỚP PHƯƠNG TRÌNH TRUYỀN SÓNG TRONG MIỀN KHÔNG TRƠN Chuyên ngành: Phương trình vi phân tích phân Mã số: 62 46 01 03 LUẬN ÁN TIẾN SĨ TOÁN HỌC TẬP THỂ... miền trơn Từ vấn đề nêu trên, định nghiên cứu toán biên số lớp phương trình truyền sóng miền không trơn Trong nghiên cứu tồn nghiệm yếu toàn cục, nghiệm yếu địa phương toán biên ban đầu phương trình. .. biến thời gian toán biên ban đầu thứ nhất, thứ hai trụ với đáy miền với biên xác định Đặc biệt, tính trơn nghiệm theo biến không gian toán biên hệ phương trình hyperbolic trụ với đáy miền chứa điểm

Ngày đăng: 01/08/2017, 14:41

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan