1. Trang chủ
  2. » Giáo án - Bài giảng

Thuyết tương đối rộng hay thuyết tương đối tổng quát

37 439 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 37
Dung lượng 1,84 MB

Nội dung

uyt tng i rng hay thuyt tng i tng quỏt Xem bi vit gii thiu: Gii thiu thuyt tng i rng tng i rng cũn l c s cho cỏc mụ hỡnh v tr hc hin ti v s ang gión n khụng ngng ca v tr uyt tng i rng hay thuyt tng i tng quỏt l lý thuyt hỡnh hc ca lc hp dn nh vt lý Albert Einstein cụng b vo nm 1916[2] v hin ti c coi l lý thuyt miờu t hp dn thnh cụng ca Lch s vt lý hin i uyt tng i tng quỏt thng nht thuyt tng i hp v nh lut vt hp dn ca Newton, ng thi nú miờu t lc hp dn (trng hp dn) nh l mt tớnh cht hỡnh hc ca khụng gian v thi gian, hoc khụng thi gian c bit, cong ca khụng thi gian cú liờn h cht ch trc tip vi nng lng v ng lng ca vt cht v bc x Liờn h ny c xỏc nh bng phng trỡnh trng Einstein, mt h phng trỡnh o hm riờng phi tuyn Nhiu tiờn oỏn v h qu ca thuyt tng i rng khỏc bit hn so vi kt qu ca vt lý c in, c bit cp n s trụi i ca thi gian, hỡnh hc ca khụng gian, chuyn ng ca vt th ri t v s lan truyn ca ỏnh sỏng Nhng s khỏc bit nh vy bao gm s gión thi gian hp dn, thu kớnh hp dn, dch chuyn hp dn ca ỏnh sỏng, v s tr thi gian hp dn Mi quan sỏt v thớ nghim u xỏc nhn cỏc hiu ng ny cho ti Mc dự cú mt s lý thuyt khỏc v lc hp dn cng c nờu ra, nhng lý thuyt tng i tng quỏt l mt lý thuyt n gin nht phự hp cỏc d liu thc nghim Tuy th, cũn tn ti nhng cõu hi m, cn bn nht nh cỏc nh vt lý cha bit lm th no kt hp thuyt tng i rng vi cỏc nh lut ca vt lý lng t nhm to mt lý thuyt y v nht quỏn l thuyt hp dn lng t Lý thuyt ca Einstein cú nhiu ng dng quan trng vt lý thiờn Nú ch trc tip s tn ti ca l en nhng vựng ca khụng thi gian ú khụng gian v thi gian b un cong n mc c ỏnh sỏng cng khụng th thoỏt c mt trng thỏi cui cựng ca cỏc ngụi lng ln Cú rt nhiu ngun bc x mnh phỏt t mt vi loi thiờn th c nh da trờn s tn ti ca l en; vớ d, cỏc h ụi tia X v nhõn cỏc thiờn h hot ng th hin s cú mt ca tng ng l en lng v l en cú lng khng l S lch ca tia sỏng trng hp dn lm xut hin hiu ng thu kớnh hp dn, ú nhiu hỡnh nh ca cựng mt thiờn h hin lờn qua nh chp uyt tng i tng quỏt miờu t cỏc tớnh cht ca súng hp dn m ó c xỏc nhn mt cỏch trc tip bi nhúm Advanced LIGO Hn na, thuyt Albert Einstein, 1921 Ngay sau phỏt trin thuyt tng i c bit nm 1905, Einstein bt u suy ngh v s mõu thun gia lc hp dn Newton vi lý thuyt ny Nm 1907, ụng nhn s liờn h (hay tng ng cc b) gia lc hp dn v h quy chiu gia tc (ụng coi õy l ý tng hnh phỳc nht ca i mỡnh) v nờu mt thớ nghim suy tng n gin ú cú mt ngi quan sỏt thang mỏy ri t ễng ó phi mt tỏm nm theo ui nhm tỡm kim lý thuyt hp dn tng i tớnh Sau nhiu nhm ln v i lch hng, cui cựng ụng ó tỡm c phng trỡnh hp dn v miờu t nú cuc hp ca Vin hn lõm Khoa hc Ph vo thỏng 11 nm 1915 m ngy gi l phng trỡnh 2 T C HC C IN N THUYT TNG I RNG trng Einstein H phng trỡnh ny cho bit hỡnh hc ca khụng thi gian b nh hng bi s cú mt ca vt cht nh th no, v lc hp dn s cong ca hỡnh hc khụng thi gian Phng trỡnh trng Einstein l mnh ghộp trung tõm ca thuyt tng i tng quỏt.[3] Phng trỡnh trng Einstein l h phng trỡnh vi phõn riờng phn phi tuyn v rt khú gii Einstein ó s dng phng phỏp xp x nhm suy lun nhng h qu u tiờn ca lý thuyt Nhng u nm 1916, nh thiờn vt lý Karl Schwarzschild tỡm nghim chớnh xỏc khụng tm thng u tiờn ca phng trỡnh trng Einstein m ngy gi l mờtric Schwarzschild Nghim ny l c s lý thuyt cho mụ hỡnh vt lý v trng thỏi cui cựng ca suy sp hp dn, dn n s hỡnh thnh ca mt s thiờn th ú cú l en dng i xng cu Trong cựng nm, nghim Schwarzschild ó c tng quỏt thnh nghim chớnh xỏc cho vt th cú in tớch, hay chớnh l mờtric ReissnerNordstrửm, nghim ny mụ t l en tớch in khụng quay.[4] Nm 1917, Einstein ỏp dng lý thuyt ca ụng cho ton b v tr, khai sinh ngnh v tr hc tng i tớnh.[5] eo t tng ng thi, ụng ó gi nh v tr tnh ti vnh hng, v phi cng thờm mt tham s mi vo phng trỡnh trng ban u ca mỡnhhng s v tr hcnhm thu c kt qu nh quan sỏt t by lõu nay.[6] Tuy th, nm 1929, nhng nghiờn cu ca nh thiờn Edwin Hubble v nhng ngi khỏc li ch v tr ang gión n V kt qu quan sỏt ny li phự hp vi nghim mụ t v tr ang gión n nh vt lý ngi Nga Alexander Friedman tỡm t nm 1922 m khụng ũi hi cú hng s v tr hc Mc s v nh v tr hc ngi B Georges Lemaợtre ó s dng nghim ny nhm miờu t kch bn s khai ca mụ hỡnh V n ln, mụ hỡnh núi rng v tr ban u ó tin húa t trng thỏi cc k núng v m c.[7] Sau ny, Einstein coi hng s v tr hc l sai lm ln nht ca i ụng.[8] Trong sut thi kỡ t thp niờn 1920 n thp niờn 1950, cỏc nh vt lý coi thuyt tng i tng quỏt mt lý thuyt k l cỏc lý thuyt vt lý Nú p hn lý thuyt ca Newton, phự hp vi thuyt tng i hp v gii thớch c mt vi hiu ng m lý thuyt Newton cha thnh cụng Chớnh Einstein ó ch vo nm 1915 rng lý thuyt ca ụng ó gii thớch c chuyn ng d thng ca im cn nht ca Sao y m khụng cn ti bt kỡ mt tham s no.[9] Vo nm 1919 mt on him dn u bi Arthur Eddington ó xỏc nhn tiờn oỏn ca thuyt tng i tng quỏt v s lch ỏnh sỏng nú i gn Mt tri bng cỏch theo dừi nht thc vo thỏng 5,[10] khin Einstein lp tc tr nờn ni ting.[11] V lý thuyt tr thnh hng i chớnh ca vt lý lý thuyt v thiờn vt lý giai on phỏt trin t 1960 n 1975, hay thi k vng ca thuyt tng i rng.[12] Cỏc nh vt lý bt u nm bt c khỏi nim l en, v ng nht nhng i tng thiờn vt lý ny vi quasar thiờn quan sỏt.[13] Cú thờm nhiu kim nghim chớnh xỏc h Mt Tri ó chng t sc mnh tiờn oỏn ca lý thuyt,[14] v v tr hc tng i tớnh cng vy vi rt nhiu quan sỏt o lng nhm kim chng h qu ca lý thuyt.[15] T c hc c in n thuyt tng i rng Chỳng ta cú th hiu thuyt tng i rng thụng qua nhng im tng t v khỏc bit ca nú so vi lý thuyt Newton Bc u tiờn l ch c hc c in v nh lut vt hp dn cho phộp miờu t theo ngụn ng hỡnh hc Bng cỏch kt hp miờu t ny vi nh lut ca thuyt tng i hp s cho chỳng ta khỏm phỏ thuyt tng i rng mt cỏch t nhiờn.[16] 2.1 Mụ t bng hỡnh hc ca lc hp dn Newton Theo thuyt tng i tng quỏt, mi vt trng hp dn hnh x ging nh chỳng mt thang mỏy kớn ang gia tc Vớ d, mt ngi s thy qu o qu búng ri tờn la (trỏi) ging nh nú ri trờn mt t (phi), chng t rng gia tc ca tờn la cung cp mt lc ging nh lc hỳt ca Trỏi t C s ca vt lý c in l khỏi nim chuyn ng ca mt vt th, kt hp gia chuyn ng t (hay quỏn tớnh) v chuyn ng cú ngoi lc tỏc dng Cỏc chuyn ng ny c miờu t bng phng trỡnh khụng gian chiu Euclid v s dng khỏi nim thi gian tuyt i Nhng ngoi lc tỏc dng lờn vt th lm qu o vt lch qu o ca chuyn ng quỏn tớnh tuõn theo nh lut th hai ca Newton v chuyn ng, phỏt biu l tng lc tỏc dng lờn vt bng lng (quỏn tớnh) nhõn vi gia tc ca nú.[17] Tip theo, chuyn ng quỏn tớnh c liờn h vi hỡnh hc ca khụng gian v thi gian: h quy chiu quỏn tớnh ca c hc c in, cỏc vt chuyn ng t vi tc khụng i s cú qu o l ng thng eo ngụn ng ca vt lý hin i, qu o ca chỳng l ng trc a, nhng tuyn th gii thng (world 2.2 Chuyn sang tng i tớnh chuyn ng quỏn tớnh ny cng cho phộp xỏc nh hỡnh hc ca khụng gian v thi gian theo ngụn ng toỏn hc, qu o ca vt chớnh l chuyn ng trờn ng trc a Trong phng trỡnh ng trc a cha h s liờn thụng ph thuc vo gradien ca th nng hp dn Khụng gian ca c hc Newton theo cỏch xõy dng ny thun tỳy l hỡnh hc Euclid phng Hỡnh hc ny tỏc ng n chuyn ng ca vt cht nhng khụng b nh hng bi vt cht v tn ti mt cỏch tuyt i Tuy nhiờn ton b khụng thi gian vt lý li l mt cu trỳc phc Nh c ch bng cỏc thớ nghim tng tng n gin v qu o ri t ca cỏc ht th khỏc nhau, dch chuyn cỏc vect khụng thi gian - ký hiu cho tc ca ht (cỏc vect kiu thi gian, cú thnh phn ta ) - s cho kt qu l cỏc vect khỏc dc theo qu o ca ht; hay núi v mt toỏn hc, liờn thụng Newton khụng kh tớch c (cỏc vect tc dch chuyn trờn qu o s khụng cũn song song vi vect ban u na) T iu ny, chỳng ta cú th kt lun rng khụng thi gian l cong Mụ hỡnh hỡnh hc phng ca hp dn Newton ch Dch chuyn song song mt vect trờn cung kớn thuc mt cu t s dng cỏc khỏi nim hip bin, cú ngha l nú cụng A N B A v vect cui cựng cú hng khỏc so vi vec mụ t t ban u, gúc lch t l vi din tớch tam giỏc cu (cung kớn) nhn mt h quy chiu quỏn tớnh ton cc v hin tng hp dn ỳng mi h ta .[21] eo cỏch miờu t hỡnh hc ny, cỏc hiu ng thy triu gia tc tng i gia cỏc vt th gn ri t lines, hay ng th gii) khụng thi gian cong c liờn h vi o hm ca liờn thụng, ch hỡnh v ng trc a chớnh l ng thng hỡnh hc hc thay i nh th no bi s cú mt lng.[22] phng.[18] Ngc li, chỳng ta mong mun rng nh ỏp dng chuyn ng quỏn tớnh - mt bit c chuyn ng thc ca vt th nh hng ca ngoi lc no (nh lc in t hoc ma sỏt) - xỏc nh hỡnh hc ca khụng gian, cng nh ta thi gian Tuy nhiờn, cú mt s khú khn xut hin hp dn eo nh lut vt hp dn Newton, v nhng thớ nghim c lp ca Eửtvửs v cỏc thớ nghim sau ú (xem thớ nghim Eửtvửs), vt ri t (cũn gi l nguyờn lý tng ng yu, hay s bng gia lng quỏn tớnh v lng hp dn th ng): qu o ca vt th ri t ch ph thuc vo v trớ v tc ban u ca nú, ch khụng ph thuc vo nú cu to bng vt cht gỡ (nh lc in t cũn ph thuc vo in tớch ht th).[19] Cú mt minh n gin iu ny th hin thớ nghim tng tng ca Einstein, hỡnh bờn cnh: i vi mt quan sỏt viờn thang mỏy kớn, khụng th bit c, bng theo dừi qu o ca cỏc vt nh qu búng ri, rng ang cn phũng ng yờn trờn mt t v mt trng hp dn, hay ang tu v tr chuyn ng t khụng gian vi gia tc bng gia tc hp dn.[20] Nu ch da vo s ri t ca vt, chỳng ta khụng th phõn bit c ch bng quan sỏt gia chuyn ng quỏn tớnh v chuyn ng chu nh hng ca lc hp dn S khụng phõn bit c ny gi mt nh ngha mi cho chuyn ng quỏn tớnh: chuyn ng ca vt ri t trng hp dn nh ngha mi v 2.2 Chuyn sang tng i tớnh Nu mụ hỡnh lc hp dn Newton cú th biu din bng hỡnh hc thỡ c s vt lý ca nú, c hc c in, ch l trng hp gii hn ca c hc tng i tớnh (c bit) i vi chuyn ng cú tc nh.[23] eo ngụn ng ca i xng: b qua nh hng ca trng hp dn, cỏc phng trỡnh vt lý tuõn theo bt bin Lorentz ging nh ca thuyt tng i hp hn l tuõn theo bt bin Galileo nh c hc c in (Nhúm i xng ca thuyt tng i hp l nhúm Poincarộ bao gm c phộp tnh tin v phộp quay.) S khỏc gia c hc c in v thuyt tng i hp tr lờn rừ rt cỏc vt cú tc gn vi tc ỏnh sỏng, v xột n nhng quỏ trỡnh nng lng cao.[24] Vi i xng Lorentz, chỳng ta cú thờm nhng cu trỳc mi Chỳng c xỏc nh bng hp nún ỏnh sỏng (xem hỡnh bờn trỏi) Cỏc nún ỏnh sỏng cho phộp nh ngha cu trỳc nhõn qu: i vi mi s kin A, v nguyờn lý cú mt cỏc s kin, hoc nh hng n A hoc b nh hng bi A thụng qua tớn hiu hoc tng tỏc m khụng vt quỏ tc ỏnh sỏng (nh s kin B hỡnh), v mt cỏc s kin khụng th liờn quan c n A (nh s kin C hỡnh) Tp ny gi l nhng quan sỏt viờn c lp.[25] Khi gn vi tuyn th gii (world-lines) ca ht ri t do, chỳng ta s dng nún ỏnh sỏng nhm khụi phc li mờtric na-Riemannian ca khụng thi gian, ớt nht i vi T C HC C IN N THUYT TNG I RNG Time B A C Space Nún ỏnh sỏng s hng vụ hng dng eo thut ng toỏn hc, quỏ trỡnh ny xỏc nh lờn cu trỳc bo giỏc.[26] uyt tng i hp khụng miờu t lc hp dn, vy cỏc nh vt lý ỏp dng nú cho nhng mụ hỡnh khụng tớnh n lc hp dn Bi vỡ mụ hỡnh hp dn Newton núi rng lc hp dn gia hai vt th tỏc dng mt cỏch tc thỡ, khụng k chỳng cỏch xa bao nhiờu (hay tn ti nhng h quy chiu quỏn tớnh ton cc), vy lý thuyt Newton vi phm bt bin Lorentz Khi tớnh n trng hp dn, bng ỏp dng s ri t do, cỏch lý gii tng t nh phn trc c ỏp dng: khụng cú mt h quy chiu quỏn tớnh ton cc tn ti lý thuyt tng i tng quỏt ay vỡ vy chỳng ta ch cú th s dng nhng h quy chiu quỏn tớnh cc b xp x" di chuyn dc theo qu ao ht ri t Chuyn thnh ngụn ng ca khụng thi gian: nhng tuyn th gii thng kiu thi gian m xỏc nh h quy chiu quỏn tớnh khụng cú trng hp dn s b lch thnh nhng ng cong tng i vi trng hp dn (Ging nh th hai qu búng ri t do, tng nh chỳng ri song song vi nhng thc t qu o ca chỳng gp ti tõm Trỏi t, hay qu o hai qu búng b lch tng i vi cú mt trng hp dn.) v iu ny gi rng trng hp dn lm thay i hỡnh hc ca khụng thi gian t phng sang cong.[27] Nhng cú mt cõu hi xut hin trc tiờn l liu h quy chiu cc b mi gn lin vi vt ri t cú ging vi h quy chiu m ú cỏc nh lut ca thuyt tng i hp tha lý thuyt da trờn c s s khụng i ca tc ỏnh sỏng chõn khụng, v cng mụ t lý thuyt in t hc c in Bng s dng nhng h quy chiu tng i tớnh ca thuyt tng i hp (nh h quy chiu gn lin vi mt t-phũng thớ nghim, hay h quy chiu ri t do), chỳng ta cú th dn nhng kt qu khỏc cho hiu ng dch chuyn hp dn, hiu ng dch chuyn tn s ca ỏnh sỏng nú truyn qua trng hp dn (xem bờn di) Nhng o c th nghim ch rng ỏnh sỏng lan truyn cỏc h quy chiu ri t cú qu o v tn s ging vi ỏnh sỏng lan truyn nhng h quy chiu quỏn tớnh ca thuyt tng i hp V ỏnh sỏng lan truyn trng hp dn cú qu o v s dch chuyn tn s ging nh nú lan truyn h quy chiu ang gia tc vi gia tc bng gia tc hp dn.[28] Tng quỏt húa phỏt biu ny tng ng vi phỏt biu cỏc nh lut ca thuyt tng i hp tha mt cỏch xp x tt nhng h quy chiu ri t (v khụng quay)", cũn gi l nguyờn lý tng ng Einstein, mt nguyờn lý nn tng ca thuyt tng i tng quỏt.[29] Cỏc thớ nghim cng ch rng thi gian o bi nhng ng h trng hp dn thi gian riờng, thut ng ca vt lý hc khụng tuõn theo cỏc nh lut ca thuyt tng i hp (hm ý thi gian b cong) Trong ngụn ng ca hỡnh hc khụng thi gian, nú khụng c o bng mờtric Minkowski Nh trng hp lc hp dn Newton, iu ny gi lý thuyt tng i rng cn mt hỡnh hc tng quỏt miờu t quy mụ nh, mi h quy chiu ri t u tng ng vi v miờu t xp x bng mờtric Minkowski H qu l, chỳng ta s cn phi tng quỏt hỡnh hc Minkowski thnh hỡnh hc cỏc khụng gian cong Tenx mờtric xỏc nh lờn cu trỳc hỡnh hc c bit nú cho phộp o di v gúc khỏc vi mờtric Minkowski ca thuyt tng i hp, nú l mờtric tng quỏt ca mờtric a gi-Riemann Hn na, mi mờtric Riemann c kt hp mt cỏch t nhiờn vi mt loi liờn thụng c bit, liờn thụng Levi-Civita, v thc t liờn thụng ny tha nguyờn lý tng ng v lm cho khụng thi gian ca thuyt tng i tng quỏt trờn phng din cc b ging vi khụng thi gian Minkowski (cú ngha l chn h ta quỏn tớnh cc b phự hp, tenx mờtric ca thuyt tng i rng tr thnh tenx mờtric Minkowski, cng nh o hm riờng bc nht v cỏc h s liờn thụng trit tiờu - tng ng vi khụng cú trng hp dn h to cc b ny) Tenx mờtric th hin tớnh ng lc ca hỡnh hc khụng thi gian, nú cho thy vt cht nh hng lờn hỡnh hc nh th no cng nh s xut hin ca nú phng trỡnh chuyn ng ca ht th.[30] Trong khụng thi gian Minkowski phng, vi h ta xà (x0 , x1 , x2 , x3 ) = (ct, x, y, z) mt nhng bt bin Lorentz l khong khụng 2.3 Phng trỡnh trng Einstein thi gian gia hai s kin s2 2.3 lng-nng lng, thỡ chỳng ta cn phi la chn u tiờn mt h quy chiu quỏn tớnh v ú ũi hi 2 2 2 2 quỏn ti2 +dz mt2h chiu tớnh ton cc, iu ny = c t +x +y +z = ds = c dt +dxtn +dy = quy dx dx l khụng c phộp thuyt tng i tng quỏt Nu ds2 < thỡ hai s kin nm trờn tuyn th Nh nguyờn lý tng ng Einstein, ngoi lng, gii (world line) kiu thi gian (time-like), v mi nng lng thỡ ng sut cng tr thnh mt ngun cho s kin thc cú liờn h nhõn qu vi nhau-mt s trng hp dn V tenx ng sutnng lng kin nm nún ỏnh sỏng ca s kin kia-s lp tc tng quỏt cho khụng thi gian cong v tr thnh tenx miờu t mt ngun cho trng hp dn nm trờn ng kiu thi gian cho phộp thu v trng hp gii hn ca lc hp dn Nu ds2 > thỡ hai s kin nm trờn tuyn th Newton c in, mt cỏch t nhiờn chỳng ta gi thit gii kiu khụng gian (space-like), õy l khong rng phng trỡnh trng hp dn liờn h tenx ng khụng thi gian gia hai s kin m mt s kin sutnng lng hng hai vi mt tenx cong hng hai gi l tenx Ricci, tenx ny cú ý ngha vt lý miờu nm ngoi nún ỏnh sỏng ca s kin t mt trng hp c bit ca hiu ng thy triu: nú Nu ds2 = thỡ hai s kin nm trờn tuyn th cho bit s thay i th tớch ca mt ỏm nh ht th gii khụng (null-world line), hay chỳng nm trờn ban u ng yờn tng i vi nhau, v sau ú ri t ng i ca ỏnh sỏng trng hp dn Trong thuyt tng i hp, nh lut bo ton nng lngng lng tng ng Bt bin Lorentz l i lng khụng i vi phng trỡnh toỏn hc l phõn k ca tenx ng chỳng ta chuyn t h ta ny sang h ta sutnng lng phi bng (hay t do) Cụng thc khỏc ny cng c tng quỏt húa sang cho khụng thi gian cong bng cỏch thay th o hm riờng thụng thng theo cỏc trc ta ca a cong bng o hm hip Tenx mờtric Minkowski l bin ca cỏc ta , o hm ny c nghiờn cu hỡnh hc vi phõn Cỏc nh lut bo ton phi luụn tha 0 phm vi cc b hay l phõn k hip bin ca +1 = tenx mt ng sutnng lng bng 0, v vy +1 phõn k hip bin ca v bờn phng trỡnh trng 0 +1 - v cho bit cong cc b ca khụng thi gian - cng vi du mờtric (, +, +, +) Trong thuyt phi bng Ban u, Einstein ngh rng v hỡnh hc tng i rng, cỏc tenx mờtric gà thay ny ch cú tenx Ricci (phõn k hip bin ca tenx ny th cho tenx v m bo i lng khỏc 0), nhng sau ú ụng phỏt hin phng trỡnh ds2 = gà dxà dx l bt bin Lorentz cc b trng cn phi tuõn theo nh lý phõn k hip bin t ng thi tenx mờtric cho phộp nõng v h - v ụng ó tỡm dng phng trỡnh n gin nht ch s ca cỏc tenx khỏc Cỏc phng trỡnh tuõn theo nh lý ny, m ngy gi l Phng trỡnh vt lý vit di dng phng trỡnh tenx cú trng Einstein: mt thun li l dng phng trỡnh ca nú khụng thay i chỳng ta chuyn sang h ta khỏc bt k (th hin cho tớnh hip 8G Rà R gà = Tà bin tng quỏt v nguyờn lý tng ng c Einstein).[31] V trỏi ca phng trỡnh l tenx Einstein, phõn k hip bin ca tenx ny bng Tenx ny l t hp ca tenx Ricci Rà v tenx mờtric gà = gà c Phng trỡnh trng Einstein bit Tuy ó nhn c hỡnh hc Riemann l cụng c toỏn hc cn thit nhm mụ t cỏc hiu ng hp dn, chỳng ta cũn cn phi xỏc nh thờm nhng ngun ca trng hp dn Trong mụ hỡnh hp dn Newton, ngun hp dn l lng Trong thuyt tng i hp, lng l mt thnh phn i lng tng quỏt hn l tenx nng lngng lng, bao gm mt nng lng v mt ng lng cng nh ng sut (bao gm ỏp sut v lc ct) Tenx nng lngng lng khụng cha nng lng ca trng hp dn.[32] Nu ngun hp dn thuyt tng i rng ch l R = g R l cong vụ hng Ricci, vi g cú th coi l cỏc phn t ca ma trn nghch o ca ma trn cú phn t g Tenx Ricci liờn h vi tenx cong Riemann R thụng qua phộp thu gn ch s Rà = R Mt khỏc, h s liờn thụng (hay ký hiu Christoel, nú khụng phi l tenx) cú th c tớnh t tenx mờtric, NH NGHA V CC NG DNG C BN = g ( gà + g gà ) Rà = v tenx cong Riemann (miờu t cong ni ti cc vụ hng cong R l hm ca tenx Ricci nờn nú cng bng phng trỡnh chõn khụng b ca khụng thi gian) bng Ngoi cỏch dn phng trỡnh Einstein tuõn theo nh lut bo ton nng lng-ng lng trờn, chớnh R = + Einstein v nh toỏn hc David Hilbert cũn nờu phng phỏp bin phõn cho tỏc dng Einstein-Hilbert õy = x l o hm riờng Trong thuyt tng v cng thu c phng trỡnh trng Phng phỏp i rng, tenx xon bng 0, ú h s Christoel bin phõn cú c im l nú thun li cho vic tng cú tớnh i xng = cng nh tenx Ricci quỏt hay m rng thuyt tng i tng quỏt Rà = Rà Cỏc nh vt lý cng ó xut nhng lý thuyt khỏc Trờn v phi ca phng trỡnh trng, Tà l tenx so vi thuyt tng i tng quỏt v thu c nhng mt ng sutnng lng nh lut bo ton nng phng trỡnh trng khỏc Nhng lý thuyt ny lng-ng lng cc b tng ng vi phõn k hip cng da trờn ba iu kin m thuyt tng i tng bin (o hm hip bin) ca nú quỏt tha món: T = T ; = vi Tà = gà g T , v g ; = g ; = Tenx Einstein Gà = Rà Rgà v Gà = Gà ; = Mt gii phng trỡnh Einstein v tỡm c nghim l tenx mờtric (cho phộp xỏc nh c cu trỳc hỡnh hc ca a khụng thi gian), chỳng ta s miờu t c chuyn ng ca ht (hay k c ỏnh sỏng-photon) trng hp dn thụng qua phng trỡnh ng trc a, d2 x dx dx + =0 d2 d d vi l tham s ca ng trc a Tt c cỏc phng trỡnh trờn c vit h ta x bt k Tt c cỏc tenx v h s Christoel cú thnh phn vit theo ký hiu ch s tru tng, v tuõn theo quy tc tớnh tng Einstein.[33] cho kt qu tiờn oỏn phự hp vi kt qu lý thuyt Newton v qu o cỏc hnh tinh v trng hp dn yu, Einstein tỡm hng s t l phng trỡnh = 8G/c , vi G l hng s hp dn v c l tc ỏnh sỏng.[34] Khi khụng cú vt cht hay bc x, tenx mt ng sutnng lng bng 0, v chỳng ta thu c phng trỡnh chõn khụng Einstein, Cỏc phng trỡnh tuõn theo nguyờn lý hip bin tng quỏt (v nguyờn lý tng ng Einstein) Phng trỡnh trng tuõn theo nh lut bo ton nng lng-ng lng cc b i vi mi tenx mờtric Khi trng hp dn yu v tc cỏc vt th l nh so vi tc ỏnh sỏng, lý thuyt s thu v mụ hỡnh hp dn Newton v c hc c in Ngoi ba iu kin trờn thỡ cỏc lý thuyt ny cũn cú thờm mt s gi thit khỏc, v ú nhng lý thuyt xut ny phc hn v mt toỏn hc so vi thuyt ca Einstein Vớ d mt s lý thuyt nh thuyt BransDicke, teleparallelism, v thuyt EinsteinCartan (thuyt ny coi tenx xon khỏc 0).[35] nh ngha v cỏc ng dng c bn Mt s nột khỏi quỏt phn trc cha mi thụng tin cn thit miờu t thuyt tng i rng, cỏc tớnh cht quan trng ca nú, nhng h qu ch yu v vic ng dng lý thuyt xõy dng cỏc mụ hỡnh vt lý 3.1 nh ngha v cỏc tớnh cht c bn uyt tng i tng quỏt l lý thuyt mờtric v tng tỏc hp dn Phng trỡnh nn tng ca lý thuyt l phng trỡnh trng Einstein, ú liờn h gia hỡnh hc ca a ta Riemann bn chiu ca khụng thi gian vi nng lng v ng lng cha 3.2 C s cho mụ hỡnh vt lý khụng thi gian ú.[36] Nhng quỏ trỡnh hin tng c hc c in c gỏn cho nguyờn nhõn lc hp dn tỏc dng (nh vt ri t do, chuyn ng trờn qu o ca cỏc hnh tinh, v qu o ca cỏc v tinh nhõn to), tng ng vi chuyn ng quỏn tớnh hỡnh hc cong ca khụng thi gian thuyt tng i rng; khụng cú lc hp dn lm lch qu o chuyn ng ca vt ng thng ay vo ú, lc hp dn l s thay i tớnh cht ca khụng thi gian, dn n lm thay i qu o ca vt tr thnh ng ngn nht cú th m vt s t nhiờn chuyn ng theo (hay ng trc a hỡnh hc vi phõn).[37] Cũn ngun gc cong ca khụng thi gian l nng lng v ng lng ca vt cht Nh nh vt lý John Archibald Wheeler phỏt biu, khụng thi gian núi cho vt cht cỏch chuyn ng; vt cht núi cho khụng thi gian cong nh th no.[38] nghim l mt mụ hỡnh vt lý tha cỏc nh lut tng i tớnh tng quỏt cng nh cỏc nh lut vt lý khỏc chi phi s cú mt ca vt cht.[43] Phng trỡnh trng Einstein l h phng trỡnh vi phõn riờng phn phi tuyn cho nhng kt qu ỏng tin cy, vy rt khú tỡm c nghim chớnh xỏc.[44] Tuy vy, cỏc nh vt lý ó gii c mt s nghim chớnh xỏc, mc du ch cú vi ba nghim cú ý ngha vt lý trc tip.[45] Nhng nghim chớnh xỏc ni ting nht, v cng cú nhiu ng dng vt lý thc nghim ú l: mờtric Schwarzschild, mờtric ReissnerNordstrửm v mờtric Kerr, chỳng l cỏc nghim ca phng trỡnh chõn khụng Einstein v mi nghim tng ng vi mt kiu l en;[46] v mờtric FriedmannLemaợtre RobertsonWalker v v tr de Sier, mi loi miờu t mt v tr cú tớnh ng lc.[47] Nhng nghim chớnh xỏc hp dn v mt lý thuyt bao gm v tr Gửdel (m kh nng k l cho phộp du hnh ngc thi gian khụng thi gian cong), nghim súng-pp cho súng hp dn, khụng gian Taub-NUT (mụ hỡnh v tr ng nht, nhng phi ng hng), v khụng gian phn de Sier (m gn õy tr lờn quan trng phng oỏn Maldacena ca lý thuyt dõy).[48] Khi m thuyt tng i thay th nng hp dn vụ hng ca vt lý c in thnh tenx i xng hng hai, thỡ ng thi tenx ny s thu v trng hp gii hn c in nhng iu kin xỏc nh i vi trng hp dn yu v chuyn ng cú tc tng i chm so vi tc ỏnh sỏng, lý thuyt cho kt qu tiờn oỏn trựng vi tiờn oỏn ca nh lut vt hp Do rt khú tỡm c nghim chớnh xỏc, cỏc nh vt dn Newton.[39] lý ó tỡm cỏch gii phng trỡnh trng Einstein bng c xõy dng trờn cụng c tenx, thuyt tng i phng phỏp tớch phõn s" trờn mỏy tớnh, hoc xột tng quỏt th hin tớnh hip bin tng quỏt: mi nhng nhiu lon nh nghim chớnh xỏc Trong nh lut ca nú v hn na cỏc nh lut thit lp lnh vc mụ phng lý thuyt bng mỏy tớnh, ngi trờn khuụn kh tng i tớnh tng quỏts cú dng ta s dng cỏc siờu mỏy tớnh mụ phng hỡnh hc phng trỡnh nh mi h ta .[40] Cn bn ca khụng thi gian v gii phng trỡnh Einstein cho hn, lý thuyt khụng cha bt k mt cu trỳc hỡnh hc nhng tỡnh quan trng nh s va chm v sỏt c s bt bin no, hay thuyt tng i rng cú c nhp hai l en hay cu trỳc ca v tr trờn khong tớnh c lp vi phụng c s khụng thi gian (ng vi cỏch ln.[49] c bit, phng phỏp ny cú th ỏp dng mi s phõn b vt cht v nng lng thỡ li cú mt cho mt h bt k nu kh nng tớnh toỏn ca siờu mỏy dng hỡnh hc khụng thi gian khỏc nhau) Nú cng tớnh cho phộp, v cú th tip cn c nhng cõu hi tha iu kin cht ch ca nguyờn lý tng i cn bn nh im k d hp dn Chỳng ta cú th tỡm tng quỏt, tc l mi nh lut vt lý phi nh nhng nghim xp x bng lý thuyt nhiu lon nh i vi mi quan sỏt viờn.[41] Trờn cc b, nh ũi hi tuyn tớnh húa hp dn[50] v phng phỏp tng quỏt ca nguyờn lý tng ng, khụng thi gian cong tr húa ca nú khai trin hu Newton, c hai phng thnh khụng thi gian Minkowski, v cỏc nh lut vt phỏp ny u Einstein phỏt trin Phng phỏp sau lý tuõn theo bt bin Lorentz cc b.[42] cung cp cỏch tip cn cú h thng nhm gii hỡnh hc khụng thi gian vi s phõn b vt cht chuyn ng chm so vi tc ỏnh sỏng Phng phỏp khai 3.2 C s cho mụ hỡnh vt lý trin cha cỏc chui s hng; vi s hng th nht i din cho úng gúp ca hp dn Newton, Khỏi nim ct lừi mụ hỡnh vt lý tng i nhng s hng tip sau th hin nhng hiu chnh nh tớnh tng quỏt ú l tỡm nghim ca phng trỡnh hn ca lý thuyt Newton t thuyt tng i tng trng Einstein Khi cú phng trỡnh Einstein v nhng quỏt.[51] Phng phỏp m rng ca phng phỏp ny phng trỡnh hay iu kin gii hn c th khỏc v tớnh gi l hỡnh thc tham s húa hu Newton, cho phộp cht ca vt cht (nh phng trỡnh trng thỏi, hoc so sỏnh mt cỏch nh lng gia nhng tiờn oỏn ca gi nh v tớnh i xng ca khụng thi gian, hoc thuyt tng i rng vi nhng lý thuyt thay th phi phng trỡnh iu kin biờn, iu kin ban u) thỡ lng t khỏc.[52] nghim ca phng trỡnh s l mt a ta Riemann (thụng thng a ny c xỏc nh bi tenx Nghim Schwarzchild: miờu t khụng thi gian mờtric theo nhng h ta c bit), v trng vt tnh cú tớnh i xng cu, bờn ngoi bỏn kớnh cht c th xỏc nh trờn a ú Vt cht cng phi Schwarzchild Nú l nghim ca phng trỡnh tha bt k mt iu kin ph no ca cỏc phng chõn khụng vi Tà = trỡnh khỏc mụ t tớnh cht ca nú Hay ngn gn, mi H QU CA Lí THUYT EINSTEIN Trong h ta cu xà (ct, r, , ) 4.1 S gión thi gian hp dn v dch s dng du mờtric (-, +, +, +), mờtric chuyn tn s Schwarzchild l [53] ( ) rs ) 2 ( rs )1 2 ( ds2 = c2 d = c dt + dr +r d + sin2 d2 , r r vi l thi gian riờng (o bi ng h gn cựng vi ht th di chuyn trờn tuyn th gii kiu thi gian) t l ta thi gian (o bi mt ng h ng yờn nm rt xa so vi ngun hp dn), r l ta xuyờn tõm (o bng chu vi ng trũn chia cho 2, cỏc ng trũn nm trờn mt cu cú tõm ti ngun hp dn), l d v (tớnh t cc bc, n v radian), l kinh (radian), v Minh hiu ng dch chuyn tn s hp dn ỏnh sỏng thoỏt b mt ca thiờn th lng ln r l bỏn kớnh Schwarzschild ca ngun hp dn, nú l h s t l liờn h vi lng M ca Ban u, bng gi s nguyờn lý tng ng l tha ngun hp dn khụng cú in tớch v khụng món,[55] Einstein ó chng t trng hp dn nh quay v r = 2GM/c [54] hng ti s trụi i ca thi gian Khi ỏnh sỏng truyn vo trng hp dn mnh thỡ tn s ca nú tng lờn (hay bc súng gim i-dch chuyn xanh), hay dng ma trn ca mờtric ) ( ỏnh sỏng truyn theo hng ngc li-thoỏt 2GM 0 trng hp dn thỡ tn s ca nú gim (hay bc súng c r ( ) 2GM 0 .tng-dch chuyn ); kt hp li, hai hiu ng ny gi c2 r gà = 0 r2 chung l dch chuyn tn s hp dn Tn s ỏnh 0 r2 sin2 sỏng mt h quy chiu cc b cng chớnh l thi gian o c h quy chiu ú Do vy, tng quỏt hn, mt quỏ trỡnh s din chm chp gn thiờn Ta thy ht th nm rt xa ngun hp th lng ln so vi cựng quỏ trỡnh ú din dn r hoc khụng cú ngun hp mt ni xa hn; hiu ng ny gi l s gión thi gian dn M = thỡ mờtric Schwarzschild gà tr hp dn-hay núi v mt hỡnh hc, thi gian b cong thnh mờtric Minkowski sau chuyn s cú mt ca vt cht.[56] t ta cu sang ta (ct, x, y, z) T s r/r l rt nh, i vi Mt Tri cú bỏn kớnh Schwarzschild xp x km, nú cú bỏn kớnh gn 700.000 km T s ny s tng i ln i vi l en v neutron Ta thy ti r = r thỡ mờtric tr lờn k d (cũn gi l chõn tri s kin), thc õy l k d chỳng ta s dng h ta cu ch khụng hn l k d thc Khi la chn h ta phự hp, k d ny bin mt v ch cú r = mi l im k d vt lý H qu ca lý thuyt Einstein Hiu ng dch chuyn ó c o phũng thớ nghim[57] v nhng quan sỏt thiờn vn.[58] S gión thi gian trng hp dn ca Trỏi t cng c o nhiu ln bng cỏc ng h nguyờn t,[59] v nh hiu chnh sai lch thi gian hiu ng ny cho phộp H thng nh v ton cu (GPS) hot ng chớnh xỏc ti vi một.[60] Nhng kim nghim trng hp dn mnh thc hin trờn quan sỏt cỏc pulsar ụi.[61] Tt c cỏc kt qu thớ nghim v quan sỏt u phự hp vi thuyt tng i tng quỏt vi sai s nh.[62] Tuy vy, mc chớnh xỏc hin nay, nhng quan sỏt ny khụng th loi tr mt s lý thuyt thay th thuyt tng i rng cng da trờn nguyờn lý tng ng, v mt s lý thuyt thỡ b bỏc b.[63] uyt tng i rng cú mt s h qu vt lý Mt s xut hin trc tip t nhng tiờn ca lý thuyt, 4.2 mt s khỏc ch tr lờn rừ rng sau hn 90 nm nghiờn cu k t Einstein cụng b lý thuyt ny nh sỏng b lch v s tr thi gian hp dn 4.3 Súng hp dn lờn hỡnh hc ca khụng gian.[70] 4.3 Súng hp dn nh sỏng b b cong (phỏt t ngun im mu xanh) gn vt th nộn c (cú mu xỏm) uyt tng i tng quỏt tiờn oỏn qu o ca ỏnh sỏng b b cong trng hp dn; ỏnh sỏng lan truyn gn vt th lng ln b kộo v phớa vt ú Hiu ng ny ó c xỏc nhn t cỏc quan sỏt ỏnh sỏng phỏt t nhng ngụi sao, thiờn h hay quasar xa b lch i i gn Mt Tri.[64] Hiu ng ny v nhng tiờn oỏn liờn quan l thc t ỏnh sỏng truyn theo ng trc a kiu ỏnh sỏng hay ng trc a khụngmt ng tng quỏt húa nhng ng thng m ỏnh sỏng truyn i vt lý c in Nhng ng trc a ny cng l s tng quỏt húa tớnh bt bin ca tc ỏnh sỏng thuyt tng i hp.[65] Khi chỳng ta kho sỏt cỏc mụ hỡnh khụng thi gian mt cỏch phự hp (hoc l phớa bờn ngoi bỏn kớnh Schwarzschild, hoc cú nhiu vt th tham gia thỡ s dng phng phỏp khai trin hu Newton),[66] thỡ mt vi hiu ng ca hp dn lờn s lan truyn ca ỏnh sỏng xut hin Mc du hin tng lch ỏnh sỏng cú th suy c chỳng ta xột ỏnh sỏng truyn mt h quy chiu ang ri t do,[67] nhng kt qu tớnh thu c cho gúc lch ch bng mt na giỏ tr so vi kt qu ca thuyt tng i rng.[68] Mt hiu ng cú liờn h gn gi vi ỏnh sỏng b b cong l hiu ng tr thi gian hp dn (hay tr Shapiro), hin tng tớn hiu ỏnh sỏng truyn t im A ti im B s mt thi gian lõu hn nu cú mt trng hp dn gia hai im ú so vi khụng cú trng hp dn ó cú nhiu thớ nghim thnh cụng kim tra hiu ng ny vi chớnh xỏc cao.[69] Trong phng phỏp tham s húa hu Newton (PPN), cỏc phộp o bao gm c lch ỏnh sỏng v tr thi gian hp dn xỏc nh mt tham s , cha s nh hng ca trng hp dn Vnh cỏc ht th b nh hng cú súng hp dn i qua Cú mt vi im tng t gia trng hp dn yu v in t hc ú l, s tng t gia súng in t v súng hp dn: nhng bin i nh ca mờtric ca khụng thi gian lan truyn vi tc ỏnh sỏng.[71] Hỡnh dung n gin nht v súng hp dn cú th thy l tỏc dng ca nú lờn vnh ht th t vựng súng truyn qua Súng hỡnh sin lan truyn qua vnh ht theo hng vuụng gúc vi mt phng vnh lm búp mộo vnh theo kiu dao ng iu hũa (minh hỡnh bờn phi).[72] Do phng trỡnh trng Einstein l phi tuyn, súng hp dn cú cng bt k khụng tuõn theo nguyờn lý chng chp, khin cho vic miờu t nú rt khú khn Tuy vy, i vi trng yu chỳng ta cú th ỏp dng phng phỏp xp x tuyn tớnh Nhng súng hp dn c tuyn tớnh húa l chớnh xỏc miờu t cỏc loi súng lan truyn n Trỏi t t nhng s kin v tr t rt xa nu cỏc mỏy dũ phỏt hin chỳng Khi n Trỏi t, ngun sn sinh súng hp dn rt xa cho nờn biờn súng thu c cỏc mỏy dũ c tớnh toỏn vo khong c 1021 hay nh hn Cỏc phng phỏp phõn tớch d liu thu c t mỏy dũ s dng c im ca súng hp dn tuyn tớnh húa ú l chỳng cú th phõn tớch thnh tng cỏc chui tun hon, hay chui Fourier.[73] Mt s nghim chớnh xỏc miờu t súng hp dn m khụng cn n phng phỏp xp x, nh on súng truyn qua chõn khụng[74] cũn gi l v tr Gowdy, mt loi v tr ang gión n cha y súng hp dn.[75] Nhng i vi súng hp dn sinh t nhng s kin thiờn vt lý, nh hai l en quay trờn qu o 10 quanh v cui cựng sỏp nhp li, hoc cỏc v n siờu tõn tinh, nhng s kin ny ch cú th thc hin mụ phng trờn siờu mỏy tớnh bng cỏc mụ hỡnh phự hp.[76] H QU CA Lí THUYT EINSTEIN iu cng c cho ụng tin rng cui cựng ụng ó tỡm dng ỳng ca phng trỡnh trng hp dn.[80] Hiu ng ny cú th suy trc tip t nghim chớnh xỏc l mờtric Schwarzschild (miờu t khụng thi gian Ngy 11 thỏng nm 2016, nhúm Hp tỏc Khoa hc xung quanh vt th lng hỡnh cu)[81] hoc s LIGO v Virgo thụng bỏo ó o c trc tip súng hp dng phng phỏp khai trin hu Newton.[82] V bn dn phỏt t cp l en lng sỏp nhp vo cht hiu ng dch chuyn im cn nht l nh m mt lnh vc mi ú l thiờn súng hp hng ca hp dn lờn hỡnh hc ca khụng gian v s dn.[77][78][79] úng gúp ca nng lng t cú (self-energy) ca ngun hp dn (th hin bi tớnh phi tuyn ca phng trỡnh trng Einstein).[83] S tin ng cn im ó c 4.4 Hiu ng qu o v tớnh tng i quan sỏt cho mt s hnh tinh vi chớnh xỏc cao (Sao y, Sao Kim v Trỏi t),[84] cng nh h ụi ca phng hng pulsar, m õy hiu ng th hin rừ c vi bc ln.[85] uyt tng i tng quỏt tiờn oỏn mt s kt qu 4.4.2 Gim chu k qu o khỏc l v chuyn ng qu o ca vt th so vi c hc c in Nú tiờn oỏn s tin ng ca im cn nht ca qu o hnh tinh, cng nh s gim chu k qu o h phỏt súng hp dn v cỏc hiu ng liờn quan n tớnh tng i ca phng hng 4.4.1 S tin ng ca im cn nht Hin tng gim chu k qu o pulsar PSR1913+16: lng thi gian gim tớnh bng giõy, theo dừi trờn ba thp k.[86] Qu o Newton () v Einstein (xanh) ca hnh tinh quay quanh ngụi Trong thuyt tng i rng, cn im qu o (im ca qu o gn nht vi tõm ca h) s tin nghay qu o khụng phi l elip, m gn ging vi elip nú quay quanh tõm, m s l ng cong ging cỏnh hoa hng (xem hỡnh bờn) Einstein ln u tiờn tỡm c kt qu ny ụng s dng phng phỏp xp x mờtric v gii hn Newton v coi hnh tinh cú lng khụng ỏng k so vi Mt Tri i vi ụng, kt qu tớnh toỏn lng dch chuyn im cn nht ca Sao y bng vi giỏ tr m nh thiờn Urbain Le Verrier phỏt hin vo nm 1859, chớnh l eo thuyt tng i tng quỏt, h ụi s phỏt súng hp dn v vỡ vy h mt nng lng Vỡ s mt mỏt ny, khong cỏch qu o gia hai vt th s gim dn, v tng ng l chu k qu o Trong h Mt Tri hoc nhng h ụi, hiu ng ny rt nh v khú quan sỏt c Nhng i vi h pulsar ụi gm hai neutron quay quanh nhau, ú cú mt hoc c hai l pulsar: nhng i thiờn vụ tuyn trờn Trỏi t s nhn c nhng xung vụ tuyn rt u n t cỏc pulsar ny, chỳng c coi l nhng ng h chớnh xỏc nht t nhiờn, v cho phộp vic o cỏc tham s qu o ca h tr lờn rt chớnh xỏc Do neutron l nhng vt th nộn c v quay quanh khong cỏch nh cho nờn lng nng lng ca súng hp dn chỳng phỏt l ỏng k.[87] 23 [152] Narlikar 1993, ph 4.4.4, 4.4.5 [153] [154] [155] [156] [171] Wald 1984, tr 295 v cỏc trang tip theo; õy l kt qu quan trng cho cõu hi v s n nh ca hnu cú V chõn tri": xem Rindler 2001, ph 12.4 Hiu ng trng thỏi lng õm, thỡ khụng gian chõn khụng Unruh: Unruh 1976, v Wald 2001, ch Minkowski phng vi lng khụng cú th hỡnh thnh lờn t nhng trng thỏi lng õm ny Hawking & Ellis 1973, ph 8.1, Wald 1984, ph 9.1 [172] Townsend 1997, ch Townsend 1997, ch 2; mt miờu t k lng v nghim [173] nh ngha lngnng lng gi cc b bao gm ny Chandrasekhar 1983, ch nng lng Hawking, nng lng Geroch, hoc nng lng-ng lng gi cc b Penrose da trờn phng Townsend 1997, ch 4; i vi miờu t chi tit xem phỏp twistor; xem bi bỏo Szabados 2004 Chandrasekhar 1983, ch [157] Ellis & van Elst 1999; mt cỏi nhỡn gn hn v im k d miờu t Bửrner 1993, ph 1.2 [174] Cú rt nhiu giỏo trỡnh v c hc lng t nh Messiah 1999; giỏo trỡnh c s nh Hey & Walters 2003 [175] [158] Cú mt chỳ ý v thc t quan trng ca hin tng k d gi quang hc xut hin nhiu phng trỡnh súng, s t quang, c gii quyt cho cỏc kt qu [176] hu hn sau thay th phng phỏp xp x [177] [159] Xem Penrose 1965 [160] Hawking 1966 [161] Phng oỏn c phỏt biu Belinskii, Khalatnikov & Lifschitz 1971; bi vit ỏnh giỏ gn õy Berger 2002 Ni dung ca nú cng c trỡnh by trờn trang online Garnkle 2007 Ramond 1990, Weinberg 1995, Peskin & Schroeder 1995; v Auyang 1995 Wald 1994, Birrell & Davies 1984 V bc x Hawking xem Hawking 1975, Wald 1975; miờu t v l en bc hi Traschen 2000 [178] Wald 2001, ch [179] Núi n gin, vt cht l ngun ca cong khụng thi gian, v vt cht th hin c tớnh lng t, chỳng ta cng hy vng rng khụng thi gian cng cú tớnh cht nh th, Carlip 2001, ph [180] Schutz 2003, tr 407 [162] S n giu ca k d tng lai i vi quan sỏt viờn xa cú bn cht khỏc hn so vi nhng k d quỏ kh [181] Niờn biu cỏc lý thuyt xut cho hp dn lng t miờu t Rovelli 2000 v tr s khai nh k d v n ln, m v nguyờn lý chỳng hin di kớnh thiờn ca quan sỏt viờn thi im sau din v n Phng oỏn s kim [182] Donoghue 1995 duyt v tr c nờu ln u Penrose 1969; [183] c bit, cỏc nh vt lý ỏp dng k thut tỏi chun cun sỏch miờu t v phng oỏn ny bao gm Wald húa, hm tớch phõn cho phộp suy lun kt qu, v 1984, tr 302305 V nhng kt qu mụ phng trờn siờu tớnh n hiu ng nng lng cao, tr lờn khụng xỏc mỏy tớnh xem Berger 2002, ph 2.1 nh v sai, xem Weinberg 1996, ch 17, 18, v Goro & Sagnoi 1985 [163] Hawking & Ellis 1973, ph 7.1 [184] Giỏo trỡnh cho sinh viờn l Zwiebach 2004; bi vit vi [164] Arnowi, Deser & Misner 1962; miờu t d hiu khú hn Polchinski 1998a v Polchinski 1998b Misner, orne & Wheeler 1973, Đ21.4Đ21.7 [185] mc nng lng hin ti m cỏc my gia tc t n [165] Fourốs-Bruhat 1952 v Bruhat 1962; v gii thiu mt (14 TeV), nhng dõy ny khụng th phõn bit c vi cỏch mụ phm xem Wald 1984, ch 10; bn trc tuyn cỏc ht im, nhng cú im quan trng l, cỏc mode miờu t phng trỡnh tin húa Reula 1998 dao ng khỏc ca cựng mt dõy c bn s hin tng ng vi cỏc ht khỏc (v in tớch cng [166] Gourgoulhon 2007; bi vit miờu t c s ca mụ phng nh cỏc tớnh cht lng t khỏc), xem Ibanez 2000 Lý s thuyt tng i, bao gm xut hin cỏc thuyt ny thnh cụng ch cú mt mode dao ng c im k l ca phng trỡnh trng Einstein, xem ca dõy tng ng vi ht lng t graviton, ht gi Lehner 2001 thuyt truyn tng tỏc hp dn, xem Green, Schwarz & Wien 1987, ph 2.3, 5.3 [167] Misner, orne & Wheeler 1973, Đ20.4 [186] Green, Schwarz & Wien 1987, ph 4.2 [168] Arnowi, Deser & Misner 1962 [187] Weinberg 2000, ch 31 [169] Komar 1959; giỏo trỡnh cho sinh viờn cao hc [188] Townsend 1996, Du 1996 Wald 1984, ph 11.2; mc dự nh ngha theo mt cỏch hon ton khỏc, cú th chng minh s tng ng gia [189] Kucha 1973, ph lng Komar v lng ADM khụng thi [190] nhng bin ny i din cho hỡnh hc hp dn s dng gian dng, xem Ashtekar & Magnon-Ashtekar 1979 s tng t toỏn hc ging vi in trng v t trng; [170] Ni dung gii thiu xem Wald 1984, ph 11.2 xem Ashtekar 1986, Ashtekar 1987 24 11 [191] Miờu t khỏi quỏt iemann 2006; m rng hn cú Rovelli 1998, Ashtekar & Lewandowski 2004 cng nh bi ging iemann 2003 [192] Isham 1994, Sorkin 1997 [193] Loll 1998 [194] Sorkin 2005 [195] Penrose 2004, ch 33 v cỏc chng sau [196] Hawking 1987 [197] Ashtekar 2007, Schwarz 2007 [198] Maddox 1998, tr 5259, 98122; Penrose 2004, sec 34.1, ch 30 [199] Mc Hp dn lng t trờn [200] Mc V tr hc trờn [201] Friedrich 2005 [202] Bi vit tng quan v nhiu v cỏc k thut c phỏt trin vt qua chỳng, xem Lehner 2002 NGUN THAM KHO Arun, K.G.; Blanchet, L.; Iyer, B R.; sailah, M S S (2007), Inspiralling compact binaries in quasielliptical orbits: e complete 3PN energy ux, Bibcode:2008PhRvD 77f4035A, arXiv:0711.0302, doi:10.1103/PhysRevD.77.064035 Ashby, Neil (2002), Relativity and the Global Positioning System (PDF), Physics Today 55 (5): 4147, Bibcode:2002PhT.55e 41A, doi:10.1063/1.1485583 Ashby, Neil (2003), Relativity in the Global Positioning System, Living Reviews in Relativity 6, truy cp ngy thỏng nm 2007 Ashtekar, Abhay (1986), New variables for classical and quantum gravity, Phys Rev Le 57 (18): 22442247, Bibcode:1986PhRvL 57.2244A, PMID 10033673, doi:10.1103/PhysRevLe.57.2244 Ashtekar, Abhay (1987), New Hamiltonian formulation of general relativity, Phys Rev D36 (6): 15871602, Bibcode:1987PhRvD 36.1587A, doi:10.1103/PhysRevD.36.1587 [203] Xem Bartusiak 2000 v miờu t thiờn súng hp dn trc ú; cỏc tin tc cp nht cú th tỡm ti nhng trang web ca cỏc vin nghiờn cu cng tỏc chớnh nh GEO 600 v LIGO Ashtekar, Abhay (2007), Loop antum Gravity: Four Recent Advances and a Dozen Frequently Asked estions, Bibcode:2008mgm conf 126A, arXiv:0705.2222, doi:10.1142/9789812834300_0008 [204] i vi cỏc bi bỏo gn õy v tớnh phõn cc ca súng hp dn hoc chuyn ng xoỏy c ca cp vt th c chc, xem Blanchet et al 2008, v Arun et al 2007; bi vit ỏnh giỏ tng quan nghiờn cu v cp vt th c chc, xem Blanchet 2006 v Futamase & Itoh 2006; bi vit tng quan v cỏc thớ nghim v quan sỏt kim chng thuyt tng i rng, xem Will 2006 Ashtekar, Abhay; Krishnan, Badri (2004), Isolated and Dynamical Horizons and eir Applications, Living Rev Relativity 7, truy cp ngy thỏng nm 2015 [205] Vớ d, xem Living Reviews in Relativity 11 Ngun tham kho Alpher, R A.; Herman, R C (1948), Evolution of the universe, Nature 162 (4124): 774775, Bibcode:1948Natur.162 774A, doi:10.1038/162774b0 Anderson, J D.; Campbell, J K.; Jurgens, R F.; Lau, E L (1992), Recent developments in solarsystem tests of general relativity, Sato, H.; Nakamura, T., Proceedings of the Sixth Marcel Groòmann Meeting on General Relativity, World Scientic, tr 353355, ISBN 981-02-0950-9 Arnold, V I (1989), Mathematical Methods of Classical Mechanics, Springer, ISBN 3-540-968903 Arnowi, Richard; Deser, Stanley; Misner, Charles W (1962), e dynamics of general relativity, Wien, Louis, Gravitation: An Introduction to Current Research, Wiley, tr 227265 Ashtekar, Abhay; Lewandowski, Jerzy (2004), Background Independent antum Gravity: A Status Report, Class ant Grav 21 (15): R53 R152, Bibcode:2004CQGra 21R 53A, arXiv:grqc/0404018, doi:10.1088/0264-9381/21/15/R01 Ashtekar, Abhay; Magnon-Ashtekar, Anne (1979), On conserved quantities in general relativity, Journal of Mathematical Physics 20 (5): 793800, Bibcode:1979JMP.20 793A, doi:10.1063/1.524151 Auyang, Sunny Y (1995), How is antum Field eory Possible?, Oxford University Press, ISBN 019-509345-3 Bania, T M.; Rood, R T.; Balser, D S (2002), e cosmological density of baryons from observations of 3He+ in the Milky Way, Nature 415 (6867): 5457, Bibcode:2002Natur.41554B, PMID 11780112, doi:10.1038/415054a Barack, Leor; Cutler, Curt (2004), LISA Capture Sources: Approximate Waveforms, Signalto-Noise Ratios, and Parameter Estimation Accuracy, Phys Rev D69 (8): 082005, Bibcode:2004PhRvD 69h2005B, arXiv:grqc/0310125v3, doi:10.1103/PhysRevD.69.082005 25 Bardeen, J M.; Carter, B.; Hawking, S W (1973), e Four Laws of Black Hole Mechanics, Comm Math Phys 31 (2): 161170, Bibcode:1973CMaPh 31 161B, doi:10.1007/BF01645742 Barish, Barry (2005), Towards detection of gravitational waves, Florides, P.; Nolan, B.; Oewil, A., General Relativity and Gravitation Proceedings of the 17th International Conference, World Scientic, tr 2434, ISBN 981-256-424-1 Barstow, M; Bond, Howard E.; Holberg, J B.; Burleigh, M R.; Hubeny, I.; Koester, D (2005), Hubble Space Telescope Spectroscopy of the Balmer lines in Sirius B, Mon Not Roy Astron Soc 362 (4): 11341142, Bibcode:2005MNRAS.362.1134B, arXiv:astroph/0506600, doi:10.1111/j.1365-2966.2005.09359.x Benne, C L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S S.; Page, L.; Spergel, D N (2003), First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results, Astrophys J Suppl 148 (1): 127, Bibcode:2003ApJS 148.1B, arXiv:astroph/0302207, doi:10.1086/377253 Berger, Beverly K (2002), Numerical Approaches to Spacetime Singularities, Living Rev Relativity' 5, truy cp ngy thỏng nm 2015 Bergstrửm, Lars; Goobar, Ariel (2003), Cosmology and Particle Astrophysics (n bn 2), Wiley & Sons, ISBN 3-540-43128-4 Bartusiak, Marcia (2000), Einsteins Unnished Symphony: Listening to the Sounds of Space-Time, Berkley, ISBN 978-0-425-18620-6 Bertoi, Bruno; Ciufolini, Ignazio; Bender, Peter L (1987), New test of general relativity: Measurement of de Sier geodetic precession rate for lunar perigee, Physical Review Leers 58 (11): 10621065, Bibcode:1987PhRvL 58.1062B, PMID 10034329, doi:10.1103/PhysRevLe.58.1062 Begelman, Mitchell C.; Blandford, Roger D.; Rees, Martin J (1984), eory of extragalactic radio sources, Rev Mod Phys 56 (2): 255351, Bibcode:1984RvMP56 255B, doi:10.1103/RevModPhys.56.255 Bertoi, Bruno; Iess, L.; Tortora, P (2003), A test of general relativity using radio links with the Cassini spacecra, Nature 425 (6956): 374376, Bibcode:2003Natur.425 374B, PMID 14508481, doi:10.1038/nature01997 Beig, Robert; Chruciel, Piotr T (2006), Stationary black holes, Francoise, J.-P.; Naber, G.; Tsou, T.S., Encyclopedia of Mathematical Physics, Volume 2, Elsevier, Bibcode:2005gr.qc 2041B, ISBN 0-12-512660-3, arXiv:gr-qc/0502041 Bertschinger, Edmund (1998), Simulations of structure formation in the universe, Annu Rev Astron Astrophys 36 (1): 599654, Bibcode:1998ARA&A 36 599B, doi:10.1146/annurev.astro.36.1.599 Bekenstein, Jacob D (1973), Black Holes and Entropy, Phys Rev D7 (8): 23332346, Bibcode:1973PhRvD7.2333B, doi:10.1103/PhysRevD.7.2333 Bekenstein, Jacob D (1974), Generalized Second Law of ermodynamics in Black-Hole Physics, Phys Rev D9 (12): 32923300, Bibcode:1974PhRvD9.3292B, doi:10.1103/PhysRevD.9.3292 Belinskii, V A.; Khalatnikov, I M.; Lifschitz, E M (1971), Oscillatory approach to the singular point in relativistic cosmology, Advances in Physics 19 (80): 525573, Bibcode:1970AdPhy 19 525B, doi:10.1080/00018737000101171; original paper in Russian: Belinsky, V A.; Khalatnikov, I M.; Lifshitz, E M (1970), , Uspekhi Fizicheskikh Nauk ( ), 102(3) (11): 463500, Bibcode:1970UsFiN.102 463B Birrell, N D.; Davies, P C (1984), antum Fields in Curved Space, Cambridge University Press, ISBN 0-521-27858-9 Blair, David; McNamara, Geo (1997), Ripples on a Cosmic Sea e Search for Gravitational Waves, Perseus, ISBN 0-7382-0137-5 Blanchet, L.; Faye, G.; Iyer, B R.; Sinha, S (2008), e third post-Newtonian gravitational wave polarisations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits, Bibcode:2008CQGra 25p5003B, arXiv:0802.1249, doi:10.1088/0264-9381/25/16/165003 Blanchet, Luc (2006), Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries, Living Rev Relativity 9, truy cp ngy thỏng nm 2015 Blandford, R D (1987), Astrophysical Black Holes, Hawking, Stephen W.; Israel, Werner, 300 Years of Gravitation, Cambridge University Press, tr 277329, ISBN 0-521-37976-8 26 Bửrner, Gerhard (1993), e Early Universe Facts and Fiction, Springer, ISBN 0-387-56729-1 Brandenberger, Robert H (2007), Conceptual Problems of Inationary Cosmology and a New Approach to Cosmological Structure Formation, Bibcode:2008LNP738 393B, arXiv:hepth/0701111, doi:10.1007/978-3-540-74353-8_11 Brans, C H.; Dicke, R H (1961), Machs Principle and a Relativistic eory of Gravitation, Physical Review 124 (3): 925935, Bibcode:1961PhRv 124 925B, doi:10.1103/PhysRev.124.925 Bridle, Sarah L.; Lahav, Ofer; Ostriker, Jeremiah P.; Steinhardt, Paul J (2003), Precision Cosmology? Not Just Yet, Science 299 (5612): 15321533, Bibcode:2003Sci299.1532B, PMID 12624255, arXiv:astro-ph/0303180, doi:10.1126/science.1082158 Bruhat, Yvonne (1962), e Cauchy Problem, Wien, Louis, Gravitation: An Introduction to Current Research, Wiley, tr 130, ISBN 978-1114-29166-9 Buchert, omas (2007), Dark Energy from StructureA Status Report, General Relativity and Gravitation 40 (2-3): 467527, Bibcode:2008GReGr 40 467B, arXiv:0707.2153, doi:10.1007/s10714-007-0554-8 Buras, R.; Rampp, M.; Janka, H.-.; Kifonidis, K (2003), Improved Models of Stellar Core Collapse and Still no Explosions: What is Missing?, Phys Rev Le 90 (24): 241101, Bibcode:2003PhRvL 90x1101B, PMID 12857181, arXiv:astro-ph/0303171, doi:10.1103/PhysRevLe.90.241101 Caldwell, Robert R (2004), Dark Energy, Physics World 17 (5): 3742 Carlip, Steven (2001), antum Gravity: a Progress Report, Rept Prog Phys 64 (8): 885942, Bibcode:2001RPPh64 885C, arXiv:grqc/0108040, doi:10.1088/0034-4885/64/8/301 Carroll, Bradley W.; Ostlie, Dale A (1996), An Introduction to Modern Astrophysics, AddisonWesley, ISBN 0-201-54730-9 Carroll, Sean M (2001), e Cosmological Constant, Living Rev Relativity 4, truy cp ngy thỏng nm 2015 Carter, Brandon (1979), e general theory of the mechanical, electromagnetic and thermodynamic properties of black holes, Hawking, S W.; Israel, W., General Relativity, an Einstein Centenary Survey, Cambridge University Press, tr 294369 and 860863, ISBN 0-521-29928-4 11 NGUN THAM KHO Celoi, Annalisa; Miller, John C.; Sciama, Dennis W (1999), Astrophysical evidence for the existence of black holes, Class ant Grav 16 (12A): A3A21, arXiv:astro-ph/9912186, doi:10.1088/0264-9381/16/12A/301 Chandrasekhar, Subrahmanyan (1983), e Mathematical eory of Black Holes, Oxford University Press, ISBN 0-19-850370-9 Charbonnel, C.; Primas, F (2005), e Lithium Content of the Galactic Halo Stars, Astronomy & Astrophysics 442 (3): 961992, Bibcode:2005A&A442 961C, arXiv:astroph/0505247, doi:10.1051/0004-6361:20042491 Ciufolini, Ignazio; Pavlis, Erricos C (2004), A conrmation of the general relativistic prediction of the Lense-irring eect, Nature 431 (7011): 958960, Bibcode:2004Natur.431 958C, PMID 15496915, doi:10.1038/nature03007 Ciufolini, Ignazio; Pavlis, Erricos C.; Peron, R (2006), Determination of framedragging using Earth gravity models from CHAMP and GRACE, New Astron 11 (8): 527550, Bibcode:2006NewA11 527C, doi:10.1016/j.newast.2006.02.001 Coc, A.; VangioniFlam, Elisabeth; Descouvemont, Pierre; Adahchour, Abderrahim; Angulo, Carmen (2004), Updated Big Bang Nucleosynthesis confronted to WMAP observations and to the Abundance of Light Elements, Astrophysical Journal 600 (2): 544 552, Bibcode:2004ApJ600 544C, arXiv:astroph/0309480, doi:10.1086/380121 Cutler, Curt; orne, Kip S (2002), An overview of gravitational wave sources, Bishop, Nigel; Maharaj, Sunil D., Proceedings of 16th International Conference on General Relativity and Gravitation (GR16), World Scientic, Bibcode:2002gr.qc 4090C, ISBN 981-238-171-6, arXiv:gr-qc/0204090 Dalal, Neal; Holz, Daniel E.; Hughes, Sco A.; Jain, Bhuvnesh (2006), Short GRB and binary black hole standard sirens as a probe of dark energy, Phys.Rev D74 (6): 063006, Bibcode:2006PhRvD 74f3006D, arXiv:astroph/0601275, doi:10.1103/PhysRevD.74.063006 Danzmann, Karsten; Rỹdiger, Albrecht (2003), LISA TechnologyConcepts, Status, Prospects (PDF), Class ant Grav 20 (10): S1S9, Bibcode:2003CQGra 20S1D, doi:10.1088/02649381/20/10/301 Dirac, Paul (1996), General eory of Relativity, Princeton University Press, ISBN 0-691-01146-X 27 Donoghue, John F (1995), Introduction to the Eective Field eory Description of Gravity, Cornet, Fernando, Eective eories: Proceedings of the Advanced School, Almunecar, Spain, 26 Junengy thỏng nm 1995, Singapore: World Scientic, Bibcode:1995gr.qc.12024D, ISBN 981-02-2908-9, arXiv:gr-qc/9512024 Du, Michael (1996), M-eory (the eory Formerly Known as Strings), Int J Mod Phys A11 (32): 56235641, Bibcode:1996IJMPA 11.5623D, arXiv:hepth/9608117, doi:10.1142/S0217751X96002583 Ehlers, Jỹrgen (1973), Survey of general relativity theory, Israel, Werner, Relativity, Astrophysics and Cosmology, D Reidel, tr 1125, ISBN 90-277-0369-8 Ehlers, Jỹrgen; Falco, Emilio E.; Schneider, Peter (1992), Gravitational lenses, Springer, ISBN 3-54066506-4 Ehlers, Jỹrgen; Lọmmerzahl, Claus biờn (2006), Special RelativityWill it Survive the Next 101 Years?, Springer, ISBN 3-540-34522-1 Ehlers, Jỹrgen; Rindler, Wolfgang (1997), Local and Global Light Bending in Einsteins and other Gravitational eories, General Relativity and Gravitation 29 (4): 519529, Bibcode:1997GReGr 29 519E, doi:10.1023/A:1018843001842 Einstein, Albert (1907), ĩber das Relativitọtsprinzip und die aus demselben gezogene Folgerungen (PDF), Jahrbuch der Radioaktivitaet und Elektronik 4: 411, truy cp ngy thỏng nm 2008 Einstein, Albert (1915), Die Feldgleichungen der Gravitation, Sitzungsberichte der Preussischen Akademie der Wissenschaen zu Berlin: 844847, truy cp ngy 12 thỏng nm 2006 Einstein, Albert (1916), Die Grundlage der allgemeinen Relativitọtstheorie, Annalen der Physik 49, Bn gc (PDF) lu tr ngy 29 thỏng nm 2006, truy cp ngy thỏng nm 2006 Einstein, Albert (1917), Kosmologische Betrachtungen zur allgemeinen Relativitọtstheorie, Sitzungsberichte der Preuòischen Akademie der Wissenschaen: 142 Ellis, George F R; van Elst, Henk (1999), Cosmological models (Cargốse lectures 1998), Lachiốze-Rey, Marc, eoretical and Observational Cosmology, Kluwer, tr 1116, Bibcode:1999toc conf.1E, arXiv:gr-qc/9812046 Everi, C W F.; Buchman, S.; DeBra, D B.; Keiser, G M (2001), Gravity Probe B: Countdown to launch, Lọmmerzahl,, F W.; Everi, and; Hehl, C W F., Gyros, Clocks, and Interferometers: Testing Relativistic Gravity in Space (Lecture Notes in Physics 562), Springer, tr 5282, ISBN 3-54041236-0 Everi, C W F.; Parkinson, Bradford; Kahn, Bob (2007), e Gravity Probe B experiment Post Flight AnalysisFinal Report (Preface and Executive Summary) (PDF), Project Report: NASA, Stanford University and Lockheed Martin, truy cp ngy thỏng nm 2007 Falcke, Heino; Melia, Fulvio; Agol, Eric (2000), Viewing the Shadow of the Black Hole at the Galactic Center, Astrophysical Journal 528 (1): L13L16, Bibcode:2000ApJ528L 13F, PMID 10587484, arXiv:astro-ph/9912263, doi:10.1086/312423 Flanagan, ẫanna ẫ.; Hughes, Sco A (2005), e basics of gravitational wave theory, New J.Phys 7: 204, Bibcode:2005NJPh.7 204F, arXiv:grqc/0501041, doi:10.1088/1367-2630/7/1/204 Font, Josộ A (2003), Numerical Hydrodynamics in General Relativity, Living Rev Relativity 6, truy cp ngy thỏng nm 2015 Fourốs-Bruhat, Yvonne (1952), ộorộme d'existence pour certains systộmes d'ộquations aux derivộes partielles non linộaires, Acta Mathematica 88 (1): 141225, doi:10.1007/BF02392131 Frauendiener, Jửrg (2004), Conformal Innity, Living Rev Relativity 7, truy cp ngy thỏng nm 2015 Friedrich, Helmut (2005), Is general relativity `essentially understood'?, Annalen Phys 15 (12): 84108, Bibcode:2006AnP51884F, arXiv:grqc/0508016, doi:10.1002/andp.200510173 Futamase, T.; Itoh, Y (2006), e Post-Newtonian Approximation for Relativistic Compact Binaries, Living Rev Relativity 10, truy cp ngy thỏng nm 2015 Gamow, George (1970), My World Line, Viking Press, ISBN 0-670-50376-2 Garnkle, David (2007), Of singularities and breadmaking, Einstein Online, truy cp ngy thỏng nm 2007 Geroch, Robert (1996) Partial Dierential Equations of Physics [gr-qc] 28 Giulini, Domenico (2005), Special Relativity: A First Encounter, Oxford University Press, ISBN 019-856746-4 Giulini, Domenico (10 thỏng nm 2017), Algebraic and Geometric Structures in Special Relativity, Ehlers, Jỹrgen; Lọmmerzahl, Claus, Special RelativityWill it Survive the Next 101 Years?, Springer, tr 45111, Bibcode:2006math.ph2018G, ISBN 3-540-34522-1, arXiv:math-ph/0602018 Giulini, Domenico (10 thỏng nm 2017), Some remarks on the notions of general covariance and background independence, Stamatescu, I O., An assessment of current paradigms in the physics of fundamental interactions, Springer, Bibcode:2007LNP721 105G, arXiv:grqc/0603087 11 NGUN THAM KHO (4044): 166168 Bibcode:1972Sci177 166H PMID 17779917 doi:10.1126/science.177.4044.166 Hafele, Joseph C.; Keating, Richard E (14 thỏng nm 1972) Around-the-World Atomic Clocks: Observed Relativistic Time Gains Science 177 (4044): 168170 Bibcode:1972Sci177 168H PMID 17779918 doi:10.1126/science.177.4044.168 Havas, P (1964), Four-Dimensional Formulation of Newtonian Mechanics and eir Relation to the Special and the General eory of Relativity, Rev Mod Phys 36 (4): 938965, Bibcode:1964RvMP36 938H, doi:10.1103/RevModPhys.36.938 Hawking, Stephen W (1966), e occurrence of singularities in cosmology, Proceedings of the Royal Society of London A294 (1439): 511521 Gnedin, Nickolay Y (2005), Digitizing the Universe, Nature 435 (7042): 572573, Bibcode:2005Natur.435 572G, PMID 15931201, doi:10.1038/435572a Hawking, S W (1975), Particle Creation by Black Holes, Communications in Mathematical Physics 43 (3): 199220, Bibcode:1975CMaPh 43 199H, doi:10.1007/BF02345020 Goenner, Hubert F M (2004), On the History of Unied Field eories, Living Rev Relativity 7, truy cp ngy thỏng nm 2015 Hawking, Stephen W (1987), antum cosmology, Hawking, Stephen W.; Israel, Werner, 300 Years of Gravitation, Cambridge University Press, tr 631651, ISBN 0-521-37976-8 Goro, Marc H.; Sagnoi, Augusto (1985), antum gravity at two loops, Phys Le 160B (1-3): 8186, Bibcode:1985PhLB 16081G, doi:10.1016/0370-2693(85)91470-4 Gourgoulhon, Eric (2007) 3+1 Formalism and Bases of Numerical Relativity [gr-qc] Gowdy, Robert H (1971), Gravitational Waves in Closed Universes, Phys Rev Le 27 (12): 826829, Bibcode:1971PhRvL 27 826G, doi:10.1103/PhysRevLe.27.826 Gowdy, Robert H (1974), Vacuum spacetimes with two-parameter spacelike isometry groups and compact invariant hypersurfaces: Topologies and boundary conditions, Ann Phys (N.Y.) 83 (1): 203241, Bibcode:1974AnPhy 83 203G, doi:10.1016/0003-4916(74)90384-4 Green, M B.; Schwarz, J H.; Wien, E (1987), Superstring theory Volume 1: Introduction, Cambridge University Press, ISBN 0-521-35752-7 Greenstein, J L.; Oke, J B.; Shipman, H L (1971), Eective Temperature, Radius, and Gravitational Redshi of Sirius B, Astrophysical Journal 169: 563, Bibcode:1971ApJ169 563G, doi:10.1086/151174 Hafele, Joseph C.; Keating, Richard E (14 thỏng nm 1972) Around-the-World Atomic Clocks: Predicted Relativistic Time Gains Science 177 Hawking, Stephen W.; Ellis, George F R (1973), e large scale structure of space-time, Cambridge University Press, ISBN 0-521-09906-4 Heckmann, O H L.; Schỹcking, E (1959), Newtonsche und Einsteinsche Kosmologie, Flỹgge, S., Encyclopedia of Physics 53, tr 489 Heusler, Markus (1998), Stationary Black Holes: Uniqueness and Beyond, Living Rev Relativity 1, truy cp ngy thỏng nm 2015 Heusler, Markus (1996), Black Hole Uniqueness eorems, Cambridge University Press, ISBN 0521-56735-1 Hey, Tony; Walters, Patrick (2003), e new quantum universe, Cambridge University Press, ISBN 0-521-56457-3 Hough, Jim; Rowan, Sheila (2000), Gravitational Wave Detection by Interferometry (Ground and Space), Living Rev Relativity 3, truy cp ngy thỏng nm 2015 Hubble, Edwin (1929), A Relation between Distance and Radial Velocity among ExtraGalactic Nebulae (PDF), Proc Nat Acad Sci 15 (3): 168173, Bibcode:1929PNAS15 168H, PMC 522427, PMID 16577160, doi:10.1073/pnas.15.3.168 29 Hulse, Russell A.; Taylor, Joseph H (1975), Discovery of a pulsar in a binary system, Astrophys J 195: L51L55, Bibcode:1975ApJ195L 51H, doi:10.1086/181708 Ibanez, L E (2000), e second string (phenomenology) revolution, Class ant Grav 17 (5): 11171128, Bibcode:2000CQGra 17.1117I, arXiv:hep-ph/9911499, doi:10.1088/02649381/17/5/321 Iorio, L (2009), An Assessment of the Systematic Uncertainty in Present and Future Tests of the Lense-irring Eect with Satellite Laser Ranging, Space Sci Rev 148 (1-4): 363, Bibcode:2009SSRv 148 363I, arXiv:0809.1373, doi:10.1007/s11214-008-9478-1 Isham, Christopher J (1994), Prima facie questions in quantum gravity, Ehlers, Jỹrgen; Friedrich, Helmut, Canonical Gravity: From Classical to antum, Springer, ISBN 3-540-58339-4 Israel, Werner (1971), Event Horizons and Gravitational Collapse, General Relativity and Gravitation (1): 5359, Bibcode:1971GReGr253I, doi:10.1007/BF02450518 Israel, Werner (1987), Dark stars: the evolution of an idea, Hawking, Stephen W.; Israel, Werner, 300 Years of Gravitation, Cambridge University Press, tr 199276, ISBN 0-521-37976-8 Janssen, Michel (2005), Of pots and holes: Einsteins bumpy road to general relativity (PDF), Ann Phys (Leipzig) 14 (S1): 5885, Bibcode:2005AnP517S 58J, doi:10.1002/andp.200410130 Jaranowski, Piotr; Krúlak, Andrzej (2005), Gravitational-Wave Data Analysis Formalism and Sample Applications: e Gaussian Case, Living Rev Relativity 8, truy cp ngy thỏng nm 2015 Kahn, Bob (19962012), Gravity Probe B Website, Stanford University, truy cp ngy 20 thỏng nm 2012 Kahn, Bob (ngy 14 thỏng nm 2007), Was Einstein right? Scientists provide rst public peek at Gravity Probe B results (Stanford University Press Release) (PDF), Stanford University News Service Kamionkowski, Marc; Kosowsky, Arthur; Stebbins, Albert (1997), Statistics of Cosmic Microwave Background Polarization, Phys Rev D55 (12): 73687388, Bibcode:1997PhRvD 55.7368K, arXiv:astroph/9611125, doi:10.1103/PhysRevD.55.7368 Kenneck, Daniel (2005), Astronomers Test General Relativity: Light-bending and the Solar Redshi, Renn, Jỹrgen, One hundred authors for Einstein, Wiley-VCH, tr 178181, ISBN 3-527-40574-7 Kenneck, Daniel (2007), Not Only Because of eory: Dyson, Eddington and the Competing Myths of the 1919 Eclipse Expedition, Proceedings of the 7th Conference on the History of General Relativity, Tenerife, 2005, Bibcode:2007arXiv0709.0685K, arXiv:0709.0685 Kenyon, I R (1990), General Relativity, Oxford University Press, ISBN 0-19-851996-6 Kochanek, C.S.; Falco, E.E.; Impey, C.; Lehar, J (2007), CASTLES Survey Website, HarvardSmithsonian Center for Astrophysics, truy cp ngy thỏng nm 2015 Komar, Arthur (1959), Covariant Conservation Laws in General Relativity, Phys Rev 113 (3): 934936, Bibcode:1959PhRv 113 934K, doi:10.1103/PhysRev.113.934 Kramer, Michael (2004), Karshenboim, S G.; Peik, E., biờn tp, Astrophysics, Clocks and Fundamental Constants: Millisecond Pulsars as Tools of Fundamental Physics, Lecture Notes in Physics (Springer) 648: 3354, Bibcode:2004LNP64833K, ISBN 978-3-54021967-5, arXiv:astro-ph/0405178, doi:10.1007/9783-540-40991-5_3 Kramer, M.; Stairs, I H.; Manchester, R N.; McLaughlin, M A.; Lyne, A G.; Ferdman, R D.; Burgay, M.; Lorimer, D R.; Possenti, A (2006), Tests of general relativity from timing the double pulsar, Science 314 (5796): 97102, Bibcode:2006Sci31497K, PMID 16973838, arXiv:astro-ph/0609417, doi:10.1126/science.1132305 Kraus, Ute (1998), Light Deection Near Neutron Stars, Relativistic Astrophysics, Vieweg, tr 6681, ISBN 3-528-06909-0 Kucha, Karel (1973), Canonical antization of Gravity, Israel, Werner, Relativity, Astrophysics and Cosmology, D Reidel, tr 237 288, ISBN 90-277-0369-8 Kỹnzle, H P (1972), Galilei and Lorentz Structures on spacetime: comparison of the corresponding geometry and physics, Ann Inst Henri Poincarộ a 17: 337362 Lahav, Ofer; Suto, Yasushi (2004), Measuring our Universe from Galaxy Redshi Surveys, Living Rev Relativity 7, truy cp ngy thỏng nm 2015 30 Landgraf, M.; Hechler, M.; Kemble, S (2005), Mission design for LISA Pathnder, Class ant Grav 22 (10): S487S492, Bibcode:2005CQGra 22S.487L, arXiv:grqc/0411071, doi:10.1088/0264-9381/22/10/048 Lehner, Luis (2001), Numerical Relativity: A review, Class ant Grav 18 (17): R25 R86, Bibcode:2001CQGra 18R 25L, arXiv:grqc/0106072, doi:10.1088/0264-9381/18/17/202 Lehner, Luis (2002), Numerical Relativity: Status and Prospects, Bibcode:2002grg conf 210L, arXiv:gr-qc/0202055, doi:10.1142/9789812776556_0010 Linde, Andrei (1990), Particle Physics and Inationary Cosmology, Harwood, Bibcode:2005hep.th.3203L, ISBN 3-7186-0489-2, arXiv:hep-th/0503203 Linde, Andrei (2005), Towards ination in string theory, J Phys Conf Ser 24: 151 160, Bibcode:2005JPhCS 24 151L, arXiv:hepth/0503195, doi:10.1088/1742-6596/24/1/018 11 NGUN THAM KHO Messiah, Albert (1999), antum Mechanics, Dover Publications, ISBN 0-486-40924-4 Miller, Cole (2002), Stellar Structure and Evolution (Lecture notes for Astronomy 606), University of Maryland, truy cp ngy 25 thỏng nm 2007 Misner, Charles W.; orne, Kip S.; Wheeler, John A (1973), Gravitation, W H Freeman, ISBN 07167-0344-0 Mứller, Christian (1952), e eory of Relativity (n bn 3), Oxford University Press Narayan, Ramesh (2006), Black holes in astrophysics, New Journal of Physics 7: 199, Bibcode:2005NJPh.7 199N, arXiv:grqc/0506078, doi:10.1088/1367-2630/7/1/199 Narayan, Ramesh; Bartelmann, Mahias (1997) Lectures on Gravitational Lensing [astro-ph] Narlikar, Jayant V (1993), Introduction to Cosmology, Cambridge University Press, ISBN 0-521-41250-1 Loll, Renate (1998), Discrete Approaches to antum Gravity in Four Dimensions, Living Rev Relativity 1, truy cp ngy thỏng nm 2015 Nieto, Michael Martin (2006), e quest to understand the Pioneer anomaly (PDF), EurophysicsNews 37 (6): 3034 Lovelock, David (1972), e Four-Dimensionality of Space and the Einstein Tensor, J Math Phys 13 (6): 874876, Bibcode:1972JMP.13 874L, doi:10.1063/1.1666069 Nordstrửm, Gunnar (1918), On the Energy of the Gravitational Field in Einsteins eory, Verhandl Koninkl Ned Akad Wetenschap., 26: 12381245 MacCallum, M (2006), Finding and using exact solutions of the Einstein equations, Mornas, L.; Alonso, J D., A Century of Relativity Physics (ERE05, the XXVIII Spanish Relativity Meeting), American Institute of Physics, Bibcode:2006AIPC 841 129M, arXiv:grqc/0601102, doi:10.1063/1.2218172 Maddox, John (1998), What Remains To Be Discovered, Macmillan, ISBN 0-684-82292-X Mannheim, Philip D (2006), Alternatives to Dark Maer and Dark Energy, Prog Part Nucl Phys 56 (2): 340445, Bibcode:2006PrPNP 56 340M, arXiv:astroph/0505266, doi:10.1016/j.ppnp.2005.08.001 Mather, J C.; Cheng, E S.; Coingham, D A.; Eplee, R E.; Fixsen, D J.; Hewagama, T.; Isaacman, R B.; Jensen, K A.; Meyer, S S (1994), Measurement of the cosmic microwave spectrum by the COBE FIRAS instrument, Astrophysical Journal 420: 439444, Bibcode:1994ApJ420 439M, doi:10.1086/173574 Mermin, N David (2005), Its About Time Understanding Einsteins Relativity, Princeton University Press, ISBN 0-691-12201-6 Nordtvedt, Kenneth (2003) Lunar Laser Ranginga comprehensive probe of postNewtonian gravity [gr-qc] Norton, John D (1985), What was Einsteins principle of equivalence? (PDF), Studies in History and Philosophy of Science 16 (3): 203246, doi:10.1016/0039-3681(85)90002-0, truy cp ngy 11 thỏng nm 2007 Ohanian, Hans C.; Runi, Remo; Runi (1994), Gravitation and Spacetime, W W Norton & Company, ISBN 0-393-96501-5 Olive, K A.; Skillman, E A (2004), A Realistic Determination of the Error on the Primordial Helium Abundance, Astrophysical Journal 617 (1): 2949, Bibcode:2004ApJ61729O, arXiv:astro-ph/0405588, doi:10.1086/425170 O'Meara, John M.; Tytler, David; Kirkman, David; Suzuki, Nao; Prochaska, Jason X.; Lubin, Dan; Wolfe, Arthur M (2001), e Deuterium to Hydrogen Abundance Ratio Towards a Fourth QSO: HS0105+1619, Astrophysical Journal 552 (2): 718730, Bibcode:2001ApJ552 718O, arXiv:astro-ph/0011179, doi:10.1086/320579 31 Oppenheimer, J Robert; Snyder, H (1939), On continued gravitational contraction, Physical Review 56 (5): Bibcode:1939PhRv56 455O, 455459, doi:10.1103/PhysRev.56.455 Overbye, Dennis (1999), Lonely Hearts of the Cosmos: the story of the scientic quest for the secret of the Universe, Back Bay, ISBN 0-316-64896-5 Pais, Abraham (1982), 'Subtle is the Lord' e Science and life of Albert Einstein, Oxford University Press, ISBN 0-19-853907-X Peacock, John A (1999), Cosmological Physics, Cambridge University Press, ISBN 0-521-41072-X Peebles, P J E (1966), Primordial Helium abundance and primordial reball II, Astrophysical Journal 146: 542552, Bibcode:1966ApJ146 542P, doi:10.1086/148918 Peebles, P J E (1993), Principles of physical cosmology, Princeton University Press, ISBN 0691-01933-9 Peebles, P.J.E.; Schramm, D.N.; Turner, E.L.; Kron, R.G (1991), e case for the relativistic hot Big Bang cosmology, Nature 352 (6338): 769776, Bibcode:1991Natur.352 769P, doi:10.1038/352769a0 Penrose, Roger (1965), Gravitational collapse and spacetime singularities, Physical Review Leers 14 (3): 5759, Bibcode:1965PhRvL 1457P, doi:10.1103/PhysRevLe.14.57 Penrose, Roger (1969), Gravitational collapse: the role of general relativity, Rivista del Nuovo Cimento 1: 252276, Bibcode:1969NCimR1 252P Penrose, Roger (2004), e Road to Reality, A A Knopf, ISBN 0-679-45443-8 Penzias, A A.; Wilson, R W (1965), A measurement of excess antenna temperature at 4080 Mc/s, Astrophysical Journal 142: 419421, Bibcode:1965ApJ142 419P, doi:10.1086/148307 Peskin, Michael E.; Schroeder, Daniel V (1995), An Introduction to antum Field eory, AddisonWesley, ISBN 0-201-50397-2 Polchinski, Joseph (10 thỏng nm 1998), String eory Vol I: An Introduction to the Bosonic String, Cambridge University Press, ISBN 0-521-63303-6 Polchinski, Joseph (9 thỏng nm 1998), String eory Vol II: Superstring eory and Beyond, Cambridge University Press, ISBN 0-521-63304-4 Pound, R V.; Rebka, G A (1959), Gravitational Red-Shi in Nuclear Resonance, Physical Review Leers (9): 439441, Bibcode:1959PhRvL3 439P, doi:10.1103/PhysRevLe.3.439 Pound, R V.; Rebka, G A (1960), Apparent weight of photons, Phys Rev Le (7): 337341, Bibcode:1960PhRvL4 337P, doi:10.1103/PhysRevLe.4.337 Pound, R V.; Snider, J L (1964), Eect of Gravity on Nuclear Resonance, Phys Rev Le 13 (18): 539540, Bibcode:1964PhRvL 13 539P, doi:10.1103/PhysRevLe.13.539 Ramond, Pierre (1990), Field eory: A Modern Primer, Addison-Wesley, ISBN 0-201-54611-6 Rees, Martin (1966), Appearance of Relativistically Expanding Radio Sources, Nature 211 (5048): 468470, Bibcode:1966Natur.211 468R, doi:10.1038/211468a0 Reissner, H (1916), ĩber die Eigengravitation des elektrischen Feldes nach der Einsteinschen eorie, Annalen der Physik 355 (9): 106120, Bibcode:1916AnP355 106R, doi:10.1002/andp.19163550905 Remillard, Ronald A.; Lin, Dacheng; Cooper, Randall L.; Narayan, Ramesh (2006), e Rates of Type I X-Ray Bursts from Transients Observed with RXTE: Evidence for Black Hole Event Horizons, Astrophysical Journal 646 (1): 407419, Bibcode:2006ApJ646 407R, arXiv:astro-ph/0509758, doi:10.1086/504862 Renn, Jỹrgen biờn (2007), e Genesis of General Relativity (4 Volumes), Dordrecht: Springer, ISBN 1-4020-3999-9 Peskin, Michael E (2007), Dark Maer and Particle Physics, Bibcode:2007JPSJ76k1017P, arXiv:0707.1536, doi:10.1143/JPSJ.76.111017 Renn, Jỹrgen biờn (2005), Albert Einstein Chief Engineer of the Universe: Einsteins Life and Work in Context, Berlin: Wiley-VCH, ISBN 3-52740571-2 Poisson, Eric (2004), e Motion of Point Particles in Curved Spacetime, Living Rev Relativity 7, truy cp ngy thỏng nm 2015 Reula, Oscar A (1998), Hyperbolic Methods for Einsteins Equations, Living Rev Relativity 1, truy cp ngy thỏng nm 2015 Poisson, Eric (2004), A Relativists Toolkit e Mathematics of Black-Hole Mechanics, Cambridge University Press, ISBN 0-521-83091-5 Rindler, Wolfgang (2001), Relativity Special, General and Cosmological, Oxford University Press, ISBN 0-19-850836-0 32 Rindler, Wolfgang (1991), Introduction to Special Relativity, Clarendon Press, Oxford, ISBN 0-19853952-5 Robson, Ian (1996), Active galactic nuclei, John Wiley, ISBN 0-471-95853-0 Roulet, E.; Mollerach, S (1997), Microlensing, Physics Reports 279 (2): 67118, Bibcode:1997PhR27967R, arXiv:astroph/9603119, doi:10.1016/S0370-1573(96)00020-8 Rovelli, Carlo (2000) Notes for a brief history of quantum gravity [gr-qc] Rovelli, Carlo (1998), Loop antum Gravity, Living Rev Relativity 1, truy cp ngy thỏng nm 2015 Schọfer, Gerhard (2004), Gravitomagnetic Eects, General Relativity and Gravitation 36 (10): 22232235, Bibcode:2004GReGr 36.2223S, arXiv:gr-qc/0407116, doi:10.1023/B:GERG.0000046180.97877.32 Schửdel, R.; O, T.; Genzel, R.; Eckart, A.; Mouawad, N.; Alexander, T (2003), Stellar Dynamics in the Central Arcsecond of Our Galaxy, Astrophysical Journal 596 (2): 1015 1034, Bibcode:2003ApJ596.1015S, arXiv:astroph/0306214, doi:10.1086/378122 Schutz, Bernard F (1985), A rst course in general relativity, Cambridge University Press, ISBN 0521-27703-5 Schutz, Bernard F (2001), Gravitational radiation, Murdin, Paul, Encyclopedia of Astronomy and Astrophysics, Groves Dictionaries, ISBN 1-56159-268-4 Schutz, Bernard F (2003), Gravity from the ground up, Cambridge University Press, ISBN 0-52145506-5 Schwarz, John H (2007), String eory: Progress and Problems, Bibcode:2007PPS.170 214S, arXiv:hep-th/0702219, doi:10.1143/PTPS.170.214 Schwarzschild, Karl (10 thỏng nm 2017), ĩber das Gravitationsfeld eines Massenpunktes nach der Einsteinschen eorie, Sitzungsber Preuss Akad D Wiss.: 189196 Schwarzschild, Karl (10 thỏng nm 2017), ĩber das Gravitationsfeld eines Kugel aus inkompressibler Flỹssigkeit nach der Einsteinschen eorie, Sitzungsber Preuss Akad D Wiss.: 424434 Seidel, Edward (1998), Numerical Relativity: Towards Simulations of 3D Black Hole Coalescence, Narlikar, J V.; Dadhich, 11 NGUN THAM KHO N., Gravitation and Relativity: At the turn of the millennium (Proceedings of the GR-15 Conference, held at IUCAA, Pune, India, December 1621, 1997), IUCAA, Bibcode:1998gr.qc 6088S, ISBN 81-900378-3-8, arXiv:gr-qc/9806088 Seljak, Uros; Zaldarriaga, Matias (1997), Signature of Gravity Waves in the Polarization of the Microwave Background, Phys Rev Le 78 (11): 20542057, Bibcode:1997PhRvL 78.2054S, arXiv:astroph/9609169, doi:10.1103/PhysRevLe.78.2054 Shapiro, S S.; Davis, J L.; Lebach, D E.; Gregory, J S (2004), Measurement of the solar gravitational deection of radio waves using geodetic very-long-baseline interferometry data, 19791999, Phys Rev Le 92 (12): 121101, Bibcode:2004PhRvL 92l1101S, PMID 15089661, doi:10.1103/PhysRevLe.92.121101 Shapiro, Irwin I (1964), Fourth test of general relativity, Phys Rev Le 13 (26): 789791, Bibcode:1964PhRvL 13 789S, doi:10.1103/PhysRevLe.13.789 Shapiro, I I.; Peengill, Gordon; Ash, Michael; Stone, Melvin; Smith, William; Ingalls, Richard; Brockelman, Richard (1968), Fourth test of general relativity: preliminary results, Phys Rev Le 20 (22): 12651269, Bibcode:1968PhRvL 20.1265S, doi:10.1103/PhysRevLe.20.1265 Singh, Simon (2004), Big Bang: e Origin of the Universe, Fourth Estate, ISBN 0-00-715251-5 Sorkin, Rafael D (2005), Causal Sets: Discrete Gravity, Gombero, Andres; Marolf, Donald, Lectures on antum Gravity, Springer, Bibcode:2003gr.qc 9009S, ISBN 0-387-23995-2, arXiv:gr-qc/0309009 Sorkin, Rafael D (1997), Forks in the Road, on the Way to antum Gravity, Int J eor Phys 36 (12): 27592781, Bibcode:1997IJTP36.2759S, arXiv:gr-qc/9706002, doi:10.1007/BF02435709 Spergel, D N.; Verde, L.; Peiris, H V.; Komatsu, E.; Nolta, M R.; Benne, C L.; Halpern, M.; Hinshaw, G.; Jarosik, N (2003), First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters, Astrophys J Suppl 148 (1): 175194, Bibcode:2003ApJS 148 175S, arXiv:astro-ph/0302209, doi:10.1086/377226 Spergel, D N.; Bean, R.; Dorộ, O.; Nolta, M R.; Benne, C L.; Dunkley, J.; Hinshaw, G.; Jarosik, N.; Komatsu, E (2007), Wilkinson Microwave Anisotropy Probe (WMAP) ree 33 Year Results: Implications for Cosmology, Astrophysical Journal Supplement 170 (2): 377 408, Bibcode:2007ApJS 170 377S, arXiv:astroph/0603449, doi:10.1086/513700 Springel, Volker; White, Simon D M.; Jenkins, Adrian; Frenk, Carlos S.; Yoshida, Naoki; Gao, Liang; Navarro, Julio; acker, Robert; Croton, Darren (2005), Simulations of the formation, evolution and clustering of galaxies and quasars, Nature 435 (7042): 629636, Bibcode:2005Natur.435 629S, PMID 15931216, arXiv:astro-ph/0504097, doi:10.1038/nature03597 Stairs, Ingrid H (2003), Testing General Relativity with Pulsar Timing, Living Rev Relativity 6, truy cp ngy thỏng nm 2015 Stephani, H.; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E (2003), Exact Solutions of Einsteins Field Equations (n bn 2), Cambridge University Press, ISBN 0-521-46136-7 Synge, J L (1972), Relativity: e Special eory, North-Holland Publishing Company, ISBN 07204-0064-3 Szabados, Lỏszlú B (2004), asi-Local EnergyMomentum and Angular Momentum in GR, Living Rev Relativity 7, truy cp ngy thỏng nm 2015 Taylor, Joseph H (1994), Binary pulsars and relativistic gravity, Rev Mod Phys 66 (3): 711719, Bibcode:1994RvMP66 711T, doi:10.1103/RevModPhys.66.711 iemann, omas (2006) Loop antum Gravity: An Inside View iemann, omas (2003), Lectures on Loop antum Gravity, Lect Notes Phys 631: 41135 orne, Kip S (1972), Nonspherical Gravitational CollapseA Short Review, Klauder, J., Magic without Magic, W H Freeman, tr 231258 orne, Kip S (1994), Black Holes and Time Warps: Einsteins Outrageous Legacy, W W Norton & Company, ISBN 0-393-31276-3 orne, Kip S (1995), Gravitational radiation, Bibcode:1995pnac.conf 160T, ISBN 0-521-368537, arXiv:gr-qc/9506086 Townsend, Paul K (1997) Black Holes (Lecture notes)" [gr-qc] Townsend, Paul K (1996) Four Lectures on Meory Traschen, Jenny (2000), An Introduction to Black Hole Evaporation, Bytsenko, A.; Williams, F., Mathematical Methods of Physics (Proceedings of the 1999 Londrina Winter School), World Scientic, Bibcode:2000mmp conf 180T, arXiv:gr-qc/0010055 Trautman, Andrzej (2006), Einstein-Cartan theory, Francoise, J.-P.; Naber, G L.; Tsou, S T., Encyclopedia of Mathematical Physics, Vol 2, Elsevier, tr 189195, Bibcode:2006gr.qc 6062T, arXiv:gr-qc/0606062 Unruh, W G (1976), Notes on Black Hole Evaporation, Phys Rev D 14 (4): 870892, Bibcode:1976PhRvD 14 870U, doi:10.1103/PhysRevD.14.870 Valtonen, M J.; Lehto, H J.; Nilsson, K.; Heidt, J.; Takalo, L O.; Sillanpọọ, A.; Villforth, C.; Kidger, M.; Poyner, G (2008), A massive binary black-hole system in OJ 287 and a test of general relativity, Nature 452 (7189): 851853, Bibcode:2008Natur.452 851V, PMID 18421348, arXiv:0809.1280, doi:10.1038/nature06896 Wald, Robert M (1975), On Particle Creation by Black Holes, Commun Math Phys 45 (3): 934, Bibcode:1975CMaPh 45.9W, doi:10.1007/BF01609863 Wald, Robert M (1984), General Relativity, University of Chicago Press, ISBN 0-226-87033-2 Wald, Robert M (1994), antum eld theory in curved spacetime and black hole thermodynamics, University of Chicago Press, ISBN 0-226-87027-8 Wald, Robert M (2001), e ermodynamics of Black Holes, Living Rev Relativity 4, truy cp ngy thỏng nm 2015 Walsh, D.; Carswell, R F.; Weymann, R J (1979), 0957 + 561 A, B: twin quasistellar objects or gravitational lens?, Nature 279 (5712): 381, Bibcode:1979Natur.279 381W, PMID 16068158, doi:10.1038/279381a0 Wambsganss, Joachim (1998), Gravitational Lensing in Astronomy, Living Rev Relativity 1, truy cp ngy thỏng nm 2015 Weinberg, Steven (1972), Gravitation and Cosmology, John Wiley, ISBN 0-471-92567-5 Weinberg, Steven (1995), e antum eory of Fields I: Foundations, Cambridge University Press, ISBN 0-521-55001-7 Weinberg, Steven (1996), e antum eory of Fields II: Modern Applications, Cambridge University Press, ISBN 0-521-55002-5 34 12 C THấM Weinberg, Steven (2000), e antum eory of Fields III: Supersymmetry, Cambridge University Press, ISBN 0-521-66000-9 Schutz, Bernard F (1985) A First Course in General Relativity Cambridge: Nh xut bn i hc Cambridge ISBN 0-521-27703-5 Weisberg, Joel M.; Taylor, Joseph H (2003), e Relativistic Binary Pulsar B1913+16", Bailes, M.; Nice, D J.; orse, S E., Proceedings of Radio Pulsars, Chania, Crete, August, 2002, ASP Conference Series Stephani, Hans (1990) General Relativity: An Introduction to the eory of the Gravitational Field Cambridge: Nh xut bn i hc Cambridge ISBN 0-521-37941-5 Weiss, Achim (2006), Elements of the past: Big Bang Nucleosynthesis and observation, Einstein Online (Max Planck Institute for Gravitational Physics), truy cp ngy thỏng nm 2015 Wheeler, John A (1990), A Journey Into Gravity and Spacetime, Scientic American Library, San Francisco: W H Freeman, ISBN 0-7167-6034-7 Will, Cliord M (1993), eory and experiment in gravitational physics, Cambridge University Press, ISBN 0-521-43973-6 Will, Cliord M (2006), e Confrontation between General Relativity and Experiment, Living Rev Relativity, truy cp ngy thỏng nm 2015 Zwiebach, Barton (2004), A First Course in String eory, Cambridge University Press, ISBN 0-52183143-1 12 12.1 c thờm Sỏch ph thụng Geroch, Robert (1981) General Relativity from A to B Chicago: Nh xut bn i hc Chicago ISBN 0-226-28864-1 Wald, Robert M (1992) Space, Time, and Gravity: the eory of the Big Bang and Black Holes Chicago: Nh xut bn i hc Chicago ISBN 0226-87029-4 orne, Kip S (1995) Black Holes and Time Warps: Einsteins Outrageous Legacy nh ph New York: W W Norton ISBN 0-393-31276-3 12.2 Sỏch giỏo khoa 12.2.1 Sỏch cn bn Ohanian, Hans C.; Runi, Remo (1994) Gravitation and Spacetime nh ph New York: W W Norton ISBN 0-393-96501-5 Taylor, Edwin F.; Wheeler, John Archibald (2000) Exploring Black Holes: Introduction to General Relativity Addison Wesley ISBN 0-201-38423-X 12.2.2 Sỏch nõng cao Carroll, Sean M (2004) Spacetime and Geometry: An Introduction to General Relativity San Francisco: Addison-Wesley ISBN 0-8053-8732-3 Landau, L D.; Lifschitz, E F (1980) e Classical eory of Fields Luõn ụn: BuerworthHeinemann ISBN 0-7506-2768-9 Misner, Charles; orne, Kip S.; Wheeler, John Archibald (1973) Gravitation San Francisco: W H Freeman ISBN 0-7167-0344-0 Weinberg, Steven (1972) Gravitation and Cosmology: Principles and Applications of the General eory of Relativity New York: John Wiley & Sons ISBN 0-471-92567-5 Wald, Robert M (1984) General Relativity Chicago: Nh xut bn i hc Chicago ISBN 0-226-87033-2 12.2.3 Sỏch chuyờn Lightman, Alan P.; Press, William H.; Teukolsky, Saul A (1975) Problem Book in Relativity and Gravitation Princeton, New Jersey: Nh xut bn i hc Princeton ISBN 0-691-08162-X Poisson, Eric (2004) A Relativists Toolkit: e Mathematics of Black Hole Mechanics Cambridge: Nh xut bn i hc Cambridge ISBN 0-52183091-5 Stewart, John (1993) Advanced General Relativity Cambridge: Nh xut bn i hc Cambridge ISBN 0-521-44946-4 Hughston, L.; Tod, K P (1991) Introduction to General Relativity Cambridge: Nh xut bn i hc Cambridge ISBN 0-521-33943-X De Felice, F.; Clarke, C J (1992) Relativity on Curved Manifolds Cambridge: Nh xut bn i hc Cambridge ISBN 0-521-42908-0 d'Inverno, Ray (1992) Introducing Einsteins Relativity Oxford: Nh xut bn i hc Oxford ISBN 0-19-859686-3 Hawking, Stephen W.; Ellis, George F.R (1973) e Large Scale Structure of Space-Time Nh xut bn i hc Cambridge ISBN 978-0-521-09906-6 35 13 Liờn kt ngoi Hawking, Steven (2001) V tr mt v ht: Lc s v thuyt tng i Bantam ISBN 0-55371449-X Bn dch ting Vit ca D Trch Einstein Online Articles on a variety of aspects of relativistic physics for a general audience; hosted by the Max Planck Institute for Gravitational Physics NCSA Spacetime Wrinkles produced by the numerical relativity group at the NCSA, with an elementary introduction to general relativity Bi ging trc tuyn, sỏch in t Einsteins General eory of Relativity by Leonard Susskind's Modern Physics lectures Recorded ngy 22 thỏng nm 2008 at Stanford University Series of lectures on General Relativity given in 2006 at the Institut Henri Poincarộ (introductory courses and advanced ones) General Relativity Tutorials by John Baez Brown, Kevin Reections on relativity Mathpages.com Truy cp 25 thỏng nm 2013 Carroll, Sean M Lecture Notes on General Relativity Truy cp 25 thỏng nm 2013 Moor, Ra Understanding General Relativity Truy cp 25 thỏng nm 2013 Waner, Stefan Introduction to Dierential Geometry and General Relativity (PDF) Truy cp ngy 13 thỏng nm 2015 36 14 NGUN, NGI ểNG GểP, V GIY PHẫP CHO VN BN V HèNH NH 14 14.1 Ngun, ngi úng gúp, v giy phộp cho bn v hỡnh nh Vn bn uyt tng i rng Ngun: https://vi.wikipedia.org/wiki/Thuy%E1%BA%BFt_t%C6%B0%C6%A1ng_%C4%91%E1%BB%91i_r%E1% BB%99ng?oldid=26622694 Ngi úng gúp: Mxn, DHN, Robbot, MuDavid, Mekong Bluesman, Trung, Zatrach, Chobot, YurikBot, Newone, Kimkha, DHN-bot, JAnDbot, ijs!bot, Jul~viwiki, Soulbot, CommonsDelinker, VolkovBot, TXiKiBoT, SieBot, TVT-bot, Loveless, MelancholieBot, Magicknight94, Luckas-bot, Pq, Ptbotgourou, Nguyentrongphu, ArthurBot, Porcupine, Xqbot, GhalyBot, angbao, Prenn, Earthandmoon, TuHan-Bot, EmausBot, ZộroBot, RedBot, WikitanvirBot, Mjbmrbot, Ripchip Bot, Manubot, Cheers!bot, MerlIwBot, Wkpda, Alphama, Value, AlphamaBot, Hugopako, Tuankiet65-Bot, Addbot, OctraBot, itxongkhoiAWB, KingPika, AlphamaBot4, TuanminhBot, AlbertEinstein05 v 15 ngi vụ danh 14.2 Hỡnh nh Tp_tin:1000_bi_c_bn.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/9/95/1000_b%C3%A0i_c%C6%A1_b%E1% BA%A3n.svg Giy phộp: CC-BY-SA-3.0 Ngi úng gúp: File:Wikipedia-logo-v2.svg Ngh s u tiờn: is le: Prenn Tp_tin:2MASS_LSS_chart-NEW_Nasa.jpg Ngun: https://upload.wikimedia.org/wikipedia/commons/7/7d/2MASS_LSS_ chart-NEW_Nasa.jpg Giy phộp: Public domain Ngi úng gúp: Large Scale Structure in the Local Universe: e 2MASS Galaxy Catalog, Jarre, T.H 2004, PASA, 21, 396 Ngh s u tiờn: IPAC/Caltech, by omas Jarre Tp_tin:Artists_impression_of_the_pulsar_PSR_J0348+0432_and_its_white_dwarf_companion.jpg Ngun: https://upload wikimedia.org/wikipedia/commons/2/26/Artist%E2%80%99s_impression_of_the_pulsar_PSR_J0348%2B0432_and_its_white_dwarf_ companion.jpg Giy phộp: CC BY 4.0 Ngi úng gúp: http://www.eso.org/public/images/eso1319c/ Ngh s u tiờn: ESO/L Calỗada Tp_tin:CMB_Timeline300_no_WMAP.jpg Ngun: https://upload.wikimedia.org/wikipedia/commons/6/6f/CMB_Timeline300_no_ WMAP.jpg Giy phộp: Public domain Ngi úng gúp: Original version: NASA; modied by Ryan Kaldari Ngh s u tiờn: NASA/WMAP Science Team Tp_tin:Calabi_yau.jpg Ngun: https://upload.wikimedia.org/wikipedia/commons/f/f3/Calabi_yau.jpg Giy phộp: Public domain Ngi úng gúp: Mathematica output, created by author Ngh s u tiờn: Jbourjai Tp_tin:Commons-logo.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/4/4a/Commons-logo.svg Giy phộp: Public domain Ngi úng gúp: is version created by Pumbaa, using a proper partial circle and SVG geometry features (Former versions used to be slightly warped.) Ngh s u tiờn: SVG version was created by User:Grunt and cleaned up by 3247, based on the earlier PNG version, created by Reidab Tp_tin:Einstein_1921_by_F_Schmutzer_-_restoration.jpg Ngun: https://upload.wikimedia.org/wikipedia/commons/3/3e/ Einstein_1921_by_F_Schmutzer_-_restoration.jpg Giy phộp: Public domain Ngi úng gúp: http://www.bhm.ch/de/news_04a.cfm? bid=4&jahr=2006 , archived copy (image) Ngh s u tiờn: Ferdinand Schmutzer Tp_tin:Einstein_cross.jpg Ngun: https://upload.wikimedia.org/wikipedia/commons/c/c8/Einstein_cross.jpg Giy phộp: Public domain Ngi úng gúp: http://hubblesite.org/newscenter/archive/releases/1990/20/image/a/ Ngh s u tiờn: NASA, ESA, and STScI Tp_tin:Elevator_gravity.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/1/11/Elevator_gravity.svg Giy phộp: CC BY-SA 3.0 Ngi úng gúp: Elevator_gravity2.png Ngh s u tiờn: derivative work: Pbroks13 (talk) Tp_tin:Ergosphere.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/0/0c/Ergosphere.svg Giy phộp: CC-BY-SA-3.0 Ngi úng gúp: Own work based on: on the graphic uploaded by IMeowbot Ngh s u tiờn: MesserWoland Tp_tin:Gravitational_red-shifting.png Ngun: https://upload.wikimedia.org/wikipedia/commons/5/5c/Gravitational_red-shifting png Giy phộp: CC-BY-SA-3.0 Ngi úng gúp: ? Ngh s u tiờn: ? Tp_tin:Gravwav.gif Ngun: https://upload.wikimedia.org/wikipedia/commons/5/5c/Gravwav.gif Giy phộp: CC-BY-SA-3.0 Ngi úng gúp: self-made, using standard (TT-gauge) description of linearized sinusoidal gravitational wave Ngh s u tiờn: Mapos Tp_tin:LIGO_measurement_of_gravitational_waves.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/d/db/LIGO_ measurement_of_gravitational_waves.svg Giy phộp: CC BY 3.0 Ngi úng gúp: http://physics.aps.org/featured-article-pdf/10.1103/ PhysRevLett.116.061102 Ngh s u tiờn: B P Abbo et al (LIGO Scientic Collaboration and Virgo Collaboration) full list at the end of the article Tp_tin:Lensshoe_hubble.jpg Ngun: https://upload.wikimedia.org/wikipedia/commons/a/a9/Lensshoe_hubble.jpg Giy phộp: Public domain Ngi úng gúp: http://apod.nasa.gov/apod/image/1112/lensshoe_hubble_3235.jpg Ngh s u tiờn: ESA/Hubble & NASA Tp_tin:Light_cone.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/2/27/Light_cone.svg Giy phộp: Public domain Ngi úng gúp: Tỏc phm chớnh ngi ti lờn to Ngh s u tiờn: Sakurambo Tp_tin:Light_deflection.png Ngun: https://upload.wikimedia.org/wikipedia/commons/c/c2/Light_deflection.png Giy phộp: CC BYSA 3.0 Ngi úng gúp: self-made, using numerical integration methods to solve the geodetic equation for light near a spherical massive object (Schwarzschild metric) Ngh s u tiờn: Markus Poessel (Mapos) Tp_tin:Parallel_transport.png Ngun: https://upload.wikimedia.org/wikipedia/commons/6/6d/Parallel_transport.png Giy phộp: CC-BY-SA-3.0 Ngi úng gúp: Tỏc phm chớnh ngi ti lờn to Ngh s u tiờn: Luca Antonelli (Luke Antony) Tp_tin:Penrose.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/a/a8/Penrose.svg Giy phộp: Public domain Ngi úng gúp: Chuyn t en.wikipedia sang Commons by Andrei Stroe using CommonsHelper Ngh s u tiờn: Cronholm144 ti Wikipedia Ting Anh Tp_tin:Psr1913+16-weisberg_en.png Ngun: https://upload.wikimedia.org/wikipedia/commons/7/79/Psr1913%2B16-weisberg_en png Giy phộp: Public domain Ngi úng gúp: M Haynes et Lorimer (2001) (redrawn by Dantor as Image:Psr1913+16-weisberg.png, English labels added by mapos) Ngh s u tiờn: ? 14.3 Giy phộp ni dung 37 Tp_tin:Relativistic_precession.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/2/28/Relativistic_precession.svg Giy phộp: CC-BY-SA-3.0 Ngi úng gúp: Tỏc phm chớnh ngi ti lờn to ra, self-made using gnuplot with manual alterations Ngh s u tiờn: KSmrq Tp_tin:Spacetime_curvature.png Ngun: https://upload.wikimedia.org/wikipedia/commons/2/22/Spacetime_curvature.png Giy phộp: CC-BY-SA-3.0 Ngi úng gúp: ? Ngh s u tiờn: ? Tp_tin:Spin_network.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/5/52/Spin_network.svg Giy phộp: CC BY-SA 3.0 Ngi úng gúp: Tỏc phm chớnh ngi ti lờn to Ngh s u tiờn: Markus Poessel (Mapos) Tp_tin:Star_collapse_to_black_hole.png Ngun: https://upload.wikimedia.org/wikipedia/commons/2/20/Star_collapse_to_black_ hole.png Giy phộp: CC BY-SA 2.5 Ngi úng gúp: ? Ngh s u tiờn: ? Tp_tin:Wikisource-logo.svg Ngun: https://upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg Giy phộp: CC BY-SA 3.0 Ngi úng gúp: Rei-artur Ngh s u tiờn: Nicholas Moreau 14.3 Giy phộp ni dung Creative Commons Aribution-Share Alike 3.0 ... ng ca vt ng thng ay vo ú, lc hp dn l s thay i tớnh cht ca khụng thi gian, dn n lm thay i qu o ca vt tr thnh ng ngn nht cú th m vt s t nhiờn chuyn ng theo (hay ng trc a hỡnh hc vi phõn).[37] Cũn... thỡ tn s ca nú tng lờn (hay bc súng gim i-dch chuyn xanh), hay dng ma trn ca mờtric ) ( ỏnh sỏng truyn theo hng ngc li-thoỏt 2GM 0 trng hp dn thỡ tn s ca nú gim (hay bc súng c r ( ) 2GM ... ng thy triu: nú Nu ds2 = thỡ hai s kin nm trờn tuyn th cho bit s thay i th tớch ca mt ỏm nh ht th gii khụng (null-world line), hay chỳng nm trờn ban u ng yờn tng i vi nhau, v sau ú ri t ng i ca

Ngày đăng: 20/07/2017, 14:06

TỪ KHÓA LIÊN QUAN

w