Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 17 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
17
Dung lượng
1,22 MB
Nội dung
HÀNH TRÌNH 80 NGÀY ĐỒNG HÀNH CÙNG 99ER THPT NGUYỄN TRÃI - HẢI DƯƠNG LẦN ĐỀ THI THỬ THPT QUỐC GIA 2017 MÔN: TOÁN Thời gian làm bài: 90 phút ĐỀ SỐ 42/80 Họ tên thí sinh: Số Báo Danh: Câu 1: Hàm số y x3 m 1 x 2m x nghịch biến điều kiện m 3 A m 2 B 2 m C m D 2 m Câu 2: Cho A 2;0;0 , B 0; 2;0 , C 0;0; Tập hợp điểm M mặt phẳng Oxy cho MA.MB MC A Tập rỗng B Một mặt cầu C Một điểm D Một đường tròn Câu 3: Phương trình 223 x 2x 1024x 23x3 10 x2 x có tổng nghiệm gần với số A 0,35 B 0, 40 C 0,50 D 0, 45 Câu 4: Giá trị nhỏ hàm số y x3 3x2 12 x đoạn 1,2 đạt x x0 Giá trị x0 B 2 A D 1 C Câu 5: Cho hình lăng trụ đứng ABC ABC có đáy tam giác vuông A , AB 2a Đường chéo BC tạo với mặt phẳng AAC C góc 60 Gọi S mặt cầu ngoại tiếp hình lăng trụ cho Bán kính mặt cầu S a B a C 3a D 2a Câu 6: Cho điểm A 3;5;0 mặt phẳng P : x y z Tìm tọa độ điểm M điểm đối xứng A với điểm A qua P A M 1; 1; B M 0; 1; 2 C M 2; 1;1 D M 7;1; 2 500 m Đáy bể hình chữ nhật có chiều dài gấp đôi chiều rộng Giá thuê nhân công để xây bể 600.000 đồng/m2 Hãy xác định kích thước bể cho chi phí thuê nhân công thấp Chi phí A 85 triệu đồng B 90 triệu đồng C 75 triệu đồng D 86 triệu đồng Câu 8: Tính diện tích hình phẳng giới hạn hai đồ thị C1 : y x x C2 : y x Câu 7: Người ta xây bể chứa nước với dạng khối hộp chữ nhật không nắp tích A S 83 12 B S 15 C S 37 12 D S Câu 9: Cho I xe2 x dx ae b ( a, b số hữu tỉ) Khi tổng a b A B C 1 0 D Câu 10: Cho I f x dx Tính I f x dx Kỹ Sư Hư Hỏng – Cung cấp tài liệu & đề thi THPT Trang 1 C I D I Câu 11: Cho khối trụ có độ dài đường sinh l bán kính đường tròn đáy r Diện tích toàn phần khối trụ A Stp r l r B Stp 2 r l 2r C Stp r 2l r D Stp 2 r l r A I B I Câu 12: Một chủ hộ kinh doanh có 32 phòng trọ cho thuê Biết giá cho thuê tháng 2.000.000đ /1 phòng trọ, phòng trống Nếu tăng giá phòng trọ lên 200.000đ / tháng, có phòng bị bỏ trống Hỏi chủ hộ kinh doanh cho thuê với giá để có thu nhập tháng cao nhất? A 2.600.000 đ B 2.400.000 đ C 2.000.000 đ D 2.200.000 đ Câu 13: Tính đạo hàm hàm số: y 32017 x 32017 C y 32017 D y ln 3.32017 x ln Câu 14: Cho hàm số f x mx m 1 x m 1 Tập hợp tất giá trị thực tham số m để A y 2017ln 3.32017 x B y tất điểm cực trị đồ thị hàm số cho nằm trục tọa độ 1 1 1 1 A 0; 1 B 1; C 0; 1; D 1;0 3 3 3 3 Câu 15: Cho hình chóp S ABC có SA ABC ; SA a đáy ABC tam giác vuông B , BAC 60 AB a Gọi S mặt cầu ngoại tiếp hình chóp S ABC Tìm mệnh đề sai A Diện tích S 2 a B Tâm S trung điểm SC 2 a a D Thể tích khối cầu Câu 16: Cho hình nón tròn xoay có đường cao h 40cm , bán kính đáy r 50cm Một thiết diện qua đỉnh hình nón có khoảng cách từ tâm đáy đến mặt phẳng chứa thiết diện 24cm Tính diện tích thiết diện C S có bán kính A S 800 cm B S 1200 cm C S 1600 cm D S 2000 cm Câu 17: Tìm m để đồ thị hàm số y x 1 2m x 3mx m có điểm cực đại, cực tiểu nằm phía với trục hoành m m m0 m0 A m B C 1 m m Câu 18: Tìm nguyên hàm hàm số f x sin x A 2cos x C B 2cos x C C cos x C Câu 19: Tìm nghiệm phương trình 42 x5 22 x 12 A B C 5 Kỹ Sư Hư Hỏng – Cung cấp tài liệu & đề thi THPT m D m D cos x C D Trang Câu 20: Gọi M , N giao điểm đường thẳng y x đường cong y trung điểm I MN A I 1; B I 2; 3 2x Khi đó, tìm tọa độ x 1 D I 2;3 C I 1;3 Câu 21: Cho hàm số y xe3 kết luận sau kết luận sai? A Đồ thị hàm số nhận Ox, Oy làm hai tiệm cận B Đồ thị hàm số qua M 1,1 C Hàm số đồng biến 0, D Tập xác định hàm số D 0, Câu 22: Mặt cầu S có tâm I 1, 2, 5 cắt P : x y z 10 theo thiết diện hình tròn có diện tích 3 có phương trình S : A x2 y z x y 10 z 18 B x 1 y z 25 C x2 y z x y 10 z 12 D x 1 y z 16 2 2 2 Câu 23: Hình bên đồ thị hàm số nào? x2 A y B y x3 3x x 1 x 1 C y x4 x2 D y x 1 y x O Câu 24: Cho hình lăng trụ tam giác ABC ABC tích V M , N hai điểm C A MB NC thể tích khối ABCMN bằng: BB, CC cho MB NC 2V 2V B A B N V V C D C A M Câu 25: Khối đa diện loại 5,3 có số mặt A 12 Câu 26: B B C 10 D 14 Gọi z1 , z2 hai nghiệm phức phương trình: z z Phần thực số phức i z1 i z2 2017 A 22016 B 21008 C 21008 D 22016 Câu 27: Biết năm 2001 , dân số Việt Nam 78.685.800 người tỉ lệ tăng dân số năm 1,7% Cho biết tăng dân số ước tính theo công thức S Ae Nr (trong A : dân số năm lấy làm mốc tính, S dân số sau N năm, r tỉ lệ tăng dân số hàng năm) Cứ tăng dân số với tỉ lệ đến năm dân số nước ta mức 150 triệu người? A 2035 B 2030 C 2038 D 2042 Câu 28: Cho H hình phẳng giới hạn đường cong C : y x x đường thẳng d : y x Tính thể tích V vật thể tròn xoay hình phẳng H quay xung quanh trục hoành Kỹ Sư Hư Hỏng – Cung cấp tài liệu & đề thi THPT Trang A V 81 10 B V 81 C V 108 D V 108 10 x 3 2t x t Câu 29: Giao điểm hai đường thẳng d : y 2 3t d : y 1 4t có tọa độ z 4t z 20 t A 5; 1; 20 B 3; 7;18 C 3; 2;6 D 3; 2;1 Câu 30: Hình chóp tứ giác S.ABCD có tất cạnh a Tính theo a thể tích khối chóp S.ABCD 2a 2a D 2x 1 Câu 31: Cho M giao điểm đồ thị C : y với trục hoành Khi tích khoảng cách từ 2x điểm M đến hai đường tiệm cận A B C D Câu 32: Cho số phức z thỏa mãn: z 2i Số phức z i có môđun nhỏ là: A 2a B 2a C A B C D Câu 33: Có cốc làm giấy, úp ngược hình vẽ Chiều cao cốc 20cm , bán kính đáy cốc 4cm , bán kính miệng cốc 2 5cm Một kiến đứng điểm A miệng cốc dự định bò hai vòng quanh than cốc để lên đến đáy cốc điểm B Quãng đường ngắn để kiến thực dự định gần với kết dước đây? A 59,98cm B 59,93cm C 58,67cm D 58,80cm Câu 34: Cho hàm số có bảng biến thiên hình vẽ sau Phát biểu đúng? A Hàm số đạt cực đại x đạt cực tiểu x B Giá trị cực đại hàm số C Giá trị cực tiểu hàm số D Hàm số đạt cực tiểu x đạt cực đại x Câu 35: Cho số phức z thỏa mãn: (3 2i ) z 4(1 i ) (2 i ) z Mô đun z A 10 B C D x 1 t x 2 y z 3 Câu 36: Cho hai đường thẳng d1 : ; d : y 2t điểm A 1; 2;3 Đường thẳng 1 z 1 t qua A, vuông góc với d1 cắt d có phương trình A x 1 y z 5 B x 1 y z 3 5 Kỹ Sư Hư Hỏng – Cung cấp tài liệu & đề thi THPT Trang x 1 y z x 1 y z D 1 3 5 Câu 37: Giả sử m số thực cho phương trình log 32 x m log x 3m có hai nghiệm x1 , x2 C thỏa mãn x1.x2 Khi m thỏa mãn tính chất sau đây? A m 4;6 B m 1;1 C m 3; D m 1;3 x 1 y 1 z mặt phẳng : x y z Trong khẳng 3 định sau, khẳng định đúng? A d B d // C d D d cắt Câu 38: Cho đường thẳng d : Câu 39: Tìm điểm M biểu diễn số phức z i A M 1; 2 B M 2;1 C M 2; 1 D M 2;1 x2 2 x 1 Câu 40: Tìm số nghiệm nguyên dương bất phương trình 125 5 A B C D Câu 41: Cho hàm số y f x hình vẽ bên.Tìm m để phương trình f ( x) m có nghiệm phân biệt y m2 A B m m 2 C 2 m D 2 m 1 O x Câu 42: Cho số phức z thỏa mãn 1 z số thực Tập hợp điểm M biểu diễn số phức z A Đường tròn B Parabol Câu 43: Tính nguyên hàm dx 2x C Hai đường thẳng D Đường 2 thẳng 1 ln x C B ln x 3 C C ln x C D ln x C 2 Câu 44: Cho hình lăng trụ tứ giác ABCD ABCD có cạnh đáy a , khoảng cách từ A đến mặt a phẳng ABC Tính thể tích lăng trụ A 3a 3a 2a C D 4 Câu 45: Cho khối trụ có chiều cao 8cm , bán kính đường tròn đáy 6cm Cắt khối trụ mặt phẳng song song với trục cách trục 4cm Diện tích thiết diện tạo thành A 3a3 B A 32 cm B 16 cm C 32 cm D 16 cm x x Tìm khẳng định A Hàm số có cực đại hai cực tiểu B Hàm số có cực trị C Hàm số có cực tiểu hai cực đại D Hàm số có cực tiểu cực đại Câu 47: Cho log a ; log b Tính log 2016 theo a b Câu 46: Cho hàm số y A 2a b B 3a 2b C 2a 3b Kỹ Sư Hư Hỏng – Cung cấp tài liệu & đề thi THPT D 3a 2b Trang Câu 48: Tìm tất giá trị thực tham số m để đồ thị hàm số y x 3 có tiệm cận x2 m m D m 9 m A B m C m m 9 Câu 49: Cho V thể tích khối nón tròn xoay có bán kính đáy r chiều cao h V cho công thức sau đây: 4 A V r h B V r h C V r 2h D V r h 3 Câu 50: Một cốc nước có dạng hình trụ đựng nước chiều cao 12cm , đường kính đáy 4cm , lượng nước cốc cao 8cm Thả vào cốc nước viên bi có đường kính 2cm Hỏi nước dâng cao cách mép cốc xăng-ti-mét? (làm tròn sau dấu phẩy chữ số thập phân, bỏ qua độ dày cốc) A 2,67cm B 2,75cm C 2, 25cm D 2,33cm HẾT - Kỹ Sư Hư Hỏng – Cung cấp tài liệu & đề thi THPT Trang ĐÁP ÁN MÔN TOÁN – ĐỀ 42 1- B 11-D 21-C 31-D 41-C 2- D 12-A 22-A 32-A 42-C 3- D 13-A 23-D 33-D 43-A 4- C 14-C 24-A 34-A 44-C 5- D 15-A 25-A 35-A 45-C 6- A 16-D 26-B 36-B 46-A 7- C 17-C 27-C 37-B 47-A 8- C 18-D 28-C 38-A 48-D 9- D 19-A 29-B 39-D 49-D 10-B 20-A 30-D 40-A 50-A HÀNH TRÌNH 80 NGÀY ĐỒNG HÀNH CÙNG 99ER ĐỀ GIẢI CHI TIẾT – Phù hợp việc tự ôn Cập nhật Mới từ trường Chuyên toàn quốc – Bám sát cấu trúc THPT 2017 Bao gồm môn Toán Lí Hóa Sinh Văn Anh Sử Địa GDCD Đăng kí thành viên Facebook.com/kysuhuhong Ngoài ra, thành viên đăng kí nhận tất tài liệu TỪ TRƯỚC ĐẾN NAY Kỹ Sư Hư Hỏng mà không tốn thêm chi phí Kỹ Sư Hư Hỏng – Cung cấp tài liệu & đề thi THPT Trang LỜI GIẢI CHI TIẾT Câu 1: Đáp án B Ta có y x m 1 x 2m Hàm số cho nghịch biến khi 1 a m2 2 m m m Câu 2: Đáp án D Điểm M Oxy nên M x; y;0 Ta có: MA x; y;0 ; MB x; y;0 ; MC x; y; MA.MB MC x x y y x y Do MA.MB MC x y x y x y x y 0 Câu 3: Đáp án D Ta có 223 x 2x 1024x 23x3 10 x2 x 223 x x 23x3 x 210 x 10 x2 3 Hàm số f t 2t t đồng biến nên 223 x x 23x3 x 210 x 10 x2 23x3 x 10 x x x 5 23 10 0, 4347 23 Mẹo: Khi làm trắc nghiệm dùng “Định lí Vi-ét cho phương trình bậc ba” Nếu phương trình ax3 bx2 cx d (a 0) có ba nghiệm x1 , x2 , x3 thì: Tổng nghiệm b c d x1 x2 x3 ; x1 x2 x2 x3 x3 x1 ; x1 xx x3 a a a Câu 4: Đáp án C x 1 1, 2 Ta có y x2 x 12 , y x 2 1, 2 Mà y 1 15, y 1 5, y Vậy hàm số đạt giá trị nhỏ x0 Câu 5: Đáp án D Kỹ Sư Hư Hỏng – Cung cấp tài liệu & đề thi THPT Trang Gọi M trung điểm BC , I trung điểm BC Khi đó, IM trục đường tròn ngoại tiếp tam giác ABC Mặt khác, IB IC IB IC IA Do đó, I tâm mặt cầu ngoại tiếp lăng trụ ABC ABC 1 AB 4a Bán kính R BC 2a 2 sin 60 Câu 6: Đáp án A Gọi đường thẳng qua A 3;5;0 vuông góc với mặt phẳng P x 2t Phương trình tham số : y 3t z t Gọi H giao điểm P , suy tọa độ H nghiệm hệ: x 2t x 1 y 3t y t t t z t z 2 x y z t Ta có H trung điểm MA nên M 1; 1; Câu 7: Đáp án C Gọi x m chiều rộng đáy bể, chiều dài đáy bể 2x m h m chiều cao bể Bể tích 500 500 250 m 2x2h h 3 3x 250 500 2x2 2x2 3x x 500 500 2x2 , x 0 S x 4x x Xét hàm S x x x Lập bảng biến thiên suy S S 150 Diện tích cần xây là: S xh xh x x Chi phí thuê nhân công thấp diện tích xây dựng nhỏ Smin 150 Vậy giá thuê nhân công thấp là: 150.500000 75000000 đồng Câu 8: Đáp án C x x Phương trình hoành độ giao điểm: x x x3 x 1; x x x 0 Diện tích hình phẳng là: S x 1 x x dx x3 x x dx 37 12 12 Câu 9: Đáp án D du dx 2x v e 1 11 1 1 1 1 Vậy I xe2 x dx xe2 x e2 x dx e2 e2 x e2 e e 20 2 4 4 u x Đặt ta có 2x dv e dx a ab Suy b Kỹ Sư Hư Hỏng – Cung cấp tài liệu & đề thi THPT Trang Câu 10: Đáp án B I f x dx 1 1 f x d x 40 Câu 11: Đáp án D Stp S Đáy + S Xq 1.2 r 2 r 2 r 1 r Câu 12: Đáp án A Gọi n, n số lần tăng giá Hàm thu nhập tháng: f n 2000000 n.200000 32 n.2 400000n2 2400000n 64000000 hàm bậc theo n , có hệ số a 2400000 Vậy f n đạt giá trị lớn n 400000 * f 3 67.600.000 f 3 f * f 64.000.000 Vậy chủ hộ cho thuê với giá 2.000.000 3x200.000 2.600.000đ Câu 13: Đáp án A y 32017 x 32017 y 32017 ln 32017 2017.32017 x.ln x x Câu 14: Đáp án C f x mx m 1 x m 1 f x 4mx m 1 x m 1 ; m 2m Để tất điểm cực trị đồ thị hàm số cho nằm trục tọa độ f x 4mx m 1 x x x m 1 m 1 2m m m 1 m 1 m 2m m 1 2m m 1 m Câu 15: Đáp án A S M N A a C B Gọi N , M trung điểm AC; SC ABC tam giác vuông B , BAC 60o AB AC a SC a MC a nên : NA NB NC ; a Kỹ Sư Hư Hỏng – Cung cấp tài liệu & đề thi THPT Trang 10 NM đương trung bình tam giác SAC nên NM / / SA NM ABC MS=MC=MA=MB M tâm S có bán kính MC a a 2 2 a3 V S a 2 Diện tích S : S 4 r 4 2 a Câu 16: Đáp án D Gọi J trung điểm AB AB IJ AB SJI Có : AB SI SAB SIJ Nên : SAB SIJ SJ d I , SAB IH 24 IH SJ 1 1 1 JI 30 IH SI IJ IJ 40 24 Nên : BJ 502 302 40 Và SJ 402 30 50 1 Vậy : SSAB SJ AB 50.80 2000 cm 2 Câu 17: Đáp án C Phương trình hoành độ giao điểm đường thẳng hàm số trục hoành : x 1 2m x 3mx m 1 x x 1 m x x 1 x x 1 x mx m g x x mx m Đồ thị hàm số có điểm cực đại, cực tiểu nằm phía với trục hoành 1 có nghiệm phân biệt phương trình có nghiệm phân biệt khác m 1 m m0 g m0 2 4 m 4m m 0; m m Câu 18: Đáp án D sin xdx cos x C Câu 19: Đáp án A 42 x5 22 x 24 x10 22 x x 10 x x Câu 20: Đáp án A Kỹ Sư Hư Hỏng – Cung cấp tài liệu & đề thi THPT Trang 11 Phương trình hoành độ giao điểm : 2x x 1 ( x 1) x 1 x2 1 x x2 x Theo định lí Vi-et, ta có : x1 x2 x xN yM y N Khi tọa độ trung điểm I MN : I M ; hay I 1; 2 Câu 21: Đáp án C Vì hàm số y x e 3 y e 3 x e x Hàm số nghịch biến 0, nên C Sai Câu 22: Đáp án A Gọi r, R bán kính thiết diện S với P bán kính mặt cầu Ta có B r 3 r r Mặt khác khoảng cách từ tâm I 1, 2,5 đến P : x y z 10 h I , P 2.1 2.2 10 2 1 2 R r h 12 Vậy phương trình mặt cầu S x 1 y z 5 2 12 x2 y z x y 10 z 18 Câu 23: Đáp án D Thấy đồ thị hàm số có hai tiệm cận x ; y nên hàm số có dạng y ax b mà đồ thị hàm số cắt Ox cx d điểm có hoành độ dương nên chọn D Câu 24: Đáp án A C A B N K A M C B KA , ta có KA 1 VABC ABC V 3 Gọi K điểm AA cho KMN // ABC VKMN ABC 1 VA.MNK VKMN ABC V VA.BCNM VKMN ABC VA.MNK V 9 Câu 25: Đáp án A Khối đa diện loại 5,3 khối đa diện mười hai mặt nên có số mặt 12 Câu 26: Đáp án B z1 z2 Ta có z1 , z2 hai nghiệm phương trình: z z nên z1 z2 Kỹ Sư Hư Hỏng – Cung cấp tài liệu & đề thi THPT Trang 12 Ta có i z1 i z2 1 i 2016 2017 1 i 1 i z1 z2 i z1 z2 i 1008 2017 i 1 2017 1 i 2017 1 i 2i 1 i 21008 1 i 21008 21008 i 1008 Vậy phần thực i z1 i z2 21008 Câu 27: Đáp án C Theo giả thiết ta có phương trình 150.000.000 78.685.800.e0.017 N N 37.95 (năm) Tức đến năm 2038 dân số nước ta mức 150 triệu người Câu 28: Đáp án C x Xét phương trình hoành độ giao điểm x x x x 3x x 2017 3 Ta có V x x x dx x x3 15 x dx 0 108 Câu 29: Đáp án B 3 2t t 2t t t Xét hệ phương trình 2 3t 1 4t 3t 4t t 6 4t 20 t 4t t 12 Khi tọa độ giao điểm M 3;7;18 Câu 30: Đáp án D Theo giả thiết S ABCD hình chóp tứ giác nên ABCD hình vuông hình chiếu vuông góc đỉnh S trùng với tâm đáy S Gọi O tâm hình vuông ABCD SO ABCD Ta có diện tích hình vuông ABCD S ABCD a Tam giác SAO vuông O A D a 2 a SO SA2 AO a O B 1 a a3 Vậy VS ABCD SABCD SO a 3 Câu 31: Đáp án D 3 Ta có: Tiệm cận đứng x tiệm cận ngang y 2x 1 1 x M ;0 Tọa độ giao điểm (C ) trục Ox : Với y 2x 2 C Ta có: khoảng cách từ M đến tiệm cận đứng d1 khoảng cách từ M đến tiệm cận ngang d1 Vậy tích hai khoảng cách d1.d 1.2 Câu 32: Đáp án A Kỹ Sư Hư Hỏng – Cung cấp tài liệu & đề thi THPT Trang 13 y I M O Gọi z x yi , x, y x Ta có: z 2i ( x 2) ( y 2)i ( x 2) ( y 2) Tập hợp điểm mặt phẳng Oxy biểu diễn số phức z đường tròn (C ) tâm I (2;2) bán kính R 1 z i x y 1 IM , với I 2; tâm đường tròn, M điểm chạy đường tròn Khoảng cách ngắn M giao điểm đường thẳng nối hai điểm N 0;1 Oy, I 2; với đường tròn (C) IM IN R Câu 33: Đáp án D Đặt b, a, h bán kính đáy cốc, miệng cốc chiều cao cốc, góc kí hiệu hình vẽ Ta “trải” hai lần mặt xung quanh cốc lên mặt phẳng hình quạt khuyên với cung nhỏ BB " 4 b cung lớn AA" 4 a Độ dài ngắn đường kiến độ dài đoạn thẳng BA” Áp dụng định lí hàm số cosin ta được: l BO OA2 BO.OA.cos 2 (1) BA AB (a b) h a 4 a l ( BB) OA OB AB AB AB. 1 1 2 b b 4 b l (AA) OB OB 2 b 2 (a b) 2 (a b) (a) AB ( a b) h b ( a b) h AB a a b 1 OB (b) OB b b a b b ( a b) h (a b) h (c) a b Thay (a), (b), (c) vào (1) ta tìm l l 58,79609cm 58,80 OA OB BA Kỹ Sư Hư Hỏng – Cung cấp tài liệu & đề thi THPT Trang 14 Ghi Để tồn lời giải đoạn BA” phải không cắt cung BB điểm khác B, tức BA” b nằm tiếp tuyến BB B Điều tương đương với 2 cos1 Tuy nhiên, lời giải a thí sinh không yêu cầu phải trình bày điều kiện (và đề cho thỏa mãn yêu cầu đó) Câu 34: Đáp án A Dựa vào bảng biến thiên Câu 35: Đáp án A Gọi z x yi , x, y Ta có: (3 2i ) z 4(1 i ) (2 i ) z (3 2i )(2 i) z 4(1 i)(2 i) z (4 7i)( x yi) 5( x yi) 12i ( x y) (7 x y)i 12i x y 4 x Ta có hệ 7 x y 12 y 1 Vậy z i nên z 32 (1) 10 Câu 36: Đáp án B Ta có u d1 2; 1;1 Đáp án B có u 1; 3; 5 Nhận thấy u d1 u 2.1 1.3 1.5 d1 Các đáp án khác không thỏa mãn điều kiện vuông góc Câu 37: Đáp án B Ta có log 32 x m log x 3m * Đặt log x t * t m t 3m 1 Vì * có nghiệm x1 , x2 thỏa mãn x1.x2 1 có nghiệm t1 , t2 thỏa mãn 3t1.3t2 t1 t2 Theo vi-ét ta có t1 t2 m m 1;1 Câu 38: Đáp án A x t 1 x 1 y 1 z Ta có d : d : y 2t 1 3 z 3t x t 1 y 2t Số giao điểm d số nghiệm hệ z 3t x y z Thay vào thấy với t Vậy d Câu 39: Đáp án D Ta có z i 2 i M 2;1 điểm biểu diễn số phức z i Câu 40: Đáp án A 1 Ta có 5 x2 x x x x 1 x 3 1 x 125 Vì phương trình tìm nghiệm nguyên dương nên nghiệm x 1; 2;3 Câu 41: Đáp án C Kỹ Sư Hư Hỏng – Cung cấp tài liệu & đề thi THPT Trang 15 Phương trình f ( x) m phương trình hoành độ giao điểm hai đồ thị y f ( x) hình vẽ y m đường thẳng song song hay trùng với trục Ox Để phương trình f ( x) m có nghiệm phân biệt hai đồ thị y f ( x) , y m phải cắt điểm phân biệt 2 m Câu 42: Đáp án C Gọi M x; y điểm biểu diễn số phức z x yi x; y Ta có : 1 z 1 x yi x 1 y x 1 yi 2 Để 1 z số thực x 1 y x 1; y Câu 43: Đáp án A Ta có : dx d x 3 ln x C 2x 2x Câu 44: Đáp án C Ta có : BC AA, BC AB BC ABA ABC ABA Kẻ AH AB AH ABC AH d A, ABC A' a B' Xét AAB vuông A 1 1 1 : 2 2 2 AH AB AA AA AH AB a AA D' C' a A H D a a a VABCD ABC D 4 B C Câu 45: Đáp án C Ta có mặt phẳng AAB € OO Kẻ AB€ AB thiết diện tạo thành hình chữ nhật ABBA Kẻ OH AB, OH AA OH AAB d OO, AAB d O, AABB OH Mà : AH OA2 OH AB S ABBA 32 Câu 46: Đáp án A Ta có: y x3 x Cho y x 2 x x Bảng biến thiên: x 2 y 0 y 3 3 Dựa vào bảng biến thiên ta có hàm số có cực đại hai cực tiểu Câu 47: Đáp án A Kỹ Sư Hư Hỏng – Cung cấp tài liệu & đề thi THPT Trang 16 Ta có: log 2016 log 2532 log 25 log 32 log 2a b Câu 48: Đáp án D 3 1 x3 x 1 lim x lim x 1 lim Ta có: lim 2 x x x x m m x m x m 1 1 x x Do đó, đồ thị hàm số có tiệm cận ngang y 1 ; y 1 Để đồ thị hàm số có tiệm cận cần có thêm tiệm cận đứng Trường hợp 1: x2 m có nghiệm kép khác , nên m Trường hợp 2: x2 m có nghiệm mà nghiệm bị triệt tiêu lượng x tử Cụ thể ta có m 9 Thật vậy, ta có: lim x 3 x 3 x2 lim x 3 x 3 x 3 lim nên đồ thị hàm số có tiệm cận x 3 x3 x2 đứng x 3 Vậy đáp số m 0; 9 Câu 49: Đáp án D 1 Theo định nghĩa ta có công thức tính thể tích khối nón tròn xoay là: V S h r h 3 Câu 50: Đáp án A 16 cm3 Lượng nước dâng lên tổng thể tích viên bi thả vào Vb rb 3 16 cm3 Dễ thấy phần nước dâng lên hình trụ có đáy với đáy cốc nước thể tích 16 r hd nên hd cm Chiều cao phần nước dâng lên hd thỏa mãn: 3 Vậy nước dâng cao cách mép cốc 12 2, 67 cm 3 Kỹ Sư Hư Hỏng – Cung cấp tài liệu & đề thi THPT Trang 17 ... 223 x 2x 102 4x 23x3 10 x2 x 223 x x 23x3 x 210 x 10 x2 3 Hàm số f t 2t t đồng biến nên 223 x x 23x3 x 210 x 10 x2 23x3 x 10 x x x 5 23 10 0,... hàm số: y 32017 x 32017 C y 32017 D y ln 3. 32017 x ln Câu 14: Cho hàm số f x mx m 1 x m 1 Tập hợp tất giá trị thực tham số m để A y 2017ln 3. 32017 x B y... thuê với giá 2.000.000 3x200.000 2.600.000đ Câu 13: Đáp án A y 32017 x 32017 y 32017 ln 32017 2017. 32017 x.ln x x Câu 14: Đáp án C f x mx m 1 x m 1