Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 123 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
123
Dung lượng
3,47 MB
Nội dung
Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com TÀI LIỆU LUYỆN THI THPT QUỐCGIA2016 TỔNG HỢP BẤTĐẲNGTHỨC VÀ CỰC TRỊ I.CÁC BẤTĐẲNGTHỨC THƢỜNG ĐƢỢC SỬ DỤNG Bất đẳng thƣ́c Cauchy (AM – GM) a, b 0, thì: a b a.b D}́u " " xảy khi: a b a, b, c 0, thì: a b c 3 a.b.c D}́u " " xảy v| khi: a b c Nhiều trường hợp đánh giá dạng: ab ab ab abc a.b v| a.b.c 2 Bất đẳng thƣ́c Cauchy – Schwarz (Bunhiaxcôpki) a, b, x, y , thì: ( a.x b.y )2 ( a b2 )( x y ) D}́u " " xảy khi: a b x y a, b, c , x , y , z , thì: ( a.x b.y c.z )2 ( a b c )( x y z ) D}́u " " xảy v| khi: a b c x y z Nhiều trường hợp đánh giá dạng: a.x b.y ( a2 b2 )( x2 y ) Hệ quả Nếu a, b, c l| c{c số thực v| x , y , z l| c{c số dương thì: a b ( a b) a b c ( a b c )2 v| : b}́t đẵng thức cộng m}̂u số x y xy x y z xyz Bất đẳng thƣ́c véctơ Xét c{c véctơ: u ( a; b), v ( x; y) Ta có : u v u v a2 b2 x2 y (a x)2 (b y)2 D}́u " " xảy u v| v cùng hướng Một số biến đổi hằng đẳng thƣ́c thƣờng gặp x3 y3 ( x y)3 3xy( x y) x3 y3 z3 ( x y z)3 3( x y)( y z)( z x) x3 y3 z3 3xyz (x y z) x2 y2 z2 (xy yz zx) x2 y z2 ( x y z)2 2( xy yz zx) (a b)(b c)(c a) ab2 bc ca2 (a2 b b2 c c a) ( a b)(b c)(c a) (a b c)(ab bc ca) abc ( a b)2 (b c)2 (c a)2 2( a2 b2 c ab bc ca) 2( a3 b3 c ) 6abc abc (a b)3 (b c)3 (c a)3 3(a b)(b c)(c a) ( a b) ( a b ) 2 2 ( a b)2 ( a b)2 v| ab Một số đánh giá bản và bất đẳng thƣ́c phụ Các đánh giá bản thƣờng đƣợc sử dụng (không cần chứng minh lại) .( a2 b2 ) .ab suy x y z xy yz zx a x; y; z VÌ CỘNG ĐỒNG - THẦY TÀI – 0977.413.341 – MINH CHÂU – YÊN MỸ - HƯNG YÊN Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com TÀI LIỆU LUYỆN THI THPT QUỐCGIA2016 suy ( x y)( y z)( z x) xyz b x; y; z c x; y; z suy 3( x y z ) ( x y z)2 suy ( x y z)( x y z ) 3( x y y z z x) d x; y; z suy ( x y z)2 3( xy yz zx) e x; y; z suy x y y z z x xyz( x y z) f x; y; z suy ( xy yz zx)2 xyz( x y z) g x; y; z h x; y; z suy 3( x y y z z x ) ( xy yz zx)2 suy ( x y z)( xy yz zx) ( x y)( y z)( z x) Các bất đẳng thức phụ thƣờng đƣợc sử dụng (chứng minh lại áp dụng) suy j x; y x y ( x y) 1 1 suy suy k xy v| xy 2 2 xy xy 1 x 1 y 1 x 1 y i x; y; z suy Suy ra: xy suy l x; y 1 1 suy v| xy x y xy x y xy 1 2 xy (1 x) (1 y) suy m x; y 0;1 1 x 1 y xy x, y 1 suy n 1 1 1 x y xy x y Chƣ́ng minh các đánh giá bản suy x y z xy yz zx a Chƣ́ng minh: x; y; z x2 y x2 y xy Áp dụng BĐT Cauchy: y z y z yz x y z xy yz zx D}́u " " x y z 2 2 z x z x zx suy ( x y)( y z)( z x) xyz b Chƣ́ng minh: x; y; z x y xy nhân Áp dụng BĐT Cauchy y z yz ( x y)( y z)( z x) x y z xyz D}́u " " x y z z x zx c Chƣ́ng minh: x; y; z suy 3( x y z ) ( x y z)2 Áp dụng BĐT Cauchy – Schwarz dạng cộng m}̂u số, ta được: x2 y z2 x2 y z ( x2 y z ) 3( x y z ) ( x y z)2 D}́u " " x y z 1 suy ( x y z)( x y z ) 3( x y y z z x) d Chƣ́ng minh: x; y; z Ta có: ( x y z)(x2 y z ) ( x3 xy ) ( y yz ) ( z zx2 ) x2 y y z z x Áp dụng BĐT Cauchy cho từng dấu (