1. Trang chủ
  2. » Giáo án - Bài giảng

Phuong trinh luong giac thuong gap

18 726 5
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 18
Dung lượng 400,5 KB

Nội dung

Tiết 27 Đ2 Một số phương trình lượng giác thường gặp Giáo viên : DươngHaiBẩy Mươi Trường THPT Lý Thường Kiệt Đ2 Một số phương trình lượng giác thường gặp ã I P trình bậc pt bậc hai HSLG ã Cách giải : đặt HSLG làm ẩn phụ đặt ĐK cho ẩn phụ có, giải pt theo ẩn phụ Ví dụ giả i pt : )3tgx + = )2 cos x + cos x − = )2 sin x + cos x-1 = 2 1.1 1.2 1.3 II Ph­¬ng trình bậc sinx cosx Có dạng : asinx + bcosx = c ;trong ®ã a,b,c∈R , a0 , b0 Cách giải 1: Cách giải 2: Cách giải 3: Ví dụ Giả i pt : ) sin x + cos x = 2.1.1 2) sin x + cos x = 2.2 sin x − sin x = 2.3 3) trắc nghiêm trắc nghiƯm btvn 2.1.2 chu y vd2.1 C¸ch 1 ) sin x + cos x = chia hai vÕ cho + ( ) = 12 2 ⇔ sin x + cos x = 12 ⇔ cos β sin x + sin β cos x = , (cos β = ; sin β = ) 12 , (sin α = )  x + β = α + k 2π  x = α − β + k 2π ⇔ ⇔ ;k ∈ Ζ x + β = π − α + k 2π x = π − α − β + k 2π   ⇔ sin( x + β ) = sin α Back vi du 2.1.2 C¸ch ) sin x + cos x = chia hai vế pt cho ta : sin x + cos ⇔ sin( x + cos x = π ⇔ sin x + tg π cos x = π π sin x + sin cos x = cos 6 π )= Back π π  x + = + k 2π  π π ⇔ sin( x + ) = sin ⇔   x + π = π − π + k 2π   π  x = + k 2π  ⇔ ;k ∈ Ζ chu y π  x = + k 2π   vi du 2.2 2) sin x + cos x = nh.xÐt : a + b = 9; c = 16 ⇒ a + b < c ⇒ PTv«nghiƯm 2 2 2 Back vi du 2.3 sin x − sin x = 2 − cos x sin x − =0 2 1 ⇔ sin x + cos x = 2 ⇔ π π  x + = + k 2π  π π 6 ⇔ sin( x + ) = sin ⇔  6  x + π = π − π + k 2π   6  x = kπ ⇔ ;k ∈ Ζ Back π  x = + kπ  vi dụ 1.1 ã Giải: 3tgx + = ⇔ tgx = − ⇔ tgx = tg ( − ⇔x=− π ) π + kπ , k ∈ Ζ trë vÒ vi du 1.2 )2 cos x + cos x − = đặt t=cos x với dk - t ta pt theo t: 2t + 2t − = ⇔ t1 = − ( lo¹i ), t = cos x = 2 ⇔ cos x = cos ⇔ x=± π π + k 2π , k ∈ Ζ 2 Back vi du 1.3 )2 sin x + cos x-1 = ⇔ 2(1 − cos x ) + cos x − = ⇔ −2 cos x + cos x − = đạt t = cosx với đ k − ≤ t ≤ ta cã pt theo t : - 2t + t − = ⇔ t = 2(lo¹i); t = − t=− ⇔ cos x = − ⇔ cos x = cos 2π 2 ⇔ x=± 2π + k Back ã Cách giải 1: Chia hai vÕ cña pt(1) cho a2 + b ta : ( a b c sin x + 2 cos x = 2 a + b2 a +b a +b a b )2 + ( )2 = a + b2 a + b2 a b = cos β ; = sin β 2 a +b a +b nª n ta đ ặt Khi đ ó (2) cã d¹ng cos β sin x + sin β cos x = hay sin( x + β ) = (3) cã nghiÖm ⇔ c a + b2 c (3) a + b2 c ≤ ⇔ c ≤ a + b2 2 a +b VËy (1) cã nghiÖm ⇔ c ≤ a + b (1) v« nghiƯm ⇔ c 〉 a + b (4) back Cách giả i : asinx + bcosx = c (1) Chia hai vÕ pt (1) cho a đ ặt sinx + tgα cosx = c a ⇔ sinx cos α + sin α cosx = ⇔ sin( x + α ) = c cos α a c cos α a b = tg ta a Cách giả i : asinx + bcosx = c x Cã thĨ ®­a pt (1) vÒ mét pt bËc hai theo t = tg cách áp dụng công thức : 2t 1t2 sin x = , cos x = 1+ t 1+ t2 đưa (1) dạng 2t 1t2 a + b =c 2 1+ t 1+ t ⇔ (b + c )t − 2at + c − b = Chó ý b b b = ±1, hc = ± 3, hc = ± a a a ã Nếu gặp trường hợp đặc biệt sau ã ta nên lam theo cách 2, tøc la thay: b π b π = ±1 = tg (± ), hc = ± = tg (± ), a a b π hc = ± = tg (± ) a ve 2.1.2 tập trắc nghiệm 1)Tìm nghiệm phương trình 1) sin2 x sin x = thoả m·n : < x < π a) x = π b) x = c) x = − d )một kết khác 2) sin2 x + sin x = tho¶ m·n a) x = − π b) x = π c) x =

Ngày đăng: 27/06/2013, 11:45

TỪ KHÓA LIÊN QUAN

w