1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

quá trình chuyển pha ZnS ZnO của các cấu trúc nano ZnS một chiều

160 452 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 160
Dung lượng 10,63 MB

Nội dung

Header Page of 258 LI CM N hon thnh c quyn lun ỏn ny l nh vo cụng lao rt ln ca hai ngi thy hng dn tụi l PGS.TS Phm Thnh Huy v TS Trn Ngc Khiờm ó hng dn rt tn tỡnh v giỳp tụi rt nhiu quỏ trỡnh thc hin lun ỏn Vin Tiờn tin Khoa hc v Cụng ngh Bng tn ỏy lũng, tụi xin chõn thnh by t lũng bit n sõu sc n Thy Phm Thnh Huy, ngi ó tn tỡnh giỳp cho tụi ý tng, nh hng nghiờn cu cng nh to mi iu kin thun li quỏ trỡnh lm thc nghim v giỳp v vt cht ln kin thc cho tụi quỏ trỡnh hc v nghiờn cu ti trng i hc Bỏch khoa H Ni Tụi xin chõn thnh cm n rt nhiu ti Ban Lónh o Vin AIST, ITIMS ó nhit tỡnh giỳp v to mi iu kin cho tụi lm thc nghim v nghiờn cu thi gian qua Tụi cng xin by t lũng bit n n cỏc Thy cụ giỏo v cỏc cỏn b ca Vin AIST ó giỳp tn tỡnh sut quỏ trỡnh nghiờn cu v hc Tụi xin cm n n TS Nguyn Duy Hựng, ThS Nguyn T ó giỳp cho tụi o cỏc phộp o hunh quang v cng xin cm n n GS TS Nguyn c Chin, PGS TS Trn Kim Anh, TS Trnh Xuõn Anh v TS o Xuõn Vit ó cú nhiu ý kin úng gúp cho lun ỏn Trong quỏ trỡnh nghiờn cu, tụi cũn nhn c s giỳp ca cỏc Phũng ban chc nng ca HBK HN, Phũng thớ nghim ca Vin Khoa hc Vt liuVin Hn lõm Khoa hc v Cụng ngh Vit Nam, Trung tõm Khoa hc Vt liu HKHTN - HN, Phũng thớ nghim Hin vi in t - Vin V sinh Dch t Trung ng, Phũng thớ nghim Lumilab Khoa khoa hc cht rn - i hc Gent - B Tụi xin chõn thnh cm n n mi s giỳp ny Tụi cng xin cm n n Ban Giỏm Hiu Trng i Hc Cụng nghip Qung Ninh, Ban Ch Nhim Khoa Khoa Khoa hc C bn, B mụn Vt lý ó to mi iu kin thun li cho tụi i nghiờn cu v bo v lun ỏn tin s H Ni ng thi, tụi cng xin gi li cỏm n n tt c cỏc bn hc viờn NCS - AIST, ITIMS, bn bố ó ht lũng ng viờn tinh thn tụi thi gian thc hin lun ỏn Cui cựng, tụi xin cm n ti gia ỡnh, h hng v ngi thõn ca tụi, nhng ngi ó luụn ng viờn tinh thn v giỳp vt cht Tụi khụng bit núi gỡ hn ngoi li cm n sõu sc, chõn thnh ti nhng ngi thõn yờu nht ca tụi Ni dung nghiờn cu ca lun ỏn nm khuụn kh thc hin ti NAFOSTED mó s 103.02.102.09 v ti Nghiờn cu c bn nh hng ng dng mó s DTDL.5-2011-NCCB Tỏc gi Quang Trung i Footer Page of 258 Header Page of 258 LI CAM OAN Tụi xin cam oan õy l cụng trỡnh nghiờn cu ca riờng tụi Cỏc kt qu nờu lun ỏn l trung thc v cha tng cụng b bt k mt cụng trỡnh no Tỏc gi Quang Trung ii Footer Page of 258 Header Page of 258 MC LC LI CM N i LI CAM OAN ii DANH MC CC Kí HIU V CH VIT TT vi DANH MC BNG BIU viii DANH MC HèNH V viii M U CHNG TNG QUAN V CC CU TRC NANO TINH TH MT CHIU ZnS, ZnO V CC CU TRC NANO D TH MT CHIU ZnS/ZnO 1.1 C S Lí THUYT 1.1.1 Gii thiu 1.1.1.1 Vt liu nano 1.1.1.2 Hiu ng giam gi lng t 1.1.1.3 Hiu ng b mt 1.1.2 Cỏc cu trỳc nano mt chiu 10 1.1.2.1 Gii thiu 10 1.1.2.2 C ch hỡnh thnh cỏc cu trỳc nano 1D t pha hi 11 1.1.3 Cỏc cu trỳc nano d th mt chiu 15 1.2 CC CU TRC NANO TINH TH MT CHIU ZnS, ZnO 16 1.2.1 Cỏc cu trỳc nano tinh th mt chiu ZnS 16 1.2.1.1 Tng hp cỏc cu trỳc nano mt chiu ca ZnS 16 1.2.1.2 Tớnh cht quang ca cỏc cu trỳc nano mt chiu ZnS 20 1.2.2 Cỏc cu trỳc nano tinh th mt chiu ZnO 26 1.2.2.1 Hỡnh thỏi cu trỳc ca cỏc nano tinh th mt chiu ZnO 26 1.2.2.2 Tớnh cht quang 27 1.3 CC CU TRC NANO D TH MT CHIU ZnS/ZnO 33 1.3.1 Cỏc cu trỳc nano phc 33 1.3.2 Cỏc cu trỳc nano d th ng trc (lừi /v) 33 1.3.3 Tớnh cht quang ca cỏc cu trỳc nano d th mt chiu ZnS/ZnO 37 1.4 CC PHNG PHP KHO ST CC THUC TNH CU TRC V TNH CHT CA VT LIU SAU CH TO 38 iii Footer Page of 258 Header Page of 258 CHNG NGHIấN CU S HèNH THNH CU TRC NANO MT CHIU ZnS/ZnO T CC CU TRC NANO MT CHIU ZnS BNG PHNG PHP BC BAY NHIT KT HP VI ễXY HểA NHIT TRONG MễI TRNG KHễNG KH Túm tt 41 2.1 GII THIU 42 2.2 THC NGHIM 42 2.3 KT QU V THO LUN 45 2.3.1 ỏnh giỏ cỏc tớnh cht ca dõy nano ZnS ch to c bng phng phỏp bc bay nhit 45 2.3.2 Nghiờn cu quỏ trỡnh chuyn pha ZnSZnO mụi trng khụng khớ 47 2.4 KT LUN CHNG 58 CHNG S HèNH THNH CU TRC NANO D TH ZnS/ZnO MT CHIU T CC CU TRC NANO MT CHIU ZnS BNG PHNG PHP BC BAY NHIT KT HP VI ễXY HểA NHIT TRONG MễI TRNG KH ễXY TRONG KHI NUễI V SAU KHI NUễI 60 Túm tt 60 3.1 GII THIU 61 3.2 THC NGHIM 64 3.3 KT QU V THO LUN 65 3.3.1 S hỡnh thnh cỏc cu trỳc nano mt chiu ZnS bng phng phỏp bc bay nhit bt ZnS lờn trờn Si/Au theo c ch hi - lng - rn (VLS) 65 3.3.1.1 Hỡnh thỏi b mt v cỏc c tớnh cu trỳc ca cỏc nano tinh th mt chiu ZnS nhn c sau nuụi 65 3.3.1.2 Tớnh cht quang ca dõy nano, nano ZnS nhn c sau nuụi 67 3.3.2 Cỏc cu trỳc nano d th mt chiu ZnS/ZnO v quỏ trỡnh chuyn pha ZnS ZnO bng phng phỏp ụxy húa nhit mụi trng khớ ụxy sau nuụi v nuụi 74 3.3.2.1 Nghiờn cu quỏ trỡnh chuyn pha ZnS ZnO bng phng phỏp ụxy húa nhit nuụi 74 3.3.2.2 Nghiờn cu quỏ trỡnh chuyn pha ZnS ZnO bng phng phỏp ụxy húa nhit sau nuụi mụi trng khớ ụxy 79 3.4 KT LUN CHNG 84 iv Footer Page of 258 Header Page of 258 CHNG NGHIấN CU S HèNH THNH CU TRC NANO MT CHIU ZnS/ZnO BNG PHNG PHP BC BAY NHIT THEO C CH HI - RN V QU TRèNH CHUYN PHA ZnSZnO BNG PHNG PHP ễXY HểA NHIT 85 Túm tt 85 4.1 GII THIU 86 4.2 THC NGHIM 87 4.3 KT QU V THO LUN 88 4.3.1 Cỏc cu trỳc nano mt chiu ZnS nhn c sau nuụi bng phng phỏp bc bay nhit theo c ch VS 88 4.3.2 Nghiờn cu quỏ trỡnh chuyn pha ZnSZnO mụi trng khụng khớ v ngun ngc ca nh phỏt x mu xanh lc (green)trong cỏc cu trỳc mt chiu ZnS 93 4.3.3 Nghiờn cu cỏc cu trỳc nano d th mt chiu ZnS/ZnO v quỏ trỡnh chuyn pha ZnS ZnO bng phng phỏp ụxy húa nhit sau nuụi mụi trng khớ ụxy 100 4.4 KT LUN CHNG 107 CHNG CH TO V TNH CHT QUANG CA CC CU TRC NANO MT CHIU ZnS, ZnS/ZnO PHA TP Mn2+ 109 Túm tt 109 5.1 GII THIU 110 5.2 THC NGHIM 111 5.2.1 Ch to cỏc cu trỳc mt chiu ZnS pha Mn sau nuụi 112 5.2.2 Ch to cỏc cu trỳc mt chiu ZnS pha Mn bng cỏch bc bay ng thi ZnS v MnCl2 112 5.3 KT QU V THO LUN 114 5.3.1 Cỏc cu trỳc nano mt chiu ZnS:Mn2+ ch to bng phng phỏp bc bay nhit kt hp vi khuch tỏn nhit mụi trng khớ Ar 114 5.3.2 Kho sỏt cu trỳc, tớnh cht quang ca cỏc cu trỳc nano mt chiu ZnS pha Mn2+ bng phng phỏp bc bay nhit ng thi ngun vt liu ZnS v MnCl2 120 5.4 KT LUN CHNG 127 KT LUN LUN N 129 DANH MC CC CễNG TRèNH CễNG B CA LUN N 131 TI LIU THAM KHO 132 v Footer Page of 258 Header Page of 258 DANH MC CC Kí HIU V CH VIT TT Ký hiu aB D3, D2, D1, D0 E Ec ED, EA Eexc Eg() Eg(NPs) Ep Ev EW f I (h) Kx, Ky, Kz me mh U(0) E , exc, em Ch vit tt A CB CNT CRT CVD D DA, DD EDX Tờn ting Anh Bohr exciton radius Density of states Bỏn kớnh Bohr exciton Mt trng thỏi ca vt rn 3, 2, v chiu Energy Nng lng Conduction band edge Nng lng ỏy vựng dn Energy of donor and acceptor Nng lng ca mc ono, acepto level Energy of exciton Nng lng exciton Bandgap of bulk semiconductor Nng lng vựng cm bỏn dn Bandgap energy of a Nng lng vựng cm ca ht nano nanoparticles Energy of photon Nng lng photon Valence band edge Nng lng nh vựng húa tr Energy of electron in a potential Nng lng ca in t ging well th Exciton oscillator strength Lc dao ng exciton Intensity of luminescence Cng hunh quang Wave vector Vect súng trờn trc x, y, z Effective mass of electron Khi lng hiu dng ca in t Effective mass of hole Khi lng hiu dng ca l trng Overlap factor between H s chng chp ca hm súng in eclectron and hole wave t v l trng functions Absorption coefficient H s hp th Transition energy Nng lng chuyn tip Wavelength, Excitation and Bc súng, bc súng kớch thớch v emission Wavelength phỏt x Transition dipole moment Mụment lng cc chuyn tip Frequency Tn s Tờn ting Anh Acceptor Conduction band Carbon nano-tubes Cathode ray tube Chemical vapor deposition Donor Deep Acceptor, Deep Donor Energy dispersive x-ray vi Footer Page of 258 Tờn ting Vit Tờn ting Vit Acepto Vựng dn ng nano cacbon ễng tia catt Lng ng pha hi húa hc ono Acepto sõu, ono sõu Ph tỏn sc nng lng tia x Header Page of 258 FCC FESEM GB GO HOMO LO LUMO NBE PL CL PLE RE RT TEM TM TO VB VLS VS XRD spectroscopy Face center cubic Field emission scanning electron microscopy Green-Blue Green-Orange Highest occupied molecular orbital Longitude optical Lowest unoccupied molecular orbital Near Band Edge emission Photoluminescence spectrum Cathodoluminescence Photoluminescence excitation spectrum Rare Earth Room temperature Transmission electron microscope Transition metal Transverse optical Valence band Vapor liquid solid Vapor solid X-ray Diffraction vii Footer Page of 258 Lp phng tõm mt Hin vi in t quột phỏt x trng Xanh lc-Xanh lam Xanh lc- Cam Qu o phõn t b chim cao nht Phonon quang dc Qu o phõn t khụng b chim thp nht Phỏt x b vựng Ph hunh quang Ph hunh quang catt Ph kớch thớch hunh quang t him Nhit phũng Hin vi in t truyn qua Kim loi chuyn tip Phonon quang ngang Vựng húa tr Hi-lng-rn Hi-rn Nhiu x tia x Header Page of 258 DANH MC BNG BIU Bng 1.1 S liờn quan gia kớch thc v s nguyờn t ti b mt Bng 1.2 Bng thng kờ cỏc cụng ngh ch to cỏc cu trỳc dõy/thanh nano ZnS, vựng nhit phn ng v cỏc ti liu tham kho tng ng 17 Bng 1.3 Bng thng kờ cỏc phng phỏp ch to cỏc cu trỳc nano ZnS dng ai, bng, v tm nano, nhit phn ng v cỏc ti liu tham kho tng ng 20 Bng 1.4 Bng thng k mt s phng phỏp thc nghim tớnh cht quang ca vt liu theo cỏc c ch kớch thớch khỏc 20 Bng 1.5 Bng tng hp mt s thụng tin v tớnh cht hunh quang ca cỏc cu trỳc nano mt chiu ZnS v cỏc ti liu tham kho tng ng 24 Bng 1.6 Cỏc tớnh cht hunh quang catt ca cỏc cu trỳc nano ZnS mt chiu 26 Bng 1.7 V trớ v ngun gc xut ca cỏc phỏt x liờn kt exciton ZnO (ti nhit thp) 29 Bng 1.8 V trớ v ngun gc ca cỏc phỏt x hunh quang ti nhit phũng ZnO v cỏc ti liu tham kho tng ng 32 Bng 1.9 Cỏc phng phỏp ch to cỏc cu trỳc mt chiu ng trc lừi v v ZnS v ti liu tham kho tng ng 36 Bng 1.10 Cỏc phng phỏp ch to cỏc cu trỳc d th mt chiu cnh - cnh ca ZnS (ZnS-side-by-side heterostructures) 37 Bng 3.1 Mt s tớnh cht vt lý c bn ca ZnS v ZnO 61 DANH MC HèNH V Hỡnh 1.1 Cỏc loi vt liu nano: (0D) ht nano hỡnh cu, cm nano; (1D) dõy, nano; (2D) mng, a v li nano; (3D) vt liu Hỡnh 1.2 Mt trng thỏi ca nano tinh th bỏn dn Mt trng thỏi b giỏn on vựng b Khong cỏch HOMO-LUMO gia tng nano tinh th bỏn dn kớch thc nh i Hỡnh 1.3 S minh hỡnh thỏi khỏc cu trỳc nano 1D v cỏc thut ng thng c s dng mụ t chỳng: (a) dõy nano (NWS), dõy hoc si nano, (b) nano (NRs); (c) (NBS) hoc di nano v (d) cỏc ng nano (NT) 10 Hỡnh 1.4 Gin minh quỏ trỡnh mc dõy Si t gin pha nh git hp kim xỳc tỏc Au-Si (a) Git hp kim Au-Si hỡnh thnh trờn Si úng vai trũ xỳc tỏc mc dõy; (b) Gin pha ca Au-Si; (c) quỏ trỡnh khuch tỏn v hỡnh thnh dõy nano ca vt liu ngun qua git lng 12 Hỡnh 1.5 Cỏc mụ hỡnh khuch tỏn khỏc cho cỏc nguyờn t vt liu ngun kt hp quỏ trỡnh mc dõy nano ban u: (a) C ch VLS c in; (b) Git hp kim lng trng thỏi núng chy mt phn, b mt v giao din ca nú trng thỏi lng bờn lừi trng thỏi rn; (c) Kim loi xỳc tỏc trng thỏi rn nhng b mt giao din trng thỏi lng 13 Hỡnh 1.6 S mụ hỡnh minh quỏ trỡnh mc ca (a) dõy nano v (b) nano ZnO 14 viii Footer Page of 258 Header Page of 258 Hỡnh 1.7 (a) Mc d hng t ZnO tinh th; (b) Mc d hng ca tinh th ZnO lch xon; (c) Mc song tinh; (d) Mc dõy nano ZnO t xỳc tỏc bng git lng Zn; (e) Dõy nano tinh th ZnO khụng cha ht xỳc tỏc v khuyt tt; (f) Dõy nano ZnO mc s lch mng; (g) Mc lng tinh th song tinh; (h) Zn hoc pha giu Zn quan sỏt c trờn u mỳt ca dõy nano ZnO 14 Hỡnh 1.8 Cỏc loi cu trỳc d th mt chiu 16 Hỡnh 1.9 Mt s hỡnh thỏi in hỡnh ca cu trỳc nano ZnS mt chiu ó c ch to 16 Hỡnh 1.10 (a) nh SEM ca dõy nano ZnS ch to bng phng phỏp bc bay nhit bt ZnS trờn Si/Au; (b) dõy nano c mc theo c ch VLS t ngun phõn t tin cht v ht xỳc tỏc vng;(c v d) nh HRTEM ca dõy nano ZnS thang o 10 nm 18 Hỡnh 1.11 (a v b) nh SEM ca bng nano ZnS ch to bng phng phỏp bc bay cú s h tr ca khớ hydro; (c v d) nh TEM, ph EDS, v nh HRTEM cỏc bng nano ZnS 19 Hỡnh 1.12 (a) nh SEM v (b) ph PL ca nanoawls ZnS; (c) nh TEM v (d) ph PL ca ZnS nanobelts 21 Hỡnh 1.13 (a-d) nh SEM ca thanh, dõy, v bng nano ZnS hỡnh thnh bn vựng nhit khỏc nhau, tng ng; (e) ph hunh quang ca cỏc cu trỳc nano ZnS22 Hỡnh 1.14 (a) nh TEM v HRTEM ca dõy nano ZnS; (b) ph PL ca dõy nano ZnS o ti RT v c kớch thớch bi ngun laser xung (266 nm); (c) nh SEM v TEM ca dõy nano cp tun hon ZnS; (d) ph PL ti RT ca bt nano ZnS v dõy nano cp tun hon ZnS 23 Hỡnh 1.15 (a) nh TEM, (b) nh HRTEM, (c) gin SEAD ca cỏc nano ZnS, (d) Mụ hỡnh cu trỳc mt nano; (e) nh SEM ca mt nano ZnS v (f) nh ph CL; (g) ph CL ghi li t nano ZnS nhỡn thy hỡnh nh SEM (e), (h) ph CL c chp li ti cỏc im khỏc trờn nano dc theo ng ỏnh du (e) 25 Hỡnh 1.16 Cỏc cu trỳc nano ZnO c tng hp cỏc iu kin cú kim soỏt bng phng phỏp bc bay nhit 26 Hỡnh 1.17 S hỡnh thnh cỏc hỡnh thỏi ca ZnO, cho thy mt ca cỏc n tinh th 27 Hỡnh 1.18 nh SEM ca mt dõy nano ZnO 27 Hỡnh 1.19 (a) Ph PL gn b vựng (NBE) ca mt dõy nano ZnO o 10K; (b) Ph PL NBE ph thuc vo nhit ; (c) V trớ cỏc nh ph phỏt x ca cỏc exciton t ph thuc vo nhit , ng nột lin l ng fit theo hm Varshni 27 Hỡnh 1.20 Ph hunh quang ph thuc vo nhit ca mt dõy nano ZnO 29 Hỡnh 1.21 Gin phỏt x vựng UV v ba nh phỏt x vựng nhỡn thy 29 Hỡnh 1.22 Phỏc tho vựng nng lng ca cỏc dõy nano ZnO vi ba loi vựng nghốo b mt khỏc nhau: (a) dõy nano b lm nghốo hon ton, ch cũn li cỏc tõm VO + v VO ++ dõy nano; (b) dõy nano mt phn cn kit Tõm VO ++cú th tn ti vựng nghốo, v VO + v VO x cú th tn ti vựng khụng nghốo; (c) dõy nano vi nng in t cao cú mt b mt nghốo vi rng nh Ch tõm VO ++ tn ti vựng nghốo Nng ht ti ln lm cho mc Fermi cao hn ix Footer Page of 258 Header Page 10 of 258 mc VO + v tt c cỏc VO + c lp y v ch cú tõm VOx tn ti vựng khụng nghốo 31 Hỡnh 1.23 Hỡnh minh s ghộp ni ca cỏc cu trỳc nano mt chiu ZnS riờng l cỏc cu trỳc nano phc 33 Hỡnh 1.24 (a v b) nh SEM, (c) nh TEM v (d) nh HRTEM ca BN c ph ZnS nanoarchitectures, Vớ d: cu trỳc nano lừi/v ZnS/BN 33 Hỡnh 1.25 nh TEM ca nano ZnO (a) trc v (b) sau phn ng vi H2S, cho thy s hỡnh thnh ca ZnO/ZnS cu trỳc nano lừi/v; (c) ZnO/ZnS nanocable vi lp v ZnS b hng v (d) gin SAED tng ng ghi li t v trớ ny, cho thy s hin din ca mt lừi n tinh th ZnO v ZnS v cu trỳc nano; (e, f) ph EDS thu c t cỏc vựng ch nh (c) 34 Hỡnh 1.26 (a-c) nh TEM c trng ca hai cu trỳc d th mi nano hai trc ZnS/ZnO; (d-f) nh HRTEM c ghi nhn t cnh ZnO, cnh ZnS v mt tip giỏp ca nano d th tinh th ZnS/n tinh th ZnO; (g, h) mụ hỡnh cu ca cỏc mt tip giỏp ca WZ-ZnS/ZnO v ZB-ZnS/ZnO c ỏnh du bng ''I1'' v "I2" hỡnh (f) 37 Hỡnh 1.27 Ph hunh quang ca cu trỳc d th ZnS/ZnO 38 Hỡnh 1.28 Ph hunh quang ca cu trỳc d th ZnS/ZnO o nhit thp (30 K) 38 Hỡnh 1.29 nh thit b o nh FESEM c tớch hp vi u o EDS v ph CL 38 Hỡnh 1.30 H o h o ph hunh quang, kớch thớch hunh quang (NanoLog spectrofluorometer, HORIBA Jobin Yvon) 40 Hỡnh 1.31 nh u o CL c tớch hp thit b o FESEM JEOL/JSM-7600F (a) v s nguyờn lý ca thit b o (b) 40 Hỡnh 2.1 S ch to cỏc cu trỳc 1D ZnS v ZnS/ZnO bng phng phỏp bc bay nhit v ụxy húa nhit mụi trng khụng khớ 43 Hỡnh 2.2 S h lũ ng nm ngang (a); quy trỡnh thc nghim ch to cỏc cu trỳc nano tinh th ZnS mt chiu bng phng phỏp bc bay nhit theo c ch VLS (b); H bc bay nhit thc t (c) 44 Hỡnh 2.3 nh FESEM ca dõy nano ZnS nhn c sau nuụi bng phng phỏp bc bay nhit 45 Hỡnh 2.4 Ph nhiu x tia X ca dõy nano ZnS nhn c sau nuụi 46 Hỡnh 2.5 Ph hunh quang c kớch thớch bi bc súng 325 nm v ph kớch thớch hunh quang ca dõy nano ZnS nhn c sau nuụi o ti bc súng 512 nm46 Hỡnh 2.6 nh FESEM ca dõy nano ZnS nhn c sau nuụi trờn Si ph kim loi xỳc tỏc vng (a) v cỏc mu c ụxy húa sau nuụi mụi trng khụng khớ ti cỏc nhit khỏc nhau: (b) 300 C; (c) 500 C; (d) 700 C 48 Hỡnh 2.7 nh TEM ca dõy nano ZnS/ZnO nhn c sau ụxy húa dõy nano ZnS ti nhit (a) 300 oC; (b) 500 oC; (d) 700 oC 48 Hỡnh 2.8 Ph nhiu x tia X ca dõy nano ZnS/ZnO sau ó ụxy húa khụng khớ nhit 400, 600 v 800 oC thi gian gi 49 Hỡnh 2.9 Ph hunh quang ca dõy nano ZnS v dõy nano ZnS ụxy húa khụng khớ nhit 400, 600 oC nhn c kớch thớch mu bng laser He-Cd bc súng 325 nm nhit phũng 50 x Footer Page 10 of 258 Header Page 146 of 258 DANH MC CC CễNG TRèNH CễNG B CA LUN N 1) Quang Trung, Phm Thnh Huy, Nguyn c Trung Kiờn, Võn Nam, Lờ Anh Tun, Nguyn Thnh Huy, CH TO V TNH CHT QUANG CA CU TRC NANO MT CHIU ZnS/ZnO Hi ngh Vt lý cht rn v Khoa hc vt liu ton quc ln th (SPMS-2009) - Nng 8-10/11/2009, Tr 313-317 2) V Nam Do, N.T Tuan, D.Q Trung, N.D.T Kien, N.D Chien, P.T Huy, "Onedimensional protuberant optically active ZnO structure fabricated by oxidizing ZnS nanowires Materials Letters, Vol 64, pp 1650 1652 (2010) (SCI IF 2.2) 3) Do Quang Trung, Pham Thanh Huy, Nguyen Duy Hung, Nguyen Tu, Le Thi Thu Huong, Trinh Xuan Anh, and Tran Ngoc Khiem, Cathodoluminescence mapping study of ZnS/ZnO heterostructures, International Conference on Advanced Materials and Nanotechnology (ICAMN), ISBN: 978-604-911-247-8, Hanoi, 2012, pp 153-158 4) Do Quang Trung, Pham Thanh Huy, Nguyen Duy Hung, Nguyen Tu, Le Thi Thu Huong, Trinh Xuan Anh, and Tran Ngoc Khiem, Fabrication and optical properties of ZnO one-dimensional nanostructures by thermal evaporation ZnS powder and in situ oxidation, International Conference on Advanced Materials and Nanotechnology (ICAMN), ISBN: 978-604-911-247-8, Hanoi, 2012, pp 201-205 5) Do Quang Trung, Pham Thanh Huy, Nguyen Duy Hung, Nguyen Tu, Le Thi Thu Huong, Trinh Xuan Anh, and Tran Ngoc Khiem, Tng hp v tớnh cht quang ca cỏc cu trỳc nano ZnS/ZnO mt chiu, Advances in Optics, Photonics, Spectroscopy&Applications VII, ISSN 1895-4271, tr 713-718 (2012) 6) D Q Trung, N T Tuan, H.V Chung, P H Duong, and P.T Huy, On the origin of green emission in zinc sulphide nanowires prepared by thermal evaporation method, Journal of Luminescence 153 (2014) 321325, (SCI IF 2.144) 7) Quang Trung, Nguyn T, Nguyn Duy Hựng, Phm Thnh Huy, Nghiờn cu ch to v tớnh cht quang ca nano d th ZnS/ZnO bng phng phỏp bc bay nhit theo c ch hi rn, Tp Chớ Khoa hc v Cụng ngh cỏc trng i hc K thut, ISSN 0868 - 3980, s 98, tr 73-79 (2014) 8) Quang Trung, Nguyn Th Thanh H, Nguyn T, Nguyn Duy Hựng, Phng ỡnh Tõm v Phm Thnh Huy, Nghiờn cu ch to v tớnh cht quang ca cỏc cu trỳc nano mt chiu ZnS, ZnS/ZnO bng phng phỏp bc bay nhit kt hp vi oxi húa nhit mụi trng khớ oxi, Tp húa hc Vit nam (ng thỏng 8-2014) 9) Quang Trung, Nguyn T, Nguyn Duy Hựng, Trnh Xuõn Anh, Trn Ngc Khiờm, Phm Hu Thnh, Nguyn Trớ Tun and Phm Thnh Huy, Tng hp v tớnh cht quang ca dõy nano ZnS pha Mn bng phng phỏp bc bay nhit, K yu Hi ngh Vt lý cht rn v Khoa hc vt liu ton quc ln th (SPMS-2013) Thỏi Nguyờn 4-6/11/2013 (ang quỏ trỡnh in n) CC CễNG TRèNH HON THNH V ANG TRONG QU TRèNH PHN BIN 1) D Q Trung, N Tu, N D Hung, V Nam Do and P T Huy, Probing the origin of green emission in one-dimensional ZnS nanostructures, Submitted on Nanoletter (7-2014) 131 Footer Page 146 of 258 Header Page 147 of 258 TI LIU THAM KHO TING VIT Thỏi Hong (2012) Vt liu nanocompozit khoỏng sột - nha NXB Khoa hc t nhiờn v Cụng ngh Phựng H, Phan Quc Phụ (2008) Giỏo trỡnh Vt liu bỏn dn NXB Khoa hc v K thut Trng Vn Tõn (2009) Khoa hc v Cụng ngh nano Nh xut bn Trớ Thc Phm Th Thy (2013) Nghiờn cu ch to v mt s c ch kớch thớch v chuyn hoỏ nng lng vt liu bỏn dn hp cht III-P cu trỳc nano Lun ỏn tin s Khoa hc vt liu, Vin Khoa hc vt liu, Vin Hn lõm Khoa hc v Cụng ngh Vit Nam Nguyn Trớ Tun (2012) Nghiờn cu tng hp v kho sỏt tớnh cht quang ca nano tinh th bỏn dn ZnS pha Cu v Mn Lun ỏn tin s Khoa hc vt liu, i hc Bỏch khoa H Ni Trn Th Qunh Hoa (2012) Nghiờn cu ch to v mt s tớnh cht ca Vt liu cu trỳc nano ZnS Lun ỏn Tin s Vt lý cht rn, i hc KHTN H Ni TING ANH 10 11 12 13 A Bera and D Basak (2010), Photoluminescence and Photoconductivity of ZnSCoated ZnO Nanowires, Applied materials & Interfaces, Vlo No.2., pp.408-412 A Teke, ĩ ệzgỹr, S Doan, X Gu, H Morkoỗ, B Nemeth, J Nause, H.O Everitt (2004), Excitonic ne structure and recombination dynamics in single-crystalline ZnO, Phys Rev B, 70 (19), p 195207 (110) A Umar, Y.H Im, and Y.B Hahn (2006), Evolution of ZnO nanostructures on silicon substrate by vapor-solid mechanism: Structural and optical properties, Journal of Electronic Materials, Vol 35, No A van Dijken, E.A Meulenkamp, D Vanmaekelbergh, A Meijerink (2000), The Kinetics of the Radiative and Nonradiative Processes in Nanocrystalline ZnO Particles upon Photoexcitation, J Phys Chem B, 104 (8), pp 17151723 A.A Bol, A Meijerink (2001), Luminescence Quantum Efficiency of Nanocrystalline ZnS:Mn2+ Surface Passivation and Mn2+Concentration, J Phys Chem B, 105, pp 10197-10202 A.B Djurisic, A.M.C Ng, X.Y Chen, Review ZnO nanostructures for optoelectronics: Material properties and device applications, Progress in Quantum Electronics 34 (2010) 191259 A.B Djurii, W.C.H Choy, V.A.L Roy, Y.H Leung, C.Y Kwong, K.W Cheah, T.K Gundu Rao, W.K Chan, H.F Lui, C Surya (2004), Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures, Adv Funct Mater., 14 (9), pp 856864 132 Footer Page 147 of 258 Header Page 148 of 258 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 A.B Djurii, Y.H Leung (2006), Optical Properties of ZnO Nanostructures, Small, (89), pp 944961 A.N Yazici, M Oztas , M Bedir (2007), The thermoluminescence properties of copper doped ZnS nanophosphor, Optical Materials 29, pp 10911096 A.P Alivisatos (1996), Perspectives on the Physical Chemistry of Semiconductor Nanocrystals, J Phys Chem, 100(31), pp 13226-13239 B Liu, L Hu, C Tang, L Liu, S Li, J Qi, Y Liu (2011), Self-assembled highly symmetrical ZnS nanostructures and their cathodoluminescence, Journal of Luminescence 131, pp 10951099 B.J Lawrie, R.F Haglund Jr, and R Mu (2009), Enhancement of ZnO photoluminescence by localized and propagating surface plasmons, OPTICS EXPRESS 2565, Vol 17, No B.K Meyer, H Alves, D.M Hofmann, W Kriegseis, D Forster, F Bertram, J Christen, A Hoffmann, M Strassburg, M Dworzak, U Haboeck, A.V Rodina (2004) Bound exciton and donoracceptor pair recombinations in ZnO, Phys Stat Sol B, 241 (2), pp 231260 B.Q Cao, W.P Cai, F.Q Sun, and L.D Zhang (2005), Ultraviolet-light-emitting ZnO nanosheets prepared by a chemical bath deposition method, Nanotechnology, 16, 17341738 B.Y Geng, X.W Liu, Q.B Du, X.W Wei, L.D Zhang, Structure and optical properties of periodically twinned ZnS nanowires, Appl Phys Lett, 88 (2006), p 163104 C Boemare, T Monteiro, M.J Soares, J.G Guilherme, E Alves (2001), photoluminescence studies in ZnO samples, Physica B, 308310, pp 985988 C Bouvy and B.L Su (2008), ZnO@porous media, their PL and laser effect, J Mater Sci Technol., 24, 495511 C Jin, Y Cheng, X Zhang, W Zhong, Y Deng, C Au, X Wua and Y Du (2009), Catalytic growth of clusters of wurtzite ZnS nanorods through co-deposition of ZnS and Zn on Au lm, Cryst., Eng., Comm 11, pp 22602263 C Zhang, F Zhang, T Xia, N Kumar, J.I Hahm, J Liu, Z.L Wang, and J Xu (2009), Low-threshold two-photon pumped ZnO nanowire lasers, OPTICS EXPRESS, Vol 17, No 10, PP 7893-7900 C.H Liang, Y Shimizu, T Sasaki, H Umehara, N Koshizaki (2004), Au-mediated growth of wurtzite ZnS nanobelts, nanosheets, and nanorods via thermal evaporation, J Phys Chem B, 108, pp 97289733 C.J Barrelet, Y Wu, D.C Bell, C.M Lieber (2003), Synthesis of CdS and ZnS nanowires using single-source molecular precursors, J Am Chem Soc, 125, pp 1149811499 C.L Yan, D.F Xue (2006), Conversion of ZnO Nanorod arrays into ZnO/ZnS nanocable and ZnS nanotube arrays via an in situ chemistry strategy, J Phys Chem B, 110, pp 2585025855 C.W Sun, J.S Jeong, J.Y Lee (2006), Microstructural analysis of ZnO/ZnS nanocables through Moirộ fringe induced by overlapped area of ZnO and ZnS, J 133 Footer Page 148 of 258 Header Page 149 of 258 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 Cryst Growth, 294, pp 162167 Chenglin Yan and Dongfeng Xue (2007), Mild solution-based fabrication of highquality device-dependent ZnO nanoarrays and ZnS nanotube arrays, Phys Scr T129, pp 288-292 D Li, Y.H Leung, A.B Djurii, Z.T Liu, M.H Xie, S.L Shi, S.J Xu, W.K Chan (2004), Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods, Appl Phys Lett., 85 (9), pp 16011603 D Moore, Z L Wang (2006), Growth of anisotropic one-dimensional ZnS nanostructures, J Mater Chem., 16, pp.3898-3905 D.C Reynolds, D.C Look, B Jogai, C.W Litton, T.C Collins, W Harsch, G Cantwell (1998), Neutral-donorbound-exciton complexes in ZnO crystals, Phys Rev B, 57 (19), pp 1215112155 D.D.D Ma, S.T Lee, P Mueller, S.F Alvarado (2006), Scanning tunneling microscope excited cathodoluminescence from ZnS nanowires, Nano Lett, 6, pp 926929 D.J Gargas, H Gao, H Wang, and P Yang (2011), High Quantum Efficiency of Band-Edge Emission from ZnO Nanowires, Nano Lett., , 11 (9), pp 37923796, DOI: 10.1021/nl201850k E Comini, C Baratto, G Faglia, M Ferroni, A Vomiero, G Sberveglieri (2009), Quasi-one dimensional metal oxide semiconductors:Preparation, characterization and application as chemical sensors, Progress in Materials Science 54, pp 167 G Rani, P D Sahare (2013), Study of the structural and morphological changes during the phase transition of ZnS to ZnO, Appl Phys A, DOI 10.1007/s00339-0138173-6 G Salviati1, F Fabbri, F Detto, F Rossi, L Lazzarini, T Sekiguchi (2013), Chapter 13 Cathodoluminescence of Self-assembled Nanosystems: The Cases of Tetrapods, Nanowires, and Nanocrystals, Characterization of Semiconductor Heterostructures and Nanostructures (Second Edition), ISBN: 978-0-444-59551-5 G.H Yue, P.X Yan, D Yan, X.Y Fan, M.X Wang, D.M Qu et al (2006), Hydrothermal synthesis of single-crystal ZnS nanowires, Appl Phys A, 84, pp 409 412 G.Z Shen, Y Bando, D Golberg, C.W Zhou (2008), Heteroepitaxial growth of orientation-ordered ZnS nanowire arrays, J Phys Chem C, 112, pp 1229912303 H Alves, D Pfisterer, A Zeuner, T Riemann, J Christen, D.M Hofmann, B.K Meyer (2003), Optical investigations on excitons bound to impurities and dislocations in ZnO, Opt Mater., 23 (12), pp 3337 H Chander (2005), Development of nanophosphorsA review, Materials Science and Engineering R 49, pp 113155 H Hu, W Zhang (2006), Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles,Optical Materials, 28, pp 536-550 H Mao, K Yu, J Wang, J Yu, and Z Zhu (2009), Photoluminescence eigenmodes in a single ZnO nanobelt covering the ultraviolet and visible band, OPTICS EXPRESS 11860, Vol 17, No 14 134 Footer Page 149 of 258 Header Page 150 of 258 45 H Masato, K Osamu, Y Akira, S Kenichiro, N Hajime, N Shigeru, and F Akihito (2002), Optical characteristics of infrared translucent closely-packed ZnS sintered body, Sumitomo Electric Technical Review, 160, 7380 46 H Moon, C Nam, C Kim, B Kim (2006), Synthesis and photoluminescence of zinc sulfide nanowires by simple thermal chemical vapor deposition, Mater Res Bull, 41, pp 20132017 47 H Y Lu, S Y Chu, and C C Chang (2005), Synthesis and optical properties of well-aligned ZnS nanowires on Si substrate, J Crys Gro 280, 173 48 H Yan, J Johnson, M Law, R He, K Knutsen, J.R McKinney, J Pham, R Saykally, P Yang (2003), ZnO nanoribbon microcavity lasers, Adv, Mater No 22, pp.1907-1911 49 H Yang, C Huang, X Su, A.D Tang (2005), Microwave-assisted synthesis and luminescent properties of pure and doped ZnS nanoparticles, Journal of Alloys and Compounds, 402, pp 274-277 50 H Zhang, R.G Xie, T Sekiguchi, X.Y Ma, D.R Yang (2007), Cathodoluminescence and its mapping of flower-like ZnO, ZnO/ZnS coreshell and tube-like ZnS nanostructures, Mater Res Bull, 42, pp 12861292 51 52 53 54 55 56 57 58 59 H.C Liao, P.C Kuo, C.C Lin, S.Y Chen (2006), Synthesis and optical properties of ZnOZnS coreshell nanotube arrays, J Vac Sci Technol B, 24, pp 21982201 H.J Fan, B Fuhrmann, R Scholz, C Himcinschi, A Berger, H Leipner, et al (2006) Vapour-transport-deposition growth of ZnO nanostructures: switch between c-axial wires and a-axial belts by indium doping Nanotechnology;17: S2319 H.J Yuan, S.S Xie, D.F Liu, X.Q Yan, Z.P Zhou, L.J Ci, J.X Wang, Y Gao, L Song, L.F Liu, W.Y Zhou, G Wang (2003), Characterization of zinc oxide crystal nanowires grown by thermal evaporation of ZnS powders, Chemical Physics Letters, Vol 371, No 34, pp 337-3417 H.J Yuan, X.Q Yan, Z.X Zhang, D.F Liu, Z.P Zhou, L Cao, J.X Wang, Y Gao, L Song, L.F Liu, X.W Zhao, X.Y Dou, W.Y Zhou, S.S Xie (2004), Synthesis, optical, andmagnetic properties of Zn1-xMnxS nanowires grown by thermal evaporation, Journal of Crystal Growth 271, pp 403408 H.L Pan, T Yang, B.Yao, R Deng, R.Y Sui, L.L Gao, D.Z Shen (2010), Characterization and properties of ZnO1xSx alloy lms fabricated by radio-frequency magnetron sputtering, Applied Surface Science 256, pp 46214625 H.S Nalwa (2000), Handbook of Nanostructured Materials and Nanotechnology, Optical Properties, 4, Academic press H.Y CHEN, X.L YANG, D.D HOU, and Y.K LIU (2009), Synthesis and photoluminescence properties of Mn-doped ZnS nanobelts, Optoelectron Lett Vol.5 No.3 H.Y Lu, S.Y Chu, S.H Cheng (2005), The vibration and photoluminescence properties of one-dimensional ZnO nanowires, Journal of Crystal Growth 274, pp 506511 H.Y Yang, S.F Yu, G P Li, T Wu (2010), Random lasing action of randomly 135 Footer Page 150 of 258 Header Page 151 of 258 60 61 62 63 64 65 66 67 68 69 70 71 72 73 assembled ZnO Nanowires with MgO coating, OPTICS EXPRESS, Vol 18, No 13, PP 13647-54 HY Yang, SF Yu, J Yan, LD Zhang (2010), Random Lasing Action from Randomly Assembled ZnS Nanosheets, Nanoscale Research Letters , PP.809-812 I Shalish, H Temkin, V Narayanamurti (2004), Size-dependent surface luminescence in ZnO nanowires, Phys Rev B, 69 (24), p 245401 (14) J Li, G.J Fang, C Li, L.Y Yuan, L Ai, N.S Lui, D.S Zhao, K Ding, G.H Li, X.Z.Zang (2008), Synthesis and photoluminescence, field emission properties of stalactite- like ZnS-ZnO composite nanostructures.Applied Physics A 90, 759-763 J Cao, J Yang, Y Zhang, L Yang, Y Wang, D Wang, M Gao,Y Liu, X Liu, Z Xie (2010), Multifunctional Zn0.99-xMn0.01CuxS nanowires: Structure, luminescence and magnetism, Materials Research Bulletin 45, pp 705709 J Gutowski, N Presser, I Broser (1988), Acceptor-exciton complexes in ZnO: A comprehensive analysis of their electronic states by high-resolution magneto-optics and excitation spectroscopy, Phys Rev B, 38 (14), pp 97469758 J Jiang, H.B Xu, L.P Zhu, W Niu, Y.M Guo, Y Li, L Hu, H.P He, Z.H Ye (2014), Structural and optical properties of ZnSO alloy thin lms with different S contents grown by pulsed laser deposition, Journal of Alloys and Compounds 582, p.535539 J Lu, X Zeng, H Liu, W Zhang, J Cui, C Hu (2013), Effects of Au catalysts for synthesis of ZnS microstructures on the sapphire substrate, Materials Letters 93, pp 337-340 J X Ding, J A Zapien, W W Chen, Y Lifshitz, S T Leeb (2004), Lasing in ZnS nanowires grown on anodic aluminum oxide templates, Appl Phys Lett., Vol 85, No 12, , PP 2361-2363 J Yan, X.S Fang, L.D Zhang, Y Bando, U.K Gautam, B Dierre et al (2008), Structure and cathodoluminescence of individual ZnS/ZnO biaxial nanobelt heterostructures, Nano Lett, 8, pp 27942799 J Yang, B Wang, J Cao, D Han, B Feng, M Wei, L Fan, C Kou, Q Liu, T Wang (2013), Controllable photoluminescentmagnetic dual-encoded wurtzite ZnS:Cu2+ Mn2+nanowires modulated by Cu2+and Mn2+ions, Journal of Alloys and Compounds 574, pp 240245 J Zhang, Y Yang, F Jiang, J Li, B Xu, X Wang, S Wang (2006), Fabrication, structural characterization and photoluminescence of Q-1D semiconductor ZnS hierarchical nanostructures, Nanotechnology 17 , pp 2695-2700 J Zhao, L Qin, L Zhang (2009), Fabrication of ZnS/ZnO hierarchical nanostructures by two-step vapor phase method Meterials Research Bulletin 44 pp 1003-1008 J.C Johnson, H Yan, P Yang, R.J Saykally (2003), Optical cavity effects in ZnO nanowire lasers and waveguides, J Phys Chem B 107, pp 8816-8828 J.H He, Y.Y Zhang, J Liu, D Moore, G Bao, and Z.L Wang (2007), ZnS/Silica nanocable eld effect transistors as biological and chemical nanosensors, J Phys Chem C, 111, 1215212156 136 Footer Page 151 of 258 Header Page 152 of 258 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 J.H Li, D.X Zhao, X.Q Meng, Z.Z Zhang, J.Y Zhang, D.Z Shen et al (2006), Enhanced ultraviolet emission from ZnS-coated ZnO nanowires fabricated by selfassembling method, J Phys Chem B, 110, pp 1468514687 J.P Ge, J Wang, H.X Zhang, X Wang, Q Peng, Y.D Li (2005), Halide-Transport Chemical Vapor Deposition of Luminescent ZnS:Mn2+ One-Dimensional Nanostructures, Adv Funct Mater 15, pp 303-308 J.Q Hu, Y Bando, J.H Zhan, Y.B Li, T Sekiguchi (2003), Two-dimensional micrometer-sized single-crystalline ZnO thin nanosheets, Appl Phys Lett, 83, pp 44144416 J.T Hu, G.Z Wang, C.X Guo, D.P Li, L.L Zhang, J.J Zhao (2007), Au-catalyst growth and photoluminescence of zinc-blende and wurtzite ZnS nanobelts via chemical vapor deposition, J Lumin, 122123, pp 172175 J.Y Chen , C.J Pan, F.C Tsao, C.H Kuo, G.C Chi, B.J Pong, C.Y Chang, D.P Norton, S.J Pearton (2009), Characterization of ZnO nanowires grown on Si (100) with and without Au catalyst, Vacuum 83, pp 10761079 J.Z Liu , P.X Yan , G.H Yue , L.B Kong , R.F Zhuo , D.M Qu (2006), Synthesis of doped ZnS one-dimensional nanostructures via chemical vapor deposition, Materials Letters 60, pp 34713476 Jeong-Yeon Hwang, Sung Youl Park, Jong-Ho Park, Jong-Nam Kim, Sang Man Koo, Chang Hyun Ko ( 2012), Control of ZnO thin film surface by ZnS passivation to enhance photoluminescence, Thin Solid Films, Vol 520, No 6, pp 1832-18361 K Thonke, T Gruber, N Teofilov, R Schửnfelder, A Waag, R Sauer (2001), Donor-acceptor pair transitions in ZnO substrate material, Physica B, 308310, pp 945948 K.M Sulieman, X.T Huang, J.P Liu, M Tang (2007), One-step growth of ZnO/ZnS coreshell nanowires by thermal evaporation, Smart Mater Struct, 16, pp 8992 L Cao, B Zou, C Li, Z Zhang, S Xie, G Yang (2004), Laser emission of lowthreshold excitation from ZnO nanowires, Europhys Let., 68 (5), pp 740-745 L Chen, J Zhang, H Zhao, X Wang (2007), Hydrothermal synthesis and luminescence properties of microtubes constructed by fluffy ZnS: Mn2+ with nanostructures, Journal of Nanoscience and Nanotechnology, Vol 8, pp.1-4 L Shi, Y.M Xu, Q Li (2009), Shape-selective synthesis and optical properties of highly ordered one-dimensional ZnS nanostructures, Cryst Growth Des, 9, pp 22142219 L Yu, X.F Yu, Y Qiu, Y Chen, S Yang (2008), Nonlinear photoluminescence of ZnO/ZnS nanotetrapods, Chemical Physics Letters 465, pp 272274 L.D Sun, C.H Liu, C.S Liao, and C.H Yan (1999), ZnS nanoparticles doped with Cu(I) by controlling coordination and precipitation in aqueous solution, J Mater Chem., 9, 16551657 L.D Zhang and X.S Fang (2008), Controlled growth and characterization methods of semiconductor nanomaterials, J Nanosci Nanotechnol., 8, 149201 L.E Brus (1986),Electronic wave functions in semiconductor clusters: experiment 137 Footer Page 152 of 258 Header Page 153 of 258 90 91 92 93 94 95 96 97 98 99 and theory, J Phys Chem, 90, pp 2555-2560 L.L Chai, J Du, S.L Xiong, H.B Li, Y.C Zhu, Y.T Qian (2007), Synthesis of wurtzite ZnS nanowire bundles using a solvothermal technique,J Phys Chem C, 111, pp 1265812662 M Hafeez, T Zhai, A.S Bhatti, Y Bando, D Golberg (2012), Enhanced field emission and optical properties of controlled tapered ZnS nanostructures, J Phys Chem C 116, 8297-8304 M Lin, T Sudhiranjan, C Boothroyd, K.P Loh (2004), Inuence of Au catalyst on the growth of ZnS nanowires, Chemical Physics Letters 400, pp 175178 M Wang, G.T Fei, X.G Zhu, B Wu, M.G Kong, L.D Zhang (2009), Densitycontrolled homoepitaxial growth of ZnS nanowire arrays, J Phys Chem C, 113, pp 43354339 M.H Huang, S Mao, H Feick, H.Q Yan, Y.Y Wu, H Kind, E Weber, R Russo, and P.D Yang (2001), Room-temperature ultraviolet nanowire, Science, 292, 1897 1899 M.K Patra, K Manzoor, M Manoth, S.P Vadera, N Kumar (2008), Studies of luminescence properties of ZnO and ZnO:Zn nanorods prepared by solution growth technique, J Lumin., 128 (2), pp 267272 M.W Murphy, P.S Grace Kim, X.T Zhou, J.G Zhou, M Coulliard, G.A Botton et al (2009), Biaxial ZnOZnS nanoribbons heterostructures, J Phys Chem C, 113, pp 47554757 M.W Murphy, X.T Zhou, J.Y.P Ko, J.G Zhou, F Heigl, T.K Sham (2009), Optical emission of biaxial ZnOZnS nanoribbon heterostructures, J Chem Phys, 130, p 084707 Michelle J.S Spencer (2012), Gas sensing applications of 1D-nanostructured zinc oxide: Insights from density functional theory calculations, Progress in Materials Science 57, pp 437486 N Q Liem, V X Quang, D X Thanh, J I Lee, D Kim (2001), Temperture dependence of biexciton luminescence in cubic ZnS single crystals, Solid state communications 117 pp 255-259 100 N.Wang,Y.Cai, R.Q.Zhang (2008),Growth of nanowires, A Review Journal,pp.151 101 N.Y Garces, L Wang, L Bai, N.C Giles, L.E Halliburton, G Cantwell (2002), Role of copper in the green luminescence from ZnO crystals, Appl Phys Lett., 81 (4), pp 622624 102 P Mandal, A Singh, S Kasture, A V Gopal, A S Vengurlekar (2011), Plasmon assisted intense blue-green emission from ZnO/ZnS nanocrystallites, Optical Materials 33, pp 1786-1791 103 P.A Hu, Y.Q Liu, L Fu, L.C Cao, D.B Zhu (2004), Self-assembled growth of ZnS nanobelt networks, J Phys Chem B, 108, pp 936938 P.K Ghosh, Sk.F Ahmed, S Jana, K.K Chattopadhyay (2007), Photoluminescence and field 104 emission properties of ZnS: Mn nanoparticles synthesized by rf-magnetron sputtering technique, Optical Materials 29, pp 15841590 138 Footer Page 153 of 258 Header Page 154 of 258 105 P.K Ghosh, U.N Maiti, S Jana, K.K Chattopadhyay (2006), Field emission from ZnS nanorods synthesized by radio frequency magnetron sputtering technique, Appl Surf Sci, 253, pp 15441550 106 P.R Sajanlal, T.S Sreeprasad, A.K Samal and T Pradeep (2011), , Anisotropic nanomaterials: structure, growth, assembly, and functions, Nano Reviews 2: 5883 107 P.V Radovanovic, C.J Barrelet, S Gradec, F Qian and C.M Lieber 2005, General Synthesis of Manganese-Doped IIVI and IIIV Semiconductor Nanowires, Nano Lett., Vol 5, No 108 Q Li, C.R Wang (2003), Fabrication of wurtzite ZnS nanobelts via simple thermal evaporation, Appl Phys Lett 83, 359 109 Q Pan, D Yang, Y Zhao, Z Ma, G Dong, J Qiu (2013), Facile hydrothermal synthesis of Mn doped ZnS nanocrystals and luminescence properties investigations, Journal of Alloys and Compounds 579, pp 300304 110 Q.H Xiong, G Chen, J.D Acord, X Liu, J.J Zengel, H.R Gutierrez et al (2004), Optical properties of rectangular cross-sectional ZnS nanowires, Nano Lett, 4, pp 16631668 111 Q.J Feng, D.Z Shen, J.Y Zhang, H.W Liang, D.X Zhao, Y.M Lu et al (2005) Highly aligned ZnS nanorods grown by plasma-assisted metalorganic chemical vapor deposition, J Cryst Growth, 285, pp 561565 112 Q.X Zhao, P Klason, M Willander, H.M Zhong, W Lu, J.H Yang (2005), Deeplevel emissions influenced by O and Zn implantations in ZnO, Appl Phys Lett., 87 (21), p 211912 (13) 113 R Chen, D Li, B Liu, Z Peng, G.G Gurzadyan, Q Xiong, H Sun (2010), Optical and Excitonic Properties of Crystalline ZnS Nanowires: Toward Efcient Ultraviolet Emission at Room Temperature, Nano letter 10, pp 4956-4961 114 R.B.M Cross, M.M De Souza, E Sankara Narayanan (2005), A low temperature combination method for the production of ZnO nanowires, Nanotechnology, 16 (10), pp 21882192 115 R.F Zhuo, H.T Feng, D.Yan, J.T Chen, J.J Feng, J.Z Liu, P.X Yan (2008), Rapid growth and photoluminescence properties of doped ZnS one-dimensional nanostructures, Journal of Crystal Growth 310, pp 3240 3246 116 R.M Wang, W Liu (2012), Synthesis and characterization of ZnS tetrapods and ZnO/ZnS heterostructures, Thin Solid Films 522, pp 4044 117 R.N Bhargava, D Gallagher, X Hong, A Nurmikko (1994), Optical properties of manganese-doped nanocrystals of ZnS, Physical Review Letters, Vol 72, 3, pp.416419 118 R.N Bhargava, D Haranath and A Mehta (2008), Bandgap Engineering and Doping of ZnO and ZnOS Nanocrystals, Journal of the Korean Physical Society, Vol 53, No 119 R.S Knox (1963), Theory of Excitons, Solid state Physics supplements, Academic Press, New York 120 R.S.Wagner, W.C Ellis (1964), Vaporliquidsolid mechanism of single crystal 139 Footer Page 154 of 258 Header Page 155 of 258 growth,Appl Phys Lett 4, 89 121 S Barth, F.H Ramirez, J.D Holmes, A.R Rodriguez (2010), Synthesis and applications of one-dimensional semiconductors, Progress in Materials Science 55, pp 563627 122 S Biswas, S Kar (2008), Fabrication of ZnS nanoparticles and nanorods with cubic and hexagonal crystal structures: a simple solvothermal approach, Nanotechnology, 19, p 045710 123 S Biswas, T Ghoshal, S Kar, S Chakrabarti, S Chaudhuri (2008), ZnS nanowire arrays: synthesis, optical and field emission properties,Cryst Growth Des, 8, pp 21712176 124 S Kar, S Chaudhuri (2005), Controlled synthesis and photoluminescence properties of ZnS nanowires and nanoribbons, J Phys Chem B, 109, pp 3298 3302 125 S Kar, S Chaudhuri (2005), Synthesis and optical properties of single and bicrystalline ZnS nanoribbons, Chem Phys Lett, 414, pp 4046 126 S Mathur, R von Hagen, R Mỹller (2013), 4.12 One-Dimensional Inorganic Nanomaterials for Energy Storage and Production, Solid-State Materials, Pages 317341 127 S P Lau, H Y Yang, S F Yu, H D Li, M Tanemura, T Okita, H Hatano, H H Hng (2005), Laser action in ZnO nanoneedles selectively grown on silicon and plastic substrates, Applied Physics Letters 87, pp 013104-06 128 S Park, C Jin, H Kim, C Hong, C Lee (2012), Enhanced violet emission from ZnS nanowires annealed in an oxygen atmosphere, Journal of Luminescence 132, pp.231 235 129 S Ummartyotin, N Bunnak, J Juntaro, M Sain, H Manuspiya (2012), Synthesis and luminescence properties of ZnS and metal (Mn, Cu)-doped-ZnS ceramic powder, Solid State Sciences 14, pp 299-304 130 S.C Ray, J.W Chiou, W.F Pong, and M.H Tsai (2006), The electronic properties of nanomaterials elucidated by synchrotron radiation based spectroscopy, Crit Rev Solid State Mater Sci., 31, 91110 131 S.K Chan, S.K Lok, G Wang, Y Cai, N Wang, K.S Wong et a l(2008).MBEgrowth cubic ZnS nanowires, J Electron Mater, 37, pp 14331437 132 S.K Panda, A Dev, S Chaudhuri (2007), Fabrication and luminescent properties of c-Axis oriented ZnOZnS coreshell and ZnS nanorod arrays by sulfidation of aligned ZnO nanorod arrays, J Phys Chem C, 111, pp 50395043 133 S.L Ji and C.H Ye, Synthesis (2008), Growth mechanism, and applications of zinc oxide nanomaterials, J Mater Sci Technol., 24, 457472 134 S.S Lin, J.H Song, Y.F Lu and Z L Wang (2009), Identifying individual n- and ptype ZnO nanowires by the output voltage sign of piezoelectric nanogenerator, Nanotechnology 20, 365703 (5pp) 135 S.S Mao (2004), Nanolasers: Lasing from nanoscale quantum wires, Int J of Nanotechnology, Vol 1, Nos 1/2 136 T N Lin, C P Huang, G W Shu, J L Shen, C S Hsiao, and S Y Chen, Influence 140 Footer Page 155 of 258 Header Page 156 of 258 of pulsed laser annealing on the optical properties of ZnO nanorods (2012), Phys Status Solidi A, 16 137 T Taguchi, T Yokogawa, H Yamashita (1984), Excitonic and time-resolved edge emissions of iodine-doped cubic ZnS crystals excited by an excimer laser, Solid state communications, vol 49, No 6, pp 551-554 138 T.G Kryshtab, V.S Khomchenko, V.P Papusha, M.O Mazin, Yu.A Tzyrkunov (2002), Thin ZnS:Cu,Ga and ZnO:Cu,Ga film phosphors, Thin Solid Films 403 404, pp 7680 139 T.Y Zhai, X.S Fang, M.Y Liao, X.J Xu, H.B Zeng, Y Bando et al (2009) A comprehensive review of one-dimensional metaloxide nanostructure photodetectors, Sensors, 9, pp 65046529 140 T.Y Zhai, X.S Fang, Y Bando, B Dierre, B.D Liu, H.B Zeng et al (2009), Characterization, cathodoluminescence, and field-emission properties of morphology-tunable CdS micro/nanostructures,Adv Funct Mater, 19, pp 2423 2430 141 T.Y Zhai, Z.J Gu, H.B Fu, Y Ma, J.N Yao (2007), Synthesis of single-crystal ZnS nanoawls via two-step pressure-controlled vapor-phase deposition and their optical properties, Cryst Growth Des, 7, pp 13881392 142 U Flesch, R.-A Hoffmann, R Ras (1970), Exciton luminescence of cubic ZnS crystals, Journal of Luminescence 3, pp 137-142 143 U Kaiser, L Chen, S Geburt, C Ronning, W Heimbrod (2011), Defect induced changes on the excitation transfer dynamics in ZnS/Mn nanowires, Nanoscale Research Letters 6:228, pp 1-5 144 ĩ ệzgỹr,Ya I Alivov, C Liu, A Teke,M A Reshchikov, S Doan,V Avrutin,S.J Cho, and H Morkoỗ (2005), A comprehensive review of ZnO materials and devices, JOURNAL OF APPLIED PHYSICS 98, 041301 145 U.K Gautam, L.S Panchakarla, B Dierre, X.S Fang, Y Bando, T Sekiguchi et al (2009), Solvothermal synthesis, cathodoluminescence, and field-emisision properties of pure and N-doped ZnO nanobullets, Adv Funct Mater, 19, pp 131 140 146 U.K Gautam, X.S Fang, Y Bando, J.H Zhan, and D Golberg (2008), Synthesis, structure and multiply enhanced eld-emission properties of branched ZnS nanotube In nanowire core-shell heterostructures, ACS Nano, 2, 10151021 147 U.K Gautam, Y Bando, L Bourgeois, X.S Fang, P.M.F.J Costa, J.H Zhan, and D Golberg (2009), Synthesis of metal-semiconductor heterojunctions inside carbon nanotubes, J Mater Chem., 19, 44144420 148 W Liu, R Wang, N Wang (2010), From ZnS nanobelts to ZnS/ZnO heterostructures: Microscopy analysis and their tunable optical property, Appl Phys Lett 97, 041916 149 W Q Yang, L Dai, L P You, and G G Qin (2008), Color tuning of photoluminescence from ZnS nanobelts synthesized with Cu and Mn doping and without intentionally doping, Phys Lett A 372, 4831 150 W Wang, F Huang, Y Xia, A Wang (2008), Photophysical and photoluminescence properties of co-activated ZnS:Cu,Mn phosphors, Journal of Luminescence 128, pp 141 Footer Page 156 of 258 Header Page 157 of 258 610614 151 W.J Miao (2008), Electrogenerated chemiluminescence and its biorelated applications, Chem Rev, 108, pp 25062553 152 X F Fan, Z X Shen, Y M Lu and J.L Kuo (2009), A theoretical study of thermal stability and electronic properties of wurtzite and zincblende ZnOxS1x, New Journal of Physics 11 093008 153 X Fan, M.L Zhang, I Shafiq, W.J Zhang, C.S Lee, S.T Lee (2009), ZnS/ZnO heterojunctions nanoribbons, Adv Mater, 21, pp 23932396 154 X Fan, Y Kong, I Shafiq, S.T Lee, F Li, X Meng, L Jiang (2011), ZnO and ZnS composited tri-crystal nanorions Matterials Letters 65, pp 1621-1624 155 X Fang , T Zhai, U.K Gautamb, L Li,L Wu, Y Bando, D Golberg (2011), ZnS nanostructures: From synthesis to applications, Progress in Materials Science 56, pp 175287 156 X Liu, X Wu, H Cao, R.P.H Chang (2004), Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition, J Appl Phys., 95 (6), pp 31413147 157 X W SUN, S.F.YU, C.X.XU, C.YUEN, B.J.CHEN, S LI (2003), RoomTemperature Ultraviolet Lasing from Zinc Oxide Microtubes, Jpn J Appl Phys Vol 42 pp L 1229L 1231 158 X Wang, J Shi, Z Feng, M Li and C.Li (2011), Visible emission characteristics from different defects of ZnS nanocrystals, Phys Chem Chem Phys., ,13, pp 47154723 159 X Wanga, Q Zhanga, B Zou, A Lei, P Rena (2011), Synthesis of Mn-doped ZnS architectures in ternary solution and their optical properties, Applied Surface Science 257 pp 1089810902 160 X Zhang, S Xie, Y Fan, Z Wang, H Zhang, M Zhao (2011), Structural and electronic properties of ZnS/ZnO heteronanotubes, Physica E 43, pp.15221527 161 X Zhang, Y Zhang, Y Song, Z Wang, and D Yu (2005), Optical properties of ZnS nanowires synthesized via simple physical evaporation, Physica E 28, 162 X.D Wang, P.X Gao, J Li, C.J Summers, Z.L Wang (2002), Rectangular porous ZnOZnS nanocables and ZnS nanotubes, Adv Mater, 14, pp 17321735 163 X.J Chen, H.F Xu, N.S Xu, F.H Zhao, W.J Lin, G Lin et al (2003) Kinetically controlled synthesis of wurtzite ZnS nanorods through mild thermolysis of a covalent organicinorganic network, Inorg Chem, 42, pp 31003106 164 X.J Xu, G.T Fei, W.H Yu, X.W Wang, L Chen, L.D Zhang (2006), Preparation and formation mechanism of ZnS semiconductor nanowires made by the electrochemical deposition method, Nanotechnology, 17, pp 426429 165 X.M Meng, J Liu, Y Jiang, W.W Chen, C.S Lee, I Bello et al (2003), Structure- and size-controlled ultrafine ZnS nanowires, Chem Phys Lett, 382, pp 434438 166 X.M Zhang, M.Y Lu, Y Zhang, L.J Chen, and Z L Wang (2009), Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film, Adv Mater 21, pp 27672770 142 Footer Page 157 of 258 Header Page 158 of 258 167 X.S Fang and L.D Zhang (2006), Controlled growth of one-dimensional oxide nanomaterials, J Mater Sci Technol., 22, 118 168 X.S Fang and L.D Zhang (2006), One-dimensional (1D ZnS nanomaterials and nanostructures, J Mater Sci Technol., 22, 721736 169 X.S Fang, C.H Ye, L.D Zhang, Y.H Wang, Y.C Wu (2005), Temperaturecontrolled catalytic growth of ZnS nanostructures by the evaporation of ZnS nanopowders, Adv Funct Mater, 15, pp 6368 170 X.S Fang, C.H Ye, X.S Peng, Y.H Wang, Y.C Wu, L.D Zhang (2004), Largescale synthesis of ZnS nanosheets by the evaporation of ZnS nanopowders, J Cryst Growth, 263, pp 263268 171 X.S Fang, U.K Gautam, Y Bando, B Dierre, T Sekiguchi, D Golberg (2008), Multiangular branched ZnS nanostructures with needle-shaped tips: potential luminescent and field-emitter nanomaterial, J Phys Chem C, 112, pp 47354742 172 X.S Fang, Y Bando, C.H Ye, D Golberg (2007), Crystal orientation-ordered ZnS nanobelt quasi-arrays and their enhanced field-emission,Chem Commun, pp 30483050 173 X.S Fang, Y Bando, D Golberg (2008), Recent progress in one-dimensional ZnS nanostructures, J Mater Sci Technol, 24, pp 512519 174 X.S Fang, Y Bando, G.Z Shen, C.H Ye, U.K Gautam, P.M.F.J Costa et al (2007) Ultrafine ZnS nanobelts as field emitters, Adv Mater, 19, pp 25932596 175 X.S Fang, Y Bando, M.Y Liao, U.K Gautam, C.Y Zhi, B Dierre et al (2009).Single-crystalline ZnS nanobelts as ultraviolet-light sensors, Adv Mater, 21, pp 20342039 176 X.S Fang, Y Bando, U.K Gautam, T.Y Zhai, Gradek, D Golberg (2009), Heterostructures and superlattices in one-dimensional nanoscale semiconductors, J Mater Chem, 19, pp 56835689 177 X.S Fang, Y.S Bando, U.K Gautam, T.Y Zhai, H.B Zeng, X Xu, M Liao, D Golberg (2009),ZnO and ZnS Nanostructures: Ultraviolet-Light Emitters, Lasers, and Sensors, Critical Reviews in Solid State and Materials Sciences, 34: pp.190223 178 X.T Zhang, Y.C Liu, Z.Z Zhi, J.Y Zhang, Y.M Lu, W Xu, D.Z Shen, G.Z Zhong, X.W Fan, X.G Kong (2002), High intense UV-luminescence of nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films, Journal of Crystal Growth, Vol 240, No 34, pp 463-466 179 X.T Zhou, P.S.G Kim, T.K Sham, S.T Lee (2005), Fabrication, morphology, structure, and photoluminescence of ZnS and CdS nanoribbons, J Appl Phys, 98, p 024312 180 X.W Sun, J.X Wang, and A Wei (2008), Zinc oxide nanostructured biosensor for glucose detection, J Mater Sci Technol., 24, 649656 181 X.Y Wang, Y.C Zhu, H Fan, M.F Zhang, B.J Xi, H.Z Wang et al (2008) Growth of ZnS microfans and nanosheets: controllable morphology and phase, J Cryst Growth, 310, pp 25252531 182 Y Ding, X.D Wang, Z.L Wang (2004), Phase controlled synthesis of ZnS nanobelts: zinc blende vs wurtzite, Chem Phys Lett, 398, pp 3236 143 Footer Page 158 of 258 Header Page 159 of 258 183 Y Huang, Y Cai, H Liu (2011), Hydrothermal synthesis and optical properties of Zn1-xMnxS nanorods, Particuology 9, pp 533-536 184 Y Jiang, X.M Meng, J Liu, Z.Y Xie, C.S Lee, S.T Lee, Hydrogen-assisted thermal evaporation synthesis of ZnS nanoribbons on a large scale, Adv Mater, 15 (2003), pp 323327 185 Y Kayanuma (1988), Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape, Phys Rev B, 38, pp 9797-9805 186 Y Yang, W.J Zhang (2004), Preparation and photoluminescence of zinc sulfide nanowires, Mater Lett, 58, pp 38363838 187 Y.B He , L Zhang, L.H Wang, M.K Li, X.H Shang, X Liu, Y.M Lu, B.K Meyer (2014), Structural and optical properties of single-phase ZnO1-xSx alloy lms epitaxially grown by pulsed laser deposition, Journal of Alloys and Compounds 587, pp 369373 188 Y.C Zhu, Y Bando, D.F Xue (2003), Spontaneous growth and luminescence of zinc sulfide nanobelts, Appl Phys Lett, 82, pp 17691771 189 Y.C Zhu, Y Bando, D.F Xue, D Golberg (2004), Oriented assemblies of ZnS onedimensional nanostructures, Adv Mater, 16, pp 831834 190 Y.C Zhu, Y Bando, L.W Yin (2004), Design and fabrication of BN-sheathed ZnS nanoarchitectures, Adv Mater, 16, pp 331334 191 Y.F Lin, Y.J Hsu, S.Y Lu, W.S Chiang (2006), One-step formation of coreshell sulfideoxide nanorod arrays from a single precursor, Nanotechnology, 17, pp 47734782 192 Y.G Liu, P Feng, X.Y Xue, S.L Shi, X.Q Fu, C Wang et al (2007) Roomtemperature oxygen sensitivity of ZnS nanobelts, Appl Phys Lett, 90, p 042109 193 Y.P Zhang, W Liu, B.D Liu, R.M Wang (2014), Morphologystructure diversity of ZnS nanostructures and their optical properties, Rare Met 33(1):115 194 Y.Q Chang, M.W Wang, X.H Chen, S.L Ni, W.J Qiang (2007), Field emission and photoluminescence characteristics of ZnS nanowires via vapor phase growth, Solid state Commun, 142, pp 295298 195 Y.W Tao, X.J Zheng, W Liu, S.T Song, H Zheng (2013), Determination of the mechanical constants of ZnS nanobelt by combining nanoindentation test and nite element method, International Journal of Solids and Structures 50, pp 487497 196 Y.W Wang, L.D Zhang, C.H Liang, G.Z Wang, X.S Peng (2002), Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires, Chem Phys Lett, 357, pp 314318 197 Yu V Gorelkinskii* and G D Watkins (2004), Defects produced in ZnO by 2.5MeV electron irradiation at 4.2 K: Study by optical detection of electron paramagnetic resonance, PHYSICAL REVIEW B 69, 115212 198 Z Deng, L.Tong, M Flores, S Lin, J.X Cheng, H Yan, and Y Liu (2011), HighQuality Manganese-Doped Zinc Sulfide Quantum Rods with Tunable Dual-Color and Multiphoton Emissions, J Am Chem Soc., 133, pp 53895396 199 Z He, Y Su, Y Chen, D Cai, J Jiang, L Chen (2005), Self-catalytic growth and photoluminescence properties of ZnS nanostructures, Materials Research Bulletin 40, 144 Footer Page 159 of 258 Header Page 160 of 258 pp 13081313 200 Z.G Chen, J Zou, D.W Wang, L.C Yin, G Liu, Q.F Liu et al (2009), Field emission and cathodoluminescence of ZnS hexagonal pyramids of zinc blende structured single crystals, Adv Funct Mater, 19, pp 484490 201 Z.G Chen, J Zou, G Liu, H.F Lu, F Li, G.Q Lu, and H.M Cheng (2008), Siliconinduced oriented ZnS nanobelts for hydrogen sensitivity, Nanotechnology, 19, 055710 202 Z.G Chen, J Zou, G Liu, X.D Yao, F Li, X.L Yuan et al (2008), Growth, cathodoluminescence and field emission of ZnS tetrapod tree-like heterostructures, Adv Funct Mater, 18, pp 30633069 203 Z.G Chen, J Zou, G.Q Lu, G Liu, F Li, H.M Cheng (2007), ZnS nanowires and their coaxial lateral nanowire heterostructures with BN, Appl Phys Lett, 90, p 103117 204 Z.L Wang (2004), Zinc oxide nanostructures: Growth, properties and applications, J Phys Condens Matter, 16, R829R858 205 Z.L Wang (2009), ZnO nanowire and nanobelt platform for nanotechnology, Materials Science and Engineering R 64 3371 206 Z.L Wang, and J.H Song(2006), Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science, 312, 242246 207 Z.M Liao, H.Z Zhang, Y.B Zhou, J Xu, J.M Zhang, D.P Yu (2008), Surface effects on photoluminescence of single ZnO nanowires, Physics Letters A 372 pp.45054509 208 Z.Q Wang, X.D Liu, J.F Gong, H.B Huang, S.L Gu, S.G Yang (2008), Epitaxial growth of ZnO nanowires on ZnS Nanobelts by metal organic chemical vapor deposition, Cryst Growth Des, 8, p 3911 209 Z.W Wang, L.L Daemen, Y.S Zhao, C.S Zha, R.T Downs, X.D Wang et al (2005) Morphology-tuned wurtzite-type ZnS nanobelts, Nat Mater, 4, pp 922927 210 Z.X Zhang, J.X Wang, H.J Yuan, Y Gao, D.F Liu, L Song et al (2005) Lowtemperature growth and photoluminescence properties of ZnS nanoribbons, J Phys Chem B, 109, pp 1835218355 145 Footer Page 160 of 258 ... tạo cấu trúc dị thể kiểu phân đoạn pha tạp cấu trúc nano tinh thể 1D Hình 1.8 Các loại cấu trúc dị thể chiều [36, 73, 121] 1.2 CÁC CẤU TRÚC NANO TINH THỂ MỘT CHIỀU ZnS, ZnO 1.2.1 Các cấu trúc nano. .. TRÚC NANO TINH THỂ MỘT CHIỀU ZnS, ZnO 16 1.2.1 Các cấu trúc nano tinh thể chiều ZnS 16 1.2.1.1 Tổng hợp cấu trúc nano chiều ZnS 16 1.2.1.2 Tính chất quang cấu trúc nano chiều ZnS. .. 1.2.2 Các cấu trúc nano tinh thể chiều ZnO 26 1.2.2.1 Hình thái cấu trúc nano tinh thể chiều ZnO 26 1.2.2.2 Tính chất quang 27 1.3 CÁC CẤU TRÚC NANO DỊ THỂ MỘT CHIỀU ZnS/ ZnO

Ngày đăng: 11/03/2017, 04:52

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN