Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 40 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
40
Dung lượng
1,55 MB
Nội dung
Header Page of 258 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƢỜNG ĐẠI HỌC SƢ PHẠM HÀ NỘI NGUYỄN MINH HÙNG PHONONÂM TRONG HÌNHTHỨCLUẬNDAOĐỘNGBIẾNDẠNGLUẬN VĂN THẠC SĨ KHOA HỌC VẬT CHẤT HÀ NỘI, 2016 Footer Page of 258 Header Page of 258 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƢỜNG ĐẠI HỌC SƢ PHẠM HÀ NỘI NGUYỄN MINH HÙNG PHONONÂM TRONG HÌNHTHỨCLUẬNDAOĐỘNGBIẾNDẠNG Chuyên ngành: Vật lí lí thuyết Vật lí toán Mã số: 60 44 01 03 LUẬN VĂN THẠC SĨ KHOA HỌC VẬT CHẤT Ngƣời hƣớng dẫn khoa học: PGS.TS NGUYỄN THỊ HÀ LOAN HÀ NỘI, 2016 Footer Page of 258 Header Page of 258 LỜI CẢM ƠN Đầu tiên xin chân thành cảm ơn PGS.TS Nguyễn Thị Hà Loan, người hướng dẫn thựcluận văn Cô cung cấp tài liệu truyền thụ cho kiến thứcmangtính khoa học phương pháp nghiên cứu khoa học Sự quan tâm, bồi dưỡng cô giúp vượt qua khó khăn qua trình hoàn thành luận văn trình học tập nghiên cứu Đối với tôi, cô gương sáng tinh thần làm việc không mệt mỏi, lòng hăng say với khoa học, lòng nhiệt thành quan tâm bồi dưỡng hệ trẻ Tôi xin chân thành cảm ơn thầy cô Khoa Vật Lý trường Đại Học Sư Phạm Hà Nội thầy cô phòng sau đại học, tạo điều kiện giúp hoàn thành khóa học Hà Nội, tháng năm 2016 Học viên thực Nguyễn Minh Hùng Footer Page of 258 Header Page of 258 LỜI CAM ĐOAN Trong trình nghiên cứu luận văn đề tài: “Phonon âmhìnhthứcluậndaođộngbiến dạng”, thực cố gắng tìm hiểu, nghiên cứu đề tài để hoàn thành khóa luận Tôi xin cam đoan luận văn hoàn thành nỗ lực thân với hướng dẫn bảo tận tình hiệu PGS.TS Nguyễn Thị Hà Loan Đây đề tài không trùng với đề tài khác kết đạt không trùng với kết tác giả khác Hà Nội, tháng năm 2016 Học viên thực Nguyễn Minh Hùng Footer Page of 258 Header Page of 258 MỤC LỤC MỞ ĐẦU 1 Lý chọn đề tài Mục đích nghiên cứu Nhiệm vụ nghiên cứu Đối tượng phạm vi nghiên cứu Phương pháp nghiên cứu Những đóng góp đề tài NỘI DUNG Chương DAOĐỘNGMẠNGTINHTHỂ 1.1 Daođộngmạngtinhthể 1.1.1 Daođộngtử điều hòa 1.1.2 Daođộngmạngtinhthể 1.2 Phononâm 1.2.1 Phổ lượng daođộngtử điều hòa 1.2.2 Phononâm Chương DAOĐỘNGBIẾNDẠNGCỦAMẠNGTINHTHỂ 15 2.1 Daođộngbiếndạngmạngtinh thể: 15 2.1.1 Daođộngbiếndạng –q 15 2.1.2 Daođộngbiếndạng –q mạngtinhthể 16 2.2 Phononâmhìnhthứcluậndaođộngmạngtinhthểbiến dạng: 18 2.2.1 Phổ lượng daođộngbiếndạng –q: 18 2.2.2 Phononâmhìnhthứcluậndaođộngmạngtinhthểbiếndạng 19 Chương DAOĐỘNGBIẾNDẠNG –(q, R) CỦAMẠNGTINHTHỂ 22 3.1 Daođộngbiếndạng –(q, R) mạngtinh thể: 22 3.1.1 Daođộngbiếndạng –(q, R) 22 Footer Page of 258 Header Page of 258 3.1.2 Daođộngbiếndạng –(q, R) mạngtinhthể 23 3.2 Phononâmhìnhthứcluậnbiếndạng –(q, R) 25 3.2.1 Phổ lượng daođộngbiếndạng –(q, R) 25 3.2.2 Phononâmhìnhthứcluậndaođộngbiếndạng –(q, R) mạngtinhthể 27 KẾT LUẬN 30 TÀI LIỆU THAM KHẢO 31 Footer Page of 258 Header Page of 258 MỞ ĐẦU Lý chọn đề tài Biếndạng lượng tử có nhiều dạng khác thời gian gần việc thống dạng nghiên cứu đầy đủ Daođộngbiếndạng lượng tử nhiều nhà Vật lý nước nghiên cứu chúng có nhiều ứng dụng mô hình Vật lý Ví dụ chúng liên quan đến vấn đề đa dạng Vật lý lí thuyết nghiên cứu nghiệm phương trình Yâng – Blaster lượng tử, vấn đề tán xạ ngược lượng tử, mẫu hoà tan xác Cơ học thống kê, quang lượng tử, quay rung động hạt nhân đặc biệt môi trường đậm đặc, daođộngmạngtinhthể Theo xu hướng nước, áp dụng hìnhthứcluậndaođộngbiếndạng để nghiên cứu tính chất vật lý môi trường đậm đặc Một ứng dụng nghiên cứu phononâm Mục đích nghiên cứu - Nghiên cứu phononâmhìnhthứcluậndaođộngbiếndạngmạngtinhthể Nhiệm vụ nghiên cứu - Tìmphononâmhìnhthứcluậndaođộngbiếndạngmạngtinhthể Đối tƣợng phạm vi nghiên cứu - Nghiên cứu daođộngmạngtinhthểbiếndạng - Tìm toán tử lượng daođộngmạngtinhthể - Giải phương trình để tìmphononâmhìnhthứcluậndaođộngmạngtinhthểbiếndạng Footer Page of 258 Header Page of 258 Phƣơng pháp nghiên cứu - Sử dụng kiến thức Vật lý thống kê, học lượng tử phương pháp giải tích toán học - Các phương pháp nghiên cứu Vật lý lí thuyết Vật lý toán - Các phương pháp nghiên cứu Vật lý chất rắn Những đóng góp đề tài Viết tổng quan vể daođộngmạngtinhthểbiến dạng, áp dụng giải phương trình để tìmphononâmdaođộngmạngtinhthểtìm hiểu sở cho trình lượng tử hóa Footer Page of 258 Header Page of 258 NỘI DUNG Chƣơng DAOĐỘNGMẠNGTINHTHỂ 1.1 Daođộngmạngtinhthể 1.1.1 Daođộngtử điều hòa Để nghiên cứu hệ vật lý cụ thể khác nhau, người ta thường sử dụng số mô hình lượng tử vật lý đại Một số mô hìnhdaođộngtử lượng tử Các toán tử sinh a , toán tử hủy a daođộngtử lượng tử thỏa mãn hệ thức giao hoán a, a (1) Toán tử số daođộng N biểu diễn qua toán tử sinh a , toán tử hủy a theo hệ thức: N aa (2) Toán tử số daođộng N , toán tử sinh a , toán tử hủy a thỏa mãn hệ thức giao hoán N , a a (3) N , a a Thật vậy: [N,a] = Na – aN = aa a a = aa ( a + 1)a = aa aa – a = a [N, ]=N = Footer Page of 258 N a a Header Page 10 of 258 = = ( a + 1) a a+ = Toán tử số daođộng N xác định dương N N Gọi n vecto riêng toán tử N ứng với trị riêng n không gian Hilbert Ta có N n n n (4) Từ hệ thức (3) (4) ta chứng minh được: Na n (aN a ) n a N 1 n a n 1 n n 1 a n Na n (a N a ) n a N 1 n (5) a n 1 n n 1 a n Có nghĩa n vecto riêng toán tử N ứng với trị riêng n a n a n vecto riêng toán tử N ứng với trị riêng (n – 1) (n +1) Chứng minh tương tự ta có … a n , a n , n , a n , a n , … dãy vecto riêng N ứng với trị riêng … n – 2, n – 1, n, n + 1, n + 2, … Vì N toán tử xác định dương (các trị riêng phải không âm) nên dãy có kết thúc cận Giá trị riêng cận n = Vì ta định nghĩa vecto đặc biệt không gian Hilbert có tính chất sau: Footer Page 10 of 258 Header Page 26 of 258 20 Như phổ lượng daođộngbiếndạng –q mạngtinhthể có dạng đám cách không nhau, đám có nhiều vạch phổ phân bố gần khoảng cách vạch không Daođộngmạngtinhthểbiếndạng –q ta xét diễn tả Hamiltonian (50) với toán tử thỏa mãn hệ thức giao hoán (39) Vì coi daođộngmạngtinhthểbiếndạng –q hệ nhiều hạt với toán tử sinh hạt có véc tơ sóng k xung lượng ћk lượng ћ (k) toán tử hủy hạt Các hạt lượng tửbiếndạng –q mạngtinhthể gọi phononâm –q Ta tìm phương trình chuyển động: ={ } = =∑ ( ) ( )[ =∑ ( ) ( ) ( ) ( ( )] ) Ta đặt: = = (√ ) (√ = (√ = Footer Page 26 of 258 { [ [ }+√ [ ] )( )] lnq (√ ) (√ ] ) )( (√ ) )+ Header Page 27 of 258 21 ( = ) Trong đó: ћ = lnq Thay vào ta có: =∑ ( ) ( ) ∑( = ={ ) ( (-i) ) ( ) (**) } = =∑ ( ) ( )[ =∑ ( ) ( ) ( ) ( ( )] ) Ta đặt: = = (√ ) (√ (√ )) ) (√ ) Tính toán tương tự ta có kết quả: ( = Thay vào ta có: =∑ =∑ ) ( ) ( ) ( ) i ( ) ( ) (**) Từ phương trình (**) ta suy tần số daođộngbiếndạng –q mạngtinhthể ( )= ( ) ( ) phụ thuộc vào biên độ daođộngdaođộngbiếndạng –q mạngtinhthểdaođộng phi tuyến Footer Page 27 of 258 Header Page 28 of 258 22 Chƣơng DAOĐỘNGBIẾNDẠNG –(q, R) CỦAMẠNGTINHTHỂ 3.1 Daođộngbiếndạng –(q, R) mạngtinh thể: 3.1.1 Daođộngbiếndạng –(q, R) [9] Toán tử sinh a , toán tử hủy a daođộngbiếndạng –(q, R) thỏa mãn hệ thức giao hoán sau: aa qaa q N R (56) Ở q, thông số biếndạngthực R toán tử phản xạ thỏa mãn điều kiện: R2 (57) Ra a R Ra aR (58) Toán tử R toán tử Hecmit (Hermitian) N toán tử số daođộng thỏa mãn hệ thức giao hoán N , a a (59) N , a a Chúng ta đưa vào sở không gian Fock m cm a m Trong đó: (60) cm : hệ số chuẩn hóa : trạng thái chân không thỏa mãn điều kiện: a 0 0 1 (61) N 0 R r , r 1 Tác dụng toán tử a a lên trạng thái a có dạng n Footer Page 28 of 258 Header Page 29 of 258 23 a a a nq a n n (62) Trong n = 0, 1, 2, … Ở sử dụng kí hiệu nq q n 1 nq q 1 n nq qn qn q q 1 (63) (64) Ta chọn r 1 Trong không gian Fock, hệ vecto riêng toán tử số daođộng chuẩn hóa có dạng a n n q nq ! (65) n n ' n ,n ' Ở sử dụng kí hiệu nq ! nq n 1q n 2q 1q (66) Dùng hệ thức (56), (59) (65) chứng minh Nn q n n q (67) 3.1.2 Daođộngbiếndạng –(q, R) mạngtinhthể [8] Toán tử sinh ak , toán tử hủy ak daođộngbiếndạng –(q, R) mạngtinhthể ứng với vecto sóng k thỏa mãn hệ thức giao hoán sau: ak ak' qak'ak q N k kk ' R ak , ak ' ak , ak' Ở q, thông số biếndạng thực, Footer Page 29 of 258 (68) Header Page 30 of 258 24 R toán tử phản xạ, có tính chất Hecmit (Hermitian) thỏa mãn hệ thức sau: R2 Rak ak R (69) Rak ak R N k toán tử số daođộng ứng với vecto sóng k, thỏa mãn hệ thức giao hoán N k , ak ' ak kk ' (70) N k , ak' ak' kk ' Vecto trạng thái biếndạng (q, R), mà vecto riêng toán tử số daođộng N k , chuẩn hóa, không gian Fock có dạng nk Ở q q a nk k nk q ! (71) q trạng thái thỏa mãn điều kiện sau: ak 00 N R0 q q q q 0 1 0 r (72) q r 1 Ở sử dụng ký hiệu sau: nk q q nk q nk q q 1 nk q q nk 1 k nk q q 1 n nk q ! nk q nk 1q nk 2q 1q Footer Page 30 of 258 (73) Header Page 31 of 258 25 Vì nk trạng thái riêng toán tử số daođộng N k cho nên: q N k nk nk nk q q (74) Từ hệ thức (68) (70) dễ dàng chứng minh ak nk ak nk q q nk 1q nk q nk q nk q (75) Thật vậy: | ( ⟩ = | ⟩ √ ( = ) ) | ⟩ √ ( = √ = | ⟩ | = ( √ | ⟩ | ⟩ √ √ =√ ) ⟩ ) | ⟩ =√ =√ ( ) | ⟩ √ | ⟩ 3.2 Phononâmhìnhthứcluậnbiếndạng –(q, R) 3.2.1 Phổ lượng daođộngbiếndạng –(q, R) [8] Toán tử lượng daođộng điều hòa biếndạng –(q, R) chiều có dạng H aa aa (76) Để tìm phổ lượng daođộng điều hòa biếndạng –(q, R) cần giải phương trình sau Footer Page 31 of 258 Header Page 32 of 258 26 H n En n q (77) q Dùng công thức (64) (75) phương trình (76) có dạng (a ) n q N q n (aa a a ) N 1 n 1 2 q nq ! En n q n q q (a ) n nq ! En n En n q q Từ suy En n 1 q n q Trong n 1q q nq q n 1 n Vì phổ lượng daođộng điều hòa biếndạng –(q, R) chiều có dạng En n q 1 nq q n 1 (78) Đối với daođộng điều hòa biếndạng –(q, R) nhiều chiều (giả sử m chiều chẳng hạn) toán tử lượng có dạng m H q H i (79) i 1 Để tìm phổ lượng giải phương trình H q n1, n2 , , nm Eq n1, n2 , , nm (80) Ở n1 , n2 , , nm a a n1 nm m n1 q ! nm q ! 0,0, ,0 (81) Thay (79) (81) vào (80) giải nhận phổ lượng daođộng điều hòa biếndạng –(q, R) nhiều chiều (m chiều) Footer Page 32 of 258 Header Page 33 of 258 Eq 27 q 1 n1 q n2 q nm q q n1 q n2 q nm (82) n1 n2 nm 1 1 1 3.2.2 Phononâmhìnhthứcluậndaođộngbiếndạng –(q, R) mạngtinhthể Toán tử lượng daođộngbiếndạng –(q, R) mạngtinhthể có dạng H (1) k k a a ak ak k k (83) Để tìm phổ lượng daođộngbiếndạng –(q, R) mạngtinhthể cần giải phương trình sau H nk q Enk nk (84) q Thay hệ thức (82) vào phương trình (83) ta có (1) (1) (1) k k k k k k ak ak ak ak nk N n k k q Enk nk 1q N k q nk 1q nk q nk q q q Enk nk Enk nk q q Từ suy phổ lượng daođộngbiếndạng –(q, R) mạngtinhthể có dạng: (1) Enk k k n 1 k q nk q (85) Như Enk phụ thuộc vào thông số biếndạng theo công thức (85) Daođộngbiếndạng –(q, R) mạngtinhthể diễn tả lý thuyết lượng tử Hamiltonian (83) với toàn tử thỏa mãn hệ thức giao hoán (68) coi mạngtinhthểdaođộng hệ nhiều hạt mà Footer Page 33 of 258 Header Page 34 of 258 28 toán tử sinh hạt có véc tơ sóng k xung lượng ћk lượng ћ (k) toán tử hủy hạt Các hạt lượng tửbiếndạng –(q, R) mạngtinhthể gọi phononâm –(q, R) Ta chọn lại gốc tọa độ cho toán tử lượng daođộngbiếndạng (q,R) mạngtinhthể viết dạng: H=∑ ( ) ( ) ta biểu diễn toán tử sinh, hủy ( , ) daođộngbiếndạng (q,R) mạngtinhthể qua toán tử sinh, hủy ( , ) daođộng bình thường mạngtinhthể sau: =√ =√ =√ =√ Ta tìm phương trình chuyển động: ={ } = =∑ ( ) ( )[ =∑ ( ) ( ) =∑ ( ) ( ) = Footer Page 34 of 258 ∑( ( ) ) ( ) ( )] ) (√ ) ( ) ) ( (√ =∑ ( ) (√ (√ (-i)[ ) )] ( ) + ν] (***) Header Page 35 of 258 29 Ta tính: ={ } = =∑ ( ) ( )[ =∑ ( ) ( ) ( =∑ ( ) ( ) i[ =∑ ( ) ( ) ( )] ) ( ) ν] + ( ) (***) Từ phương trình (***) ta suy tần số daođộngbiếndạng – (q,R) mạngtinhthể ( )= ( ) ( ) phụ thuộc vào biên độ daođộngdaođộngbiếndạng –(q,R) mạngtinhthểdaođộng phi tuyến Footer Page 35 of 258 Header Page 36 of 258 30 KẾT LUẬNLuận văn sử dụng hìnhthứcluậndaođộngbiếndạng để xây dụng daođộngbiếndạngmạngtinhthể đưa khái niệm phononbiếndạngLuận văn đạt số kết sau: Nghiên cứu viết tổng quan daođộngmạngtinh thể, tính phổ lượng daođộngmạngtinhthể Xây dựng daođộngmạngtinhthểbiếndạng –q, tính phổ lượng đưa khái niệm phononâm –q Xây dựng daođộngmạngtinhthểbiếndạng –(q, R) tính phổ lượng đưa khái niệm phononâm –(q, R) Footer Page 36 of 258 Header Page 37 of 258 31 TÀI LIỆU THAM KHẢO Tiếng việt: [1] Nguyễn Văn Hiệu, Nguyễn Bá Ân (2003), Cơ sở lý thuyết vật lý lượng tử, NXB ĐHQG Hà Nội [2] Nguyễn Thị Hà Loan (2016) Phổ lượng daođộngbiếndạngmạngtinh thể, Tạp chí khoa học ĐHSPHN2 số 43 Tiếng anh: [3] Chaichian M , Gonzalez F.R and Montonen C (1993), “Statistics of qoscillators, quons and relations to fractional statistics”, J Phys A26 (16), PP.4017-4034 [4] Chakrabarti R and Jagannathan R (1992), “On the number operators of single-mode q-oscillators”, J Phys A25 (23), PP.6393-6398 [5] Chaturvedi S., Kapoor A K., Sandhya R and Srinisavan V (1991), “Generalized commutation relations for a single-mode oscillator”, Phys Rev A43 (8), PP.4555-4557 [6] D V Duc (1994), “Generalized q-deformed oscillators and their statistics”, preprint ENSLAPP-A-494/94, Annecy, France [7] D V Duc (1998), “Statistics of generalized q-deformed quantum oscillators”, Frontiers in quantum physics, Springer 1998, PP.272-276 [8] Nguyen Thi Ha Loan, Nguyen Anh Sang and Do Thi Thu Thuy, The statistical distribution of (q, R)-deformed crystal lattice viration for generic atomic string, Journal of physics: Conference series 627( 2015) 012016 [9] Nguyen Thi Ha Loan and Nguyen Hong Ha,(2013) (q, R)-deformed Heisenberg algebra and statics of quantum oscillators, Com in phys Vol 13, Footer Page 37 of 258 No Header Page 38 of 258 Footer Page 38 of 258 Header Page 39 of 258 Footer Page 39 of 258 Header Page 40 of 258 Footer Page 40 of 258 ... động biến dạng –q mạng tinh thể 16 2.2 Phonon âm hình thức luận dao động mạng tinh thể biến dạng: 18 2.2.1 Phổ lượng dao động biến dạng –q: 18 2.2.2 Phonon âm hình thức luận dao động mạng. .. Chƣơng DAO ĐỘNG BIẾN DẠNG CỦA MẠNG TINH THỂ 2.1 Dao động biến dạng mạng tinh thể: 2.1.1 Dao động biến dạng –q [2] Dao động biến dạng –q mô tả toán tử sinh dao động a , toán tử hủy dao động a... Dao động biến dạng –(q, R) mạng tinh thể 23 3.2 Phonon âm hình thức luận biến dạng –(q, R) 25 3.2.1 Phổ lượng dao động biến dạng –(q, R) 25 3.2.2 Phonon âm hình thức luận dao động biến