Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 16 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
16
Dung lượng
161 KB
Nội dung
SÁNG KIẾN KINH NGHIỆM PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ VÀ BÀI TẬP ỨNG DỤNG I Phần mở đầu Lý chọn đề tài Toán học môn khoa học coi chủ lực, trước hết Toán học hình thành cho em tính xác, tính hệ thống, tính khoa học tính logic,… chất lượng dạy học toán nâng cao có nghĩa tiếp cận với kinh tế tri thức khoa học đại, giàu tính nhân văn nhân loại Cùng với đổi chương trình sách giáo khoa, tăng cường sử dụng thiết bị, đổi phương pháp dạy học nói chung đổi phương pháp dạy học toán nói riêng trường THCS tích cực hoá hoạt động học tập, hoạt động tư duy, độc lập sáng tạo học sinh, khơi dậy phát triển khả tự học, nhằm nâng cao lực phát giải vấn đề, rèn luyện hình thành kĩ vận dụng kiến thức cách khoa học, sáng tạo vào thực tiễn Trong chương trình Đại số lớp 8, dạng toán phân tích đa thức thành nhân tử nội dung quan trọng, việc áp dụng dạng toán phong phú, đa dạng cho việc học sau rút gọn phân thức, quy đồng mẫu thức nhiều phân thức, giải phương trình, Qua thực tế giảng dạy, qua việc theo dõi kết kiểm tra, thi học sinh lớp (các lớp giảng dạy), việc phân tích đa thức thành nhân tử không khó, nhiều học sinh làm sai chưa thực được, chưa nắm vững phương pháp giải, chưa vận dụng kĩ biến đổi cách linh hoạt, sáng tạo vào toán cụ thể Nhằm đáp ứng yêu cầu đổi phương pháp giảng dạy, giúp học sinh tháo gỡ giải tốt khó khăn, vướng mắc học tập đồng thời nâng cao chất lượng môn nên thân chọn đề tài: “ Phân tích đa thức thành nhân tử tập ứng dụng ” Mục đích nghiên cứu Để giảng dạy học sinh lớp thực dễ dàng việc “ Phân tích đa thức thành nhân tử”, ứng dụng việc phân tích đa thức thành nhân tử vào dạng Toán khác như: Giải phương trình, bất phương trình,… Từ kích thích yêu thích, tìm hiểu môn Toán môn khoa học khác Thời gian – Địa điểm Đề tài nghiên cứu áp dụng giảng dạy cho học sinh THCS lớp sở toán “ Phân tích đa thức thành nhân tử” Chương I - Đại số tập 1, toán Phân tích đa thức thành nhân tử sách tham khảo Cụ thể đề tài áp dụng vào học kì I năm học 2015-2016 Đóng góp mặt thực tiến Kinh nghiệm “ Phân tích đa thức thành nhân tử” vận dụng trình giảng dạy môn Toán lớp bước đầu giúp cho học sinh hứng thú việc học Toán Việc vận dụng đề tài áp dụng vào giảng dạy môn Toán, đặc biệt học sinh lớp 8, giúp cho học sinh dễ dàng việc giải toán Phân tích đa thức thành nhân tử, kiến thức tiền đề cho dạng tập liên quan sau này, qua kích thích lòng say mê tìm hiểu môn Toán, yêu thích môn Toán môn khoa học khác II Phần nội dung 1.Tổng quan 1.1 Cơ sở lý luận Trước phát triển mạnh mẽ kinh tế tri thức khoa học, công nghệ thông tin nay, xã hội thông tin hình thành phát triển thời kỳ đổi nước ta đặt giáo dục đào tạo trước thời thách thức Để hòa nhập tiến độ phát triển giáo dục đào tạo đảm nhận vai trò quan trọng việc “đào tạo nhân lực, nâng cao dân trí, bồi dưỡng nhân tài” mà Đảng, Nhà nước đề ra, “đổi giáo dục phổ thông theo Nghị số 40/2000/QH10 Quốc hội” Nhằm đáp ứng mục tiêu giáo dục toàn diện cho học sinh, đường nâng cao chất lượng học tập học sinh từ nhà trường phổ thông Là giáo viên mong muốn học sinh tiến bộ, lĩnh hội kiến thức dễ dàng, phát huy tư sáng tạo, rèn tính tự học, môn toán môn học đáp ứng đầy đủ yêu cầu Việc học toán học SGK, không làm tập Thầy, Cô mà phải nghiên cứu đào sâu suy nghĩ, tìm tòi vấn đề, tổng quát hoá vấn đề rút điều bổ ích Dạng toán phân tích đa thức thành nhân tử dạng toán quan trọng môn đại số đáp ứng yêu cầu này, tảng, làm sở để học sinh học tiếp chương sau này, học rút gọn phân thức đại số, quy đồng mẫu thức nhiều phân thức việc giải phương trình, … Tuy nhiên, lý sư phạm khả nhận thức học sinh đại trà mà chương trình đề cập đến bốn phương pháp trình phân tích đa thức thành nhân tử thông qua ví dụ cụ thể, việc phân tích không phức tạp không ba nhân tử Vấn đề đặt làm để học sinh giải toán phân tích đa thức thành nhân tử cách xác, nhanh chóng đạt hiệu cao Để thực tốt điều này, đòi hỏi giáo viên cần xây dựng cho học sinh kĩ quan sát, nhận xét, đánh giá toán, đặc biệt kĩ giải toán, kĩ vận dụng toán, tuỳ theo đối tượng học sinh, mà ta xây dựng cách giải cho phù hợp sở phương pháp học cách giải khác, để giúp học sinh học tập tốt môn 1.2 Cơ sở thực tiễn Tồn nhiều học sinh yếu tính toán, kĩ quan sát nhận xét, biến đổi thực hành giải toán, phần lớn kiến thức lớp dưới, chưa chủ động học tập từ đầu chương trình lớp 8, chay lười học tập, ỷ lại, nhờ vào kết người khác, chưa nỗ lực tự học, tự rèn, ý thức học tập yếu Đa số em sử dụng loại sách tập có đáp án để tham khảo, nên gặp tập, em thường lúng túng, chưa tìm hướng giải thích hợp, áp dụng phương pháp trước, phương pháp sau, phương pháp phù hợp nhất, hướng giải tốt Giáo viên chưa thật đổi phương pháp dạy học đổi chưa triệt để, ngại sử dụng đồ dùng dạy học, phương tiện dạy học, tồn theo lối giảng dạy cũ xưa, xác định dạy học phương pháp mơ hồ Phụ huynh học sinh chưa thật quan tâm mức đến việc học tập em theo dõi, kiểm tra, đôn đốc nhắc nhở học tập nhà Nội dung vấn đề nghiên cứu 2.1 Thực trạng Chương trình môn Toán bậc THCS rộng đa dạng, em lĩnh hội nhiều kiến thức Trong có nội dung kiến thức theo em suốt trình học tập từ lớp trở Phân tích đa thức thành nhân tử Dạng toán tương đối khó mẻ, mang tính trừu tượng cao, đòi hỏi học sinh phải có nhận biết, đánh giá, sử dụng phương pháp phù hợp, đưa đến cách phân tích nhanh xác Nhưng thực tế cho thấy phần đông học sinh không đáp ứng khả nên việc phân tích đa thức thành nhân tử học sinh chậm, hầu hết em chưa nhận dạng nên sử dụng phương pháp để phân tích Từ lý mà học sinh ngại làm loại toán Mặc khác, trình giảng dạy lực, trình độ giáo viên dạy cho học sinh mức độ truyền thụ tinh thần sách giáo khoa mà chưa biết phân loại toán, chưa khái quát cách giải cho dạng Kỹ nhận biết phân tích yếu, dẫn đến việc học sinh lúng túng gặp nhiều khó khăn vấn đề giải loại toán Xuất phát từ thực tế nên kết học tập em chưa cao Nhiều em nắm lý thuyết chắn áp dụng giải tập lại không làm Do việc hướng dẫn giúp em có kỹ phân tích, việc nắm lý thuyết, em phải biết vận dụng thực hành, từ phát triển khả tư duy, đồng thời tạo hứng thú cho học sinh học nhằm nâng cao chất lượng học tập Xuất phát từ thực tế em học sinh ngại khó giải toán, thấy cần phải tạo cho em có niềm yêu thích say mê học tập, tự đặt câu hỏi tự tìm câu trả lời Khi gặp toán khó, phải có nghị lực, tập trung tư tưởng, tin vào khả trình học tập Để giúp học sinh bớt khó khăn cảm thấy dễ dàng việc “Phân tích đa thức thành nhân tử” thấy cần phải hướng dẫn học sinh phương pháp để phân tích cách kỹ càng, bổ sung thêm cho em mẹo phân tích, yêu cầu học sinh có kỹ thực hành giải toán phải cẩn thận, tránh nhầm lẫn gây sai kết tập Việc hướng dẫn học sinh tìm phương pháp giải toán phù hợp với dạng vấn đề quan trọng, phải tích cực quan tâm thường xuyên, không giúp em nắm lý thuyết mà phải tạo cho em có phương pháp học tập cho thân, rèn cho em có khả thực hành Nếu làm điều chắn kết học tập em đạt mong muốn Từ lí nêu trên, giáo viên không truyền thụ cho học sinh kiến thức sách giáo khoa (SGK) mà dạy cho học sinh cách giải tập Giáo viên cố gắng rèn luyện cho học sinh cách giải mà cần khuyến khích học sinh tìm hiểu cách giải để học sinh phát huy khả tư linh hoạt, nhạy bén phân tích, tạo lòng say mê, sáng tạo, ngày tự tin, không tâm lý ngại ngùng gặp tập phân tích đa thức thành nhân tử 2.2 Các giải pháp 2.2.1 Những giải pháp đề tài Đề tài đưa giải pháp sau: - Sắp xếp toán theo mức độ, dạng toán - Xây dựng phương pháp giải phân tích đa thức thành nhân tử * Đối với học sinh yếu, kém: Củng cố kiến thức + Phương pháp Đặt nhân tử chung + Phương pháp Dùng đẳng thức + Phương pháp Nhóm nhiều hạng tử * Đối với học sinh đại trà: Vận dụng phát triển kỹ + Phối hợp nhiều phương pháp (các phương pháp trên) - Chữa sai lầm thường gặp học sinh giải toán - Củng cố phép biến đổi hoàn thiện kĩ thực hành - Tìm tòi cách giải hay, khai thác toán - Giới thiệu hai phương pháp phân tích đa thức thành nhân tử (Nâng cao) * Đối với học sinh khá, giỏi: Phát triển tư (giới thiệu hai phương pháp) + Phương pháp tách hạng tử thành nhiều hạng tử khác + Phương pháp thêm bớt hạng tử 2.2.2 Các phương pháp thường gặp 2.2.2.1 Phương pháp đặt nhân tử chung Phương pháp chung: - Tìm nhân tử chung hệ số (ƯCLN hệ số) - Tìm nhân tử chung biến (mỗi biến chung lấy số mũ nhỏ ) Nhằm đưa dạng: A.B + A.C + A.D = A.(B + C + D) Chú ý: Nhiều để làm xuất nhân tử ta cần đổi dấu hạng tử Ví dụ 1: Phân tích đa thức 14x2 y – 21xy2 + 28x2y2 thành nhân tử (BT-39c)-SGK-tr19) Giáo viên gợi ý: - Tìm nhân tử chung hệ số 14, 21, 28 hạng tử ? (Học sinh trả lời là: 7, ƯCLN(14, 21, 28 ) = ) - Tìm nhân tử chung biến x2 y, xy2, x2y2 ? (Học sinh trả lời xy ) - Nhân tử chung hạng tử đa thức cho 7xy Giải: 14x2 y – 21xy2 + 28x2y2 = 7xy.2x – 7xy.3y + 7xy.4xy = 7xy.(2x – 3y + 4xy) Ví dụ 2: Phân tích đa thức 10x(x – y) – 8y(y – x) thành nhân tử (BT-39e)-SGK-tr19) Giáo viên gợi ý: - Tìm nhân tử chung hệ số 10 ? (Học sinh trả lời là: 2) - Tìm nhân tử chung x(x – y) y(y – x) ? (Học sinh trả lời là: (x – y) (y – x) ) - Hãy thực đổi dấu tích 10x(x – y) tích – 8y(y – x) để có nhân tử chung (y – x) (x – y)? Cách 1: Đổi dấu tích – 8y(y – x) = 8y(x – y) Cách 2: Đổi dấu tích 10x(x – y) = –10x(y – x) (Học sinh tự giải ) Giải: 10x(x – y) – 8y(y – x) = 10x(x – y) + 8y(x – y) = 2(x – y).5x + 2(x – y).4y = 2(x – y)(5x + 4y) Ví dụ 3: Phân tích đa thức 9x(x – y) – 10(y – x)2 thành nhân tử Lời giải sai: 9x(x – y) – 10(y – x)2 = 9x(x – y) + 10(x – y)2 = (x – y)[9x + 10(x – y)] (sai từ trên) = (x – y)(19x – 10y) (kết sai ) (đổi dấu sai ) Sai lầm học là: Thực đổi dấu sai: 9x(x – y) – 10(y – x)2 = 9x(x – y) + 10(x – y)2 Sai lầm đổi dấu ba nhân tử : –10 (y – x)2 tích –10(y – x)2 (vì –10(y – x)2 = –10(y – x)(y – x)) Lời giải đúng: 9x(x – y) – 10(y – x)2 = 9x(x – y) – 10(x – y)2 = (x – y)[9x – 10(x – y)] = (x – y)(10y – x) Qua ví dụ trên, giáo viên củng cố cho học sinh: Cách tìm nhân tử chung hạng tử (tìm nhân tử chung hệ số nhân tử chung biến, biến chung lấy số mũ nhỏ nhất) Quy tắc đổi dấu cách đổi dấu nhân tử tích Chú ý: Tích không đổi ta đổi dấu hai nhân tử tích (một cách tổng quát, tích không đổi ta đổi dấu số chẵn nhân tử tích đó) 2.2.2.2 Phương pháp dùng đẳng thức Phương pháp chung: Sử dụng bảy đẳng thức đáng nhớ “dạng tổng hiệu” đưa “dạng tích” A2 + 2AB + B2 = (A + B)2 A2 – 2AB + B2 = (A – B)2 5 A2 – B2 = (A – B)(A + B) A3 + 3A2 B + 3AB2 + B3 = (A + B)3 A3 – 3A2 B + 3AB2 – B3 = (A – B)3 A3 + B3 = (A + B)(A2 – AB + B2) A3 – B3 = (A – B)(A2 + AB + B2) Ví dụ 4: Phân tích đa thức (x + y)2 – (x – y)2 thành nhân tử (BT- 28a)-SBT-tr6) Gợi ý: Đa thức có dạng đẳng thức ? (HS: có dạng A2 – B2 ) Lời giải sai: (x + y)2 – (x – y)2 = (x + y – x – y)(x + y + x – y) (thiếu dấu ngoặc) = 0.(2x) = (kết sai) Sai lầm học sinh là: Thực thiếu dấu ngoặc Lời giải đúng: (x + y)2 – (x – y)2 = [(x + y) – (x – y)].[(x + y) + (x – y)] = (x + y – x + y)(x + y + x – y) = 2y.2x = 4xy Các sai lầm học sinh dễ mắc phải: - Quy tắc bỏ dấu ngoặc, lấy dấu ngoặc quy tắc dấu - Phép biến đổi, kĩ nhận dạng đẳng thức hiệu hai bình phương, bình phương hiệu Khai thác toán: Đối với học sinh giỏi, giáo viên cho em làm tập dạng phức tạp * Nếu thay mũ “2” mũ “3” ta có toán Phân tích (x + y)3 – (x – y)3 thành nhân tử (BT-44b)-SGK-tr20) * Đặt x + y = a, x – y = b, thay mũ “3” mũ “6” ta có toán Phân tích a6 – b6 thành nhân tử (BT-26c)-SBT-tr6) 2 a6 – b6 = ( a ) − ( b3 ) = (a3 – b3 )( a3 + b3 ) Ví dụ 5: Phân tích a6 – b6 thành nhân tử (BT-26c)-SBT-tr6) Giải: a6 – b6 = ( a ) − ( b3 ) = (a3 – b3 )( a3 + b3 ) = (a – b)(a2 + ab + b2)(a + b)(a2 – ab + b2) 2 Giáo viên củng cố cho học sinh: Các đẳng thức đáng nhớ, kĩ nhận dạng đẳng thức qua toán, dựa vào hạng tử, số mũ hạng tử mà sử dụng đẳng thức cho thích hợp 2.2.2.3 Phương pháp nhóm nhiều hạng tử Phương pháp chung Lựa chọn hạng tử “thích hợp” để thành lập nhóm nhằm làm xuất hai dạng sau đặt nhân tử chung, dùng đẳng thức Thông thường ta dựa vào mối quan hệ sau: - Quan hệ hệ số, biến hạng tử toán - Thành lập nhóm dựa theo mối quan hệ đó, phải thoả mãn: + Mỗi nhóm phân tích + Sau phân tích đa thức thành nhân tử nhóm trình phân tích thành nhân tử phải tiếp tục thực 1) Nhóm nhằm xuất phương pháp đặt nhân tử chung: Ví dụ 6: Phân tích đa thức x2 – xy + x – y thành nhân tử (Bài tập 47a)-SGK-tr22) Cách 1: nhóm (x2 – xy) (x – y) Cách 2: nhóm (x2 + x) (– xy – y ) Lời giải sai: x2 – xy + x – y = (x2 – xy) + (x – y) = x(x – y) + (x – y) = (x – y)(x + 0) (kết dấu sai bỏ sót số 1) Sai lầm học sinh là: bỏ sót hạng tử sau đặt nhân tử chung (HS cho ngoặc thứ hai đặt nhân tử chung (x – y) lại số 0) Lời giải đúng: x2 – xy + x – y = (x2 – xy) + (x – y) = x(x – y) + 1.(x – y) = (x – y)(x + 1) 2) Nhóm nhằm xuất phương pháp dùng đẳng thức: Ví dụ 7: Phân tích đa thức x2 – 2x + – 4y2 thành nhân tử Giải: x2 – 2x + – 4y2 = (x2 – 2x + 1) – (2y)2 = (x – 1)2 – (2y)2 = (x – – 2y)(x – + 2y) 3) Nhóm nhằm sử dụng hai phương pháp trên: Ví dụ 8: Phân tích đa thức x2 – 2x – 4y2 – 4y thành nhân tử Lời giải sai: x2 – 2x – 4y2 – 4y = (x2 – 4y2 ) – (2x – 4y ) = (x + 2y)(x – 2y) – 2(x – 2y) (sai từ trên) = (x – 2y)(x + 2y – 2) (kết dấu sai) (đặt dấu sai) Sai lầm học sinh là: Nhóm x2 – 2x – 4y2 – 4y = (x2 – 4y2 ) – (2x – 4y ) (đặt dấu sai ngoặc thứ hai) Lời giải đúng: x2 – 2x – 4y2 – 4y = (x2 – 4y2 ) + (– 2x – 4y ) = (x + 2y)(x – 2y) – 2(x + 2y) = (x + 2y)(x – 2y – 2) Qua ví dụ trên, giáo viên lưu ý cho học sinh: Cách nhóm hạng tử đặt dấu trừ “ – ” dấu cộng “ + ” trước dấu ngoặc, phải kiểm tra lại cách đặt dấu thực nhóm Trong phương pháp nhóm thường dẫn đến sai dấu, học sinh cần ý cách nhóm kiểm tra lại kết sau nhóm Lưu ý: Sau phân tích đa thức thành nhân tử nhóm trình phân tích thành nhân tử không thực nữa, cách nhóm sai, phải thực lại 2.2.2.4 Phối hợp phương pháp thông thường Phương pháp chung Là kết hợp nhuần nhuyễn phương pháp nhóm nhiều hạng tử, đặt nhân tử chung, dùng đẳng thức Vì học sinh cần nhận xét toán cách cụ thể, mối quan hệ hạng tử tìm hướng giải thích hợp Ta thường xét phương pháp: Đặt nhân tử chung ? Dùng đẳng thức ? Nhóm nhiều hạng tử ? Ví dụ 9: Phân tích đa thức x4 – 9x3 + x2 – 9x thành nhân tử (BT- ?2 -SGK-tr22) Gợi ý phân tích: Xét phương pháp: Đặt nhân tử chung ? Dùng đẳng thức ? Nhóm nhiều hạng tử ? Các sai lầm học sinh thường mắc phải Lời giải chưa hoàn chỉnh: a) x4 – 9x3 + x2 – 9x = x(x3 – 9x2 + x – 9) (phân tích chưa triệt để) b) x4 – 9x3 + x2 – 9x = (x4 – 9x3 ) + (x2 – 9x) = x3(x – 9) + x(x – ) = (x – 9)(x3 + x ) (phân tích chưa triệt để) Lời giải đúng: x4 – 9x3 + x2 – 9x = x(x3 – 9x2 + x – 9) = x[(x3 – 9x2 ) + (x – 9)] = x[x2 (x – 9) + 1.(x – 9)] = x(x – 9)(x2 + 1) Ví dụ 10: Phân tích đa thức A = (x + y + z)3 – x3 – y3 – z3 thành nhân tử Trong ví dụ có nhiều cách giải, học sinh cần phải linh hoạt lựa chọn cách giải phù hợp nhất, gọn Áp dụng đẳng thức: (A + B)3 = A3 + B3 + 3AB(A + B) Suy hệ sau: A3 + B3 = (A + B)3 – 3AB(A + B) Giải: A = (x + y + z)3 – x3 – y3 – z3 = [(x + y) + z]3 – x3 – y3 – z3 = (x + y)3 + z3 + 3z(x + y)(x + y + z) – x3 – y3 – z3 = [(x + y)3 – x3 – y3 ] + 3z(x + y)(x + y + z) = 3xy(x + y) + 3(x + y)(xz + yz + z2 ) = 3(x + y)( xy + xz + yz + z2) = 3(x + y)(y + z)(x + z) Khai thác toán: 1) Chứng minh A chia hết cho với x, y, z nguyên 2) Cho x + y + z = Chứng minh x3 + y3 + z3 = 3xyz (Bài tập 38-SBT-tr7) Hướng dẫn: Dùng x3 + y3 = (x + y)3 – 3xy(x + y) x + y + z = ⇔ x + y = – z 3) Phân tích đa thức x3 + y3 + z3 – 3xyz thành nhân tử (Bài tập 28c)-SBT-tr6) Hướng dẫn: Dùng x3 + y3 = (x + y)3 – 3xy(x + y) Trong chương trình sách giáo khoa Toán hành giới ba phương pháp phân tích đa thức thành nhân tử là: Đặt nhân tử chung, dùng đẳng thức, nhóm nhiều hạng tử Tuy nhiên phần tập lại có áp dụng ba phương pháp để giải, (Chẳng hạn tập 53, 57 sgk/tr 24-25) Sách giáo khoa có gợi ý cách “ tách ” hạng tử thành hai hạng tử khác “ thêm bớt hạng tử ” thích hợp áp dụng phương pháp để giải Xin giới thiệu thêm hai phương pháp này, để học sinh vận dụng rộng rãi thực hành giải toán 2.2.2.5 Phương pháp tách hạng tử thành nhiều hạng tử khác Ví dụ 11: Phân tích đa thức f(x) = 3x2 – 8x + thành nhân tử Gợi ý ba cách phân tích: (chú ý có nhiều cách phân tích) Giải: Cách (tách hạng tử: 3x2) 3x2 – 8x + = 4x2 – 8x + – x2 = (2x – 2)2 – x2 = (2x – – x)( 2x – + x) = (x – 2)(3x – 2) Cách (tách hạng tử: – 8x) 3x2 – 8x + = 3x2 – 6x – 2x + = 3x(x – 2) – 2(x – 2) = (x – 2)(3x – 2) Cách (tách hạng tử: 4) 3x2 – 8x + = 3x2 – 12 – 8x + 16 = 3(x2 – 22 ) – 8(x – 2) = 3(x – 2)(x + 2) – 8(x – 2) = (x – 2)(3x + – 8) = (x – 2)(3x – 2) Nhận xét: Từ ví dụ trên, ta thấy việc tách hạng tử thành nhiều hạng tử nhằm: - Làm xuất đẳng thức hiệu hai bình phương (cách 1) - Làm xuất hệ số hạng tử tỷ lệ với nhau, nhờ làm xuất nhân tử chung x – (cách 2) - Làm xuất đẳng thức nhân tử chung (cách 3) Vì vậy, việc tách hạng tử thành nhiều hạng tử khác nhằm làm xuất phương pháp học như: Đặt nhân tử chung, dùng đẳng thức, nhóm nhiều hạng tử việc làm cần thiết học sinh giải toán Khai thác cách giải: Tách hạng tử: – 8x (Cách 2) Nhận xét: Trong đa thức 3x2 – 6x – 2x + ta thấy hệ số số hạng là: 3, – 6, –2, tỷ lệ −6 = hay (– 6).( – 2)= 3.4 (– 6) + ( – 2)= – −2 Khai thác: Trong đa thức 3x2 – 8x + đặt a = 3, b = – 8, c = Tính tích a.c phân tích a.c = b1.b2 cho b1 + b2 = b (ac = b1.b2 = 3.4 = (– 6).( – 2) = 12; b1 + b2 = b = (– 6) + ( – 2)= – 8) Tổng quát: Để phân tích đa thức dạng ax2 + bx + c thành nhân tử, ta tách hạng tử bx thành b1x + b2x cho b1b2 = ac Trong thực hành ta làm sau: Bước 1: Tìm tích ac Bước 2: Phân tích ac thành tích hai thừa số nguyên cách Bước 3: Chọn hai thừa số mà tổng b Áp dụng: Phân tích đa thức – 6x2 + 7x – thành nhân tử (Bài tập 35c)-SBT-tr7) Ta có: a = – ; b = ; c = – Bước 1: ac = (–6).(–2) = 12 Bước 2: ac = (–6).(–2) = (–4).(–3) =(–12).(–1) = 6.2 = 4.3 = 12.1 Bước 3: b = = + Khi ta có lời giải: – 6x2 + 7x – = – 6x2 + 4x + 3x – = (– 6x2 + 4x) + (3x – 2) = –2x(3x – 2) + (3x – 2) = (3x – 2)(–2x + 1) Lưu ý: Đối với đa thức f(x) có bậc từ ba trở lên, để làm xuất hệ số tỉ lệ, tuỳ theo đặc điểm hệ số mà ta có cách tách riêng cho phù hợp nhằm để vận dụng phương pháp nhóm đẳng thức đặt nhân tử chung Ví dụ 12: Phân tích đa thức sau thừa số : n3 – 7n + Giải: n3 – 7n + = n3 – n – 6n + = n(n2 – 1) – 6(n – 1) = n(n – 1)(n + 1) – 6(n – 1) = (n – 1)[n(n + 1) – 6] = (n – 1)(n2 + n – 6) = (n – 1)(n2 – 2n + 3n – 6) = (n – 1)(n(n – 2) + 3(n – 2)) = (n – 1)(n – 2)(n + 3) 10 Ví dụ 13: Phân tích đa thức x4 – 30x2 + 31x – 30 thành nhân tử Ta có cách tách sau: x4 – 30x2 + 31x – 30 = x4 + x – 30x2 + 30x – 30 Giải: x4 – 30x2 + 31x – 30 = x4 + x – 30x2 + 30x – 30 = x(x3 + 1) – 30(x2 – x + 1) = x(x + 1)(x2 – x + 1) – 30(x2 – x + 1) = (x2 – x + 1)(x2 + x – 30) = (x2 – x + 1)(x – 5)(x + 6) 2.2.2.6 Phương pháp thêm bớt hạng tử Phương pháp thêm bớt hạng tử nhằm sử dụng phương pháp nhóm để xuất dạng đặt nhân tử chung dạng đẳng thức Ví dụ 14: Phân tích đa thức x4 + x2 + thành nhân tử Ta có phân tích: - Tách x2 thành 2x2 – x2 : (làm xuất đẳng thức) Ta có x4 + x2 + = x4 + 2x2 + – x2 = (x4 + 2x2 + 1) – x2 - Thêm x bớt x: (làm xuất đẳng thức đặt nhân tử chung) Ta có x4 + x2 + = x4 – x + x2 + x + = (x4 – x) + (x2 + x + 1) Giải: x4 + x2 + = x4 – x + x2 + x + = (x4 – x) + (x2 + x + 1) = x(x – 1)(x2 + x + 1) + (x2 + x + 1) = (x2 + x + 1)(x2 – x + 1) Ví dụ 15: Phân tích đa thức x5 + x4 + thành nhân tử Cách 1: Thêm x3 bớt x3 (làm xuất đẳng thức đặt nhân tử chung) Giải: x5 + x4 + = x5 + x4 + x3 – x3 + = (x5 + x4 + x3 )+ (1 – x3 ) = x3(x2+ x + 1)+ (1 – x )(x2+ x + 1) = (x2+ x + 1)(x3 – x + ) Cách 2: Thêm x3, x2, x bớt x3, x2, x (làm xuất đặt nhân tử chung) Giải: x5 + x4 + = x5 + x4 + x3 – x3 + x2 – x2 + x – x + = (x5 + x4 + x3) + (– x3 – x2 – x ) + (x2 + x + 1) = x3(x2 + x + 1) – x(x2 + x + 1) + (x2 + x + 1) = (x2 + x + 1)(x3 – x + ) Chú ý: Các đa thức có dạng x4 + x2 + 1, x5 + x + 1, x5 + x4 + 1, x7 + x5 + 1,….; tổng quát đa thức dạng x3m+2 + x3n+1 + x3 – 1, x6 – có chứa nhân tử x2 + x + 11 Ví dụ 16: Phân tích đa thức x4 + thành nhân tử (Bài tập 57d)-SGK-tr 25) Gợi ý: Thêm 2x2 bớt 2x2 : (làm xuất đẳng thức) Giải: x4 + = x4 + 4x2 + – 4x2 = (x2 + 2)2 – (2x)2 = (x2 + – 2x)( x2 + + 2x) Khai thác toán: * Thay “4” thành “ 64y4 ”, ta có toán: x4 + 64y4 Hướng dẫn giải: Thêm 16x2y2 bớt 16x2y2 : (làm xuất đẳng thức) x4 + 64y4 = (x4 + 16x2y2 + 64y4 ) – 16x2y2 = (x2 + 8y2)2 – (4xy)2 = (x2 + 8y2 – 4xy)(x2 + 8y2 + 4xy) Trên vài ví dụ điển hình giúp em học sinh giải mắc mứu trình giải toán phân tích đa thức thành nhân tử Để thực tốt kĩ phân tích đa thức thành nhân tử nêu thành thạo thực hành giải toán, giáo viên cần cung cấp cho học sinh kiến thức sau: Củng cố lại phép tính, phép biến đổi, quy tắc dấu quy tắc dấu ngoặc lớp 6, Ngay từ đầu chương trình Đại số giáo viên cần ý dạy tốt cho học sinh nắm vững kiến thức nhân đơn thức với đa thức, đa thức với đa thức, thức đáng nhớ, việc vận dụng thành thạo hai chiều đẳng thức Khi gặp toán phân tích đa thức thành nhân tử, học sinh cần nhận xét: - Quan sát đặc điểm toán: Nhận xét quan hệ hạng tử toán (về hệ số, biến) - Nhận dạng toán: Xét xem toán cho thuộc dạng nào?, áp dụng phương pháp trước, phương pháp sau (đặt nhân tử chung dùng đẳng thức nhóm nhiều hạng tử, hay dạng phối hợp phương pháp) - Chọn lựa phương pháp giải thích hợp: Từ sở mà ta chọn lựa phương pháp cho phù hợp với toán Lưu ý: Kinh nghiệm phân tích toán thành nhân tử Trong toán phân tích đa thức thành nhân tử - Nếu bước 1, sử dụng phương pháp đặt nhân tử chung bước biểu thức lại ngoặc, thường thu gọn, sử dụng phương pháp nhóm dùng phương pháp đẳng thức - Nếu bước 1, sử dụng phương pháp nhóm hạng tử bước biểu thức nhóm thường sử dụng phương pháp đặt nhân tử chung dùng phương pháp đẳng thức - Nếu bước 1, sử dụng phương pháp dùng đẳng thức bước toán thường sử dụng phương pháp đặt nhân tử chung dùng đẳng thức 12 Chý ý: Phương pháp đặt nhân tử chung sử dụng liên tiếp hai bước liền Phương pháp nhóm sử dụng liên tiếp hai bước liền Phương pháp dùng đẳng thức sử dụng liên tiếp hai bước liền * Trong phương pháp đặt nhân tử chung học sinh thường hay bỏ sót hạng tử * Trong phương pháp nhóm học sinh thường đặt dấu sai Vì vậy, giáo viên nhắc nhở học sinh cẩn thận thực phép biến đổi, cách đặt nhân tử chung, cách nhóm hạng tử, sau bước giải phải có kiểm tra Phải có đánh giá toán xác theo lộ trình định, từ lựa chọn sử dụng phương pháp phân tích cho phù hợp Xây dựng học sinh thói quen học tập, biết quan sát, nhận dạng toán, nhận xét đánh giá toán theo quy trình định, biết lựa chọn phương pháp thích hợp vận dụng vào toán, sử dụng thành thạo kỹ giải toán thực hành, rèn luyện khả tự học, tự tìm tòi sáng tạo Khuyến khích học sinh tham gia học tổ, nhóm, học sáng tạo, tìm cách giải hay, cách giải khác 2.3 Kết Kết áp dụng kĩ góp phần nâng cao chất lượng học tập môn học sinh đại trà Học sinh nắm vững kiến phân tích đa thức thành nhân tử, vận dụng thành thạo kỹ biến đổi, phân tích, biết dựa vào toán biết cách giải truớc đó, linh hoạt biến đổi vận dụng đẳng thức trình bày giải hợp lý có hệ thống logic, số học sinh yếu, chưa thực tốt Học sinh tích cực tìm hiểu kĩ phương pháp giải, phân loại dạng toán, chủ động lĩnh hội kiến thức, có kĩ giải nhanh toán có dạng tương tự, đặt nhiều vấn đề mới, nhiều toán 2.4 Bài học kinh nghiệm Thông qua việc nghiên cứu đề tài kinh nghiệm từ thực tiễn giảng dạy, cho phép rút số kinh nghiệm sau: Đối với học sinh yếu kém: Là trình liên tục củng cố sửa chữa sai lầm, cần rèn luyện kỹ để học sinh có khả nắm phương pháp vận dụng tốt phương pháp phân tích vào giải toán, cho học sinh thực hành theo mẫu với tập tương tự, tập từ đơn giản nâng dần đến phức tạp, không nên dẫn em xa nội dung SGK Đối với học sinh đại trà: Giáo viên cần ý cho học sinh nắm phương pháp bản, kĩ biến đổi, kĩ thực hành việc vận dụng phương pháp đa dạng vào tập cụ thể, luyện tập khả tự học, gợi suy mê hứng thú học, kích thích khơi dậy óc tìm tòi, chủ động chiếm lĩnh kiến thức Đối với học sinh giỏi: Ngoài việc nắm phương pháp bản, ta cần cho học sinh tìm hiểu thêm phương pháp phân tích nâng cao khác, tập dạng mở rộng giúp em biết mở rộng vấn đề, cụ thể hoá vấn đề, tương tự hoá vấn đề để 13 việc giải toán phân tích đa thức thành nhân tử tốt Qua tập cho học sinh thói quen tự học, tự tìm tòi sáng tạo, khác thác cách giải, khai thác toán khác nhằm phát triển tư cách toàn diện cho trình tự nghiên cứu em Đối với giáo viên: Giáo viên thường xuyên kiểm tra mức độ tiếp thu vận dụng học sinh trình cung cấp thông tin có liên quan chương trình đại số đề cập Giáo viên phải định hướng vạch dạng toán mà học sinh phải liên hệ nghĩ đến để tìm hướng giải hợp lý đề cập, giúp học sinh nắm vững dạng toán rèn luyện kĩ phân tích cách tường minh dạng tập để tìm hướng giải sau biết áp dụng phát triển nhanh tập tổng hợp, kĩ vận dụng phương pháp phân tích đa thức thành nhân tử cách đa dạng giải toán Đồng thời tạo điều kiện để học sinh phát triển tư cách toàn diện, gợi suy mê hứng thú học tập, tìm tòi sáng tạo, kích thích khơi dậy khả tự học học sinh, chủ động học tập học toán Nếu thực tốt phương pháp trình giảng dạy học tập chất lượng học tập môn học sinh nâng cao hơn, đào tạo nhiều học sinh giỏi, đồng thời tuyển chọn nhiều học sinh giỏi cấp trường, cấp huyện, tỉnh, III Kết luận - Kiến nghị Kết luận Từ thực tế giảng dạy áp dụng phương pháp nhận thấy học sinh nắm vững kiến thức hơn, hiểu rõ cách giải toán dạng tập Kinh nghiệm giúp học sinh trung bình, học sinh yếu nắm vững cách phân tích đa thức thành nhân tử chương trình học, học rèn luyện kĩ thực hành theo hướng tích cực hoá hoạt động nhận thức mức độ khác thông qua chuỗi tập Bên cạnh giúp cho học sinh giỏi có điều kiện tìm hiểu thêm số phương pháp giải khác, dạng toán khác nâng cao hơn, nhằm phát huy tài toán học, phát huy tính tự học, tìm tòi, sáng tạo học sinh học toán Kiến nghị Theo dạng toán “phân tích đa thức thành nhân tử phương pháp tách hạng tử” cần soạn thành tiết dạy để giáo viên có thời gian hướng dẩn học sinh kĩ giúp học sinh lĩnh hội kiến thức để làm nhiều dạng tập Kỳ Thượng, ngày 11 tháng năm 2016 Người viết Vũ Duy Hải 14 Nhận xét nhà trường …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………………………… IV Tài liệu tham khảo - SGK, SGV, SBT Toán tập I - Các tài liệu sách nâng cao - Internet Phụ lục I Phần mở đầu ………………………………………………………………… Trang 15 Lý chọn đề tài……………………………………………………………… Trang Mục đích nghiên cứu………………………………………………………… Trang Thời gian - địa điểm…………………………………………………………….Trang Đóng góp mặt thực tiễn………………………………………………Trang II Phần nội dung……………………………………………………………… Trang 1.Tổng quan………………………………………………………………… …… Trang 1.1 Cơ sở lý luận……………………………………………………………… Trang 1.2 Cơ sở thực tiễn…………………………………………………………… Trang 2 Nội dung vấn đề nghiên cứu…………………………………………… Trang 2.1 Thực trạng………………………………………………………………… Trang 2.2 Các giải pháp…………………………………………………………… Trang 2.3 Kết quả……………………………………………………………………… Trang 13 2.4 Bài học kinh nghiệm…………………………………………………… Trang 13 III Kết luận- Kết luận………………………………………………………… Trang 14 IV Tài liệu tham khảo……………………………………………………… Trang 16 16 [...]... hạng tử nhằm sử dụng phương pháp nhóm để xuất hiện dạng đặt nhân tử chung hoặc dạng hằng đẳng thức Ví dụ 14: Phân tích đa thức x4 + x2 + 1 thành nhân tử Ta có phân tích: - Tách x2 thành 2x2 – x2 : (làm xuất hiện hằng đẳng thức) Ta có x4 + x2 + 1 = x4 + 2x2 + 1 – x2 = (x4 + 2x2 + 1) – x2 - Thêm x và bớt x: (làm xuất hiện hằng đẳng thức và đặt nhân tử chung) Ta có x4 + x2 + 1 = x4 – x + x2 + x + 1 = (x4... phân tích đa thức thành nhân tử nêu trên thành thạo trong thực hành giải toán, giáo viên cần cung cấp cho học sinh các kiến thức cơ bản sau: Củng cố lại các phép tính, các phép biến đổi, quy tắc dấu và quy tắc dấu ngoặc ở các lớp 6, 7 Ngay từ đầu chương trình Đại số 8 giáo viên cần chú ý dạy tốt cho học sinh nắm vững chắc kiến thức về nhân đơn thức với đa thức, đa thức với đa thức, các hằng thức đáng... thức hoặc nhóm nhiều hạng tử, hay dạng phối hợp các phương pháp) - Chọn lựa phương pháp giải thích hợp: Từ những cơ sở trên mà ta chọn lựa phương pháp cho phù hợp với bài toán Lưu ý: Kinh nghiệm khi phân tích một bài toán thành nhân tử Trong một bài toán phân tích đa thức thành nhân tử - Nếu ở bước 1, đã sử dụng phương pháp đặt nhân tử chung thì bước tiếp theo đối với biểu thức còn lại trong ngoặc,... (x2 + x + 1) = (x2 + x + 1)(x3 – x + 1 ) Chú ý: Các đa thức có dạng x4 + x2 + 1, x5 + x + 1, x5 + x4 + 1, x7 + x5 + 1,….; tổng quát những đa thức dạng x3m+2 + x3n+1 + 1 hoặc x3 – 1, x6 – 1 đều có chứa nhân tử x2 + x + 1 11 Ví dụ 16: Phân tích đa thức x4 + 4 thành nhân tử (Bài tập 57d)-SGK-tr 25) Gợi ý: Thêm 2x2 và bớt 2x2 : (làm xuất hiện hằng đẳng thức) Giải: x4 + 4 = x4 + 4x2 + 4 – 4x2 = (x2 + 2)2... về phân tích đa thức thành nhân tử, vận dụng thành thạo kỹ năng biến đổi, phân tích, biết dựa vào các bài toán đã biết cách giải truớc đó, linh hoạt biến đổi và vận dụng hằng đẳng thức và đã trình bày bài giải hợp lý hơn có hệ thống và logic, chỉ còn một số ít học sinh quá yếu, kém chưa thực hiện tốt Học sinh tích cực tìm hiểu kĩ phương pháp giải, phân loại từng dạng toán, chủ động lĩnh hội kiến thức, ... việc vận dụng thành thạo cả hai chiều của các hằng đẳng thức Khi gặp bài toán phân tích đa thức thành nhân tử, học sinh cần nhận xét: - Quan sát đặc điểm của bài toán: Nhận xét quan hệ giữa các hạng tử trong bài toán (về các hệ số, các biến) - Nhận dạng bài toán: Xét xem bài toán đã cho thuộc dạng nào?, áp dụng phương pháp nào trước, phương pháp nào sau (đặt nhân tử chung hoặc dùng hằng đẳng thức hoặc... 1) = (x2 + x + 1)(x2 – x + 1) Ví dụ 15: Phân tích đa thức x5 + x4 + 1 thành nhân tử Cách 1: Thêm x3 và bớt x3 (làm xuất hiện hằng đẳng thức và đặt nhân tử chung) Giải: x5 + x4 + 1 = x5 + x4 + x3 – x3 + 1 = (x5 + x4 + x3 )+ (1 – x3 ) = x3(x2+ x + 1)+ (1 – x )(x2+ x + 1) = (x2+ x + 1)(x3 – x + 1 ) Cách 2: Thêm x3, x2, x và bớt x3, x2, x (làm xuất hiện đặt nhân tử chung) Giải: x5 + x4 + 1 = x5 + x4 +... hằng đẳng thức - Nếu ở bước 1, đã sử dụng phương pháp nhóm các hạng tử thì bước tiếp theo đối với các biểu thức đã nhóm thường sử dụng phương pháp đặt nhân tử chung hoặc dùng phương pháp hằng đẳng thức - Nếu ở bước 1, đã sử dụng phương pháp dùng hằng đẳng thức thì bước tiếp theo của bài toán thường sử dụng phương pháp đặt nhân tử chung hoặc dùng hằng đẳng thức 12 Chý ý: Phương pháp đặt nhân tử chung... thành “ 64y4 ”, ta có bài toán: x4 + 64y4 Hướng dẫn giải: Thêm 16x2y2 và bớt 16x2y2 : (làm xuất hiện hằng đẳng thức) x4 + 64y4 = (x4 + 16x2y2 + 64y4 ) – 16x2y2 = (x2 + 8y2)2 – (4xy)2 = (x2 + 8y2 – 4xy)(x2 + 8y2 + 4xy) Trên đây là một vài ví dụ điển hình giúp các em học sinh giải quyết những mắc mứu trong quá trình giải bài toán về phân tích đa thức thành nhân tử Để thực hiện tốt kĩ năng phân tích đa. .. và khơi dậy óc tìm tòi, chủ động chiếm lĩnh kiến thức Đối với học sinh khá giỏi: Ngoài việc nắm chắc các phương pháp cơ bản, ta cần cho học sinh tìm hiểu thêm các phương pháp phân tích nâng cao khác, các bài tập dạng mở rộng giúp các em biết mở rộng vấn đề, cụ thể hoá vấn đề, tương tự hoá vấn đề để 13 việc giải bài toán phân tích đa thức thành nhân tử tốt hơn Qua đó tập cho học sinh thói quen tự học,