GROUP NHểM TON NGN HNG CU HI TRC NGHIM 2017 CHUYấN : S PHC 001 Câu : Trờn mt phng ta Oxy, hp im biu din cỏc s phc z tha iu kin zi i l: A x y B C 3x y D x y 2 x y 2 Câu : Cho s phc z tha món: z 3i 2i 2z Tp hp im biu din cho s phc z l: A 20x 16y 47 B 20x 16y 47 C 20x 16y 47 D 20x 16y 47 Câu : Phn thc ca s phc z tha i i z i 2i z l B -3 A -6 C D -1 C D Câu : Mụdun ca s phc z 2i i l: A B Câu : Cú bao nhiờu s phc z tha iu kin z z z B A Câu : A Thu gn z = 3i z 11 6i D C ta c: B z = -1 - i C z 3i D z = -7 + 2i Câu : Trờn mt phng ta Oxy, hp im biu din cỏc s phc z tha iu kin zi i l: B x y A 3x y C x y 2 D x y Câu : Cp s (x; y) thừa iu kin (2x y 1) ( x y)i (3x y 2) (4x y 3)i l: A ; 11 11 B ; 11 11 C ; 11 11 D ; 11 11 Câu : Trong cỏc kt lun sau, kt lun no sai? A Mụ un ca s phc z l mt s thc B Mụ un ca s phc z l mt s thc dng C Mụ un ca s phc z l mt s phc D Mụ un ca s phc z l mt s thc khụng õm Câu 10 : Kt qu ca phộp tớnh (a bi)(1 i) (a,b l s thc) l: A a b (b a)i B a b (b a)i C a b (b a)i D a b (b a)i Câu 11 : Cho s phc z = 4i S phc i ca z cú im biu din l: A (-5;-4) B (5;-4) C (5;4) D (-5;4) Câu 12 : Rỳt gn biu thc z i(2 i)(3 i) ta c: A z6 B z 7i C z 5i D z 5i Câu 13 : Cho s phc z 4i Mụun ca s phc z l: B A Câu 14 : 41 S phc z thừa iu kin z A 3i v - 3i C D 5i l: z B ỏp ỏn khỏc C 3i v - 3i D 3i v - 3i Câu 15 : Rỳt gn biu thc z i (2 4i) (3 2i) ta c: A) z i B) z 2i C) z 2i A z 2i B z i D) z 3i C z i D z 3i Câu 16 : Gii phng trỡnh sau: z2 i z 18 13i A z i , z 2i B z i , z 2i C z i , z 2i D z i , z 2i Câu 17 : Phng trỡnh 8z z cú nghim l A z1 1 i v z2 i 4 4 B z1 1 i v z2 i 4 4 C z1 1 1 i v z2 i 4 4 D z1 1 i v z2 i 4 4 Câu 18 : A S phc z tha | z |2 2( z i) a bng: 2iz cú dng a+bi ú z i b B -5 D - C Câu 19 : Cho s phc z 7i S phc liờn hp ca z cú im biu din l: A Câu 20 : A Câu 21 : A (6; 7) B (6; 7) Cho s phc z tho z B B D (6; 7) a l: i S phc w z i( z 1) cú dng a+bi ú b z C Thc hin cỏc phộp tớnh sau: 4i 14 5i C (6; 7) B= D 3 4i (1 4i)(2 3i) 62 41i 221 C 62 41i 221 D 62 41i 221 Câu 22 : Nghim ca phng trỡnh 3x (2 3i)(1 2i) 4i trờn s phc l: A i B i C i D i Câu 23 : S phc z (1 i)3 bng: A z 2i B z 2i C z 4i D z 3i Câu 24 : Mụdun ca s phc z 2i i l: A B C D Câu 25 : Cho s phc z 3i 2i Nhn xột no sau õy v s phc liờn hp ca z l ỳng: A z 10 i B z 10 i C z 3i 2i 1D z i 10 Câu 26 : Cho s phc z 12i Khng nh no sau õy l sai: A S phc liờn hp ca z l z 12i B w 3i l mt cn bc hai ca z C Modun ca z l 13 D z Câu 27 : Cho s phc z tha h thc (i 3) z 26 A B 5 12 i 169 169 2i (2 i) z Mụ un ca s phc w z i l: i C 5 26 25 D Câu 28 : Bit z1 v z2 l hai nghim ca phng trỡnh z 3z Khi ú, giỏ tr ca z12 z22 l: A B D C Câu 29 : Thu gn z = (2 + 3i)(2 3i) ta c: A z4 B z 9i C z 9i D z 13 Câu 30 : Cỏc s thc x, y tho món: 3x + y + 5xi = 2y +(x y)i l A (x; y) ; 7 B (x; y) ; 7 C (x; y) ; 7 D (x; y) ; 7 Câu 31 : S phc z tha z (2 3i) z 9i l: A z i B z i C z 2i D z 2i Câu 32 : Cỏc s thc x, y tho món: x2 -y-(2 y 4)i 2i l: A (x; y) ( 3; 3);(x; y) ( 3;3) B (x; y) ( 3;3);(x; y) ( 3; 3) C (x; y) ( 3; 3);(x; y) ( 3; 3) D (x; y) ( 3;3);(x; y) ( 3; 3) Câu 33 : A Thc hin cỏc phộp tớnh sau: 114 2i 13 B 114 2i 13 A = (2 3i)(1 2i) C 4i ; 2i 114 2i 13 D 114 2i 13 Câu 34 : S cỏc s phc z tha h thc: z z v z l: A B C D Câu 35 : S phc z 3i cú im biu din l: A (2; 3) B (2; 3) C (2; 3) D (2; 3) Câu 36 : Phng trỡnh z az b cú mt nghim phc l z 2i Tng s a v b bng B A C D C (-2;-3) D (2;-3) Câu 37 : S phc z = 3i cú im biu din l: A (-2;3) B (2;3) Câu 38 : Gi z l nghim phc cú phn thc dng ca phng trỡnh: z2 2i z 17 19i Khi ú, gi s z2 a bi thỡ tớch ca a v b l: A 168 C 240 B 12 D Câu 39 : Trong cỏc s phc z tha z z 4i , s phc cú mụun nh nht l: A Câu 40 : A z 4i S phc z z 16 11 i 15 15 B z 4i 2i D z 2i D z 23 i 25 25 C z C z i 4i bng: 4i B z 16 13 i 17 17 Câu 41 : S cỏc s phc z tha h thc: z z v z l: A B C D Câu 42 : Gi z1 , z l hai nghim phc ca phng trỡnh: z2 4z Khi ú, phn thc ca z12 z 22 l: A B C D Câu 43 : s phc z tha món: 2i z i i z Mụun ca z l: A B C 10 D Câu 44 : Cho s phc z i Hóy xỏc nh mnh sai cỏc mnh sau: A z cú mt acgumen l B C A v B u ỳng z z cú dng lng giỏc l D 5 z cos i sin 3 Câu 45 : Gi A l im biu din ca s phc z = +2i v B l im biu din ca s phc z=2 + 3i Tỡm mnh ỳng ca cỏc mnh sau: A Hai im A v B i xng vi qua gc ta O B Hai im A v B i xng vi qua trc tung C Hai im A v B i xng qua trc honh D Hai im A v B i xng vi qua ng thng y = x Câu 46 : Gi z1 v z2 l hai nghim phc ca phng trỡnh z z 10 Giỏ tr ca biu thc: A z1 z l A 100 B 10 C 20 D 17 Câu 47 : Gi z1 , z2 l nghim phc ca phng trỡnh z z A z1 z2 bng B A D C Câu 48 : Bit rng nghch o ca s phc z bng s phc liờn hp ca nú, cỏc kt lun sau, kt lun no ỳng? A z B z C z D Z l mt s thun o Câu 49 : s phc z tha món: 2i z i i z Mụun ca z l: A 10 B C D D 3 Câu 50 : Phn o ca s phc Z ( i)2 (1 2i) bng: A B C Câu 51 : Nghim ca phng trỡnh 2ix + = 5x + trờn s phc l: A Câu 52 : 23 14 i 29 29 S phc z tha A -5 B 23 14 i 29 29 C 23 14 i 29 29 D 23 14 i 29 29 | z |2 2( z i) a bng: 2iz cú dng a+bi ú z i b B C - D Câu 53 : Cho s phc z i Giỏ tr phn thc ca A Câu 54 : B 512 Trong cỏc s phc z tha C Giỏ tr khỏc D 512 (1 i) z , z0 l s phc cú mụun ln nht i Mụdun ca z0 bng: A B C 10 D Câu 55 : Gi A l im biu din ca s phc z = + 5i v B l im biu din ca s phc z = -2 + 5i Tỡm mnh ỳng cỏc mnh sau: A Hai im A v B i xng vi qua ng thng y = x B Hai im A v B i xng vi qua trc honh C Hai im A v B i xng vi qua gc ta O D Hai im A v B i xng vi qua trc tung Câu 56 : A : im biu din ca s phc z (3; 2) B l: 3i ; 13 13 C (2; 3) D (4; 1) Câu 57 : Tp hp cỏc im mt phng phc biu din s phc z thừa iu kin z2 l s o l: A Trc o B ng phõn giỏc y = x v y = -x ca cỏc trc ta C ng phõn giỏc ca gúc phn t th D Trc honh nht Câu 58 : Phn o ca s phc z bng bao nhiờu ?bit z ( i)2 (1 2i) C B -2 A D Câu 59 : S phc z tha z z i cú phn o bng: A B C D Câu 60 : Cho s phc z tha iu kin (1 + i)(z i) + 2z = 2i ú mụun ca s phc w z 2z l z2 A B 10 C 11 D 12 C z = + 2i D z = -1 i C 5 D 16 Câu 61 : Thu gn z = i + (2 4i) (3 2i) ta c: A z = + 3i B z = -1 2i Câu 62 : Mụ un ca s phc z (1 2i)(2 i)2 l: A B Câu 63 : Cho s phc z tha: 2z z 4i Khi ú, modun ca z l A 25 B C 16 D Câu 64 : Phng trỡnh z 2z b cú nghim phc c biu din trờn mt phng phc bi hai im A v B Tam giỏc OAB (vi O l gc ta ) u thỡ s thc b bng: A A,B,C u sai Câu 65 : A B Cho s phc z tha h thc (i 3) z 5 B D C 26 25 2i (2 i) z Mụ un ca s phc w z i l: i 26 C D Câu 66 : Cho s phc z tha z 4i v w z 1- i Trong mt phng phc, hp im biu din s phc w l ng trũn tõm I , bỏn kớnh R l A I (3; 4), R B I (4; 5), R C I (5; 7), R D I (7; 9), R Câu 67 : Bit hai s phc cú tng bng v tớch bng Tng mụun ca chỳng bng A B 10 C D Câu 68 : Trong mt phng ta Oxy, tỡm hp im biu din cỏc s phc z tha iu kin phn thc bng ln phn o ca nú l mt B ng trũn A Parabol Câu 69 : A Cho s phc z tho z B C ng thng D Elip a l: i S phc w z i( z 1) cú dng a+bi ú b z C D Câu 70 : Cho s phc z = + 7i S phc liờn hp ca z cú im biu din l: B (-6;-7) A (-6;7) D (6;-7) C (6;7) Câu 71 : Tp hp im biu din s phc z tha z (4 3i) l ng trũn tõm I , bỏn kớnh R A Câu 72 : I (4;3), R B I (4; 3), R C I (4;3), R D I (4; 3), R S phc z tha món: i z 3i 2i 3i l: A z i B 2 z i 2 2 D z i C z i Câu 73 : Phn o ca s phc Z ( i)2 (1 2i) bng: A Câu 74 : B 2 C D S phc z tha món: i z 3i 2i 3i l: A z i B 2 z i C z i D z i C D Câu 75 : Mụ un ca s phc z (1 2i)(2 i)2 l: A 5 B 16 Câu 76 : Phng trỡnh z3 cú bao nhiờu nghim phc vi phn o õm A B C D Câu 77 : Thu gn z = i(2 i)(3 + i) ta c: A z 5i B z 5i C z6 D z 7i Câu 78 : Kt qu ca phộp tớnh (2 3i)(4 i) l: A 6-14i B -5-14i C 5-14i D 5+14i C 4i D 2i Câu 79 : S phc z = i bng: A 3i B 2i 10 A ng trũn B ng thng C Phn bờn ng trũn cú tõm l D ng hypebol O v cú bỏn kớnh R=4 Câu 64 : S phc z 3i cú im biu din l: A (2; 3) B (2; 3) C (2; 3) D (2; 3) Câu 65 : Cho = + 3; = ( + 1) Giỏ tr no ca sau õy l s thc? A = hay =3 B = hay =6 C = hay = D = hay =6 Câu 66 : Cn bc hai ca -4 l A 2i B 2i C 2i D Khụng xỏc nh Câu 67 : Cho s phc iz vi | z 2i | Khi ú hp cỏc im M biu din cho s phc trờn mt phng Oxy l : A (x 1)2 (y 2)2 B (x 1)2 (y 3)2 C (x 3)2 (y 1)2 D (x 3)2 (y 1)2 Câu 68 : Nu mụun ca s phc z bng r (r 0) thỡ mụun ca s phc (1 i )2 z bng A 4r B 2r C r D r Câu 69 : Giỏ tr ca cỏc s thc b, c phng trỡnh z2 + bz + c = nhn s phc z = + i lm nghim l : b A c b B c b C c b D c Câu 70 : Trong cỏc kt lun sau, kt lun no sai ? A Mụun ca s phc z l mt s thc dng C Mụun ca s phc z l mt s phc B Mụun ca s phc z l mt s thc D Mụun ca s phc z l mt s thc khụng õm Câu 71 : n 13 9i Cỏc s nguyờn dng n s phc l s thc ? s o ? l : 12 i A n = + 6k , k B n = + 4k , k C n = 2k , k D n = 3k , k Câu 72 : S phc liờn hp ca s phc z A i 11 (2 i)3 (2 i)3 l: (2 i)3 (2 i)3 B i C i D i 11 Câu 73 : Tp hp cỏc im biu din s phc z tha món: z z 10 l: A Parabol B Hỡnh trũn C ng thng D Elip Câu 74 : Cho s phc z 7i S phc liờn hp ca z cú im biu din l: A (6; 7) B (6; 7) C (6; 7) D (6;7) B S o khỏc C S D S thc õm B C S thc D 2i Câu 75 : Vi mi s thun o z , s z z l z bi A S thc dng Câu 76 : S z z l A S o Câu 77 : Trờn hp s phc, phng trỡnh z z 15 cú hai nghim z1 ; z2 Giỏ tr biu thc z1 z2 z1z2 l: A 22 B 15 C D Câu 78 : Trong cỏc kt lun sau, kt lun no sai? A Mụun ca s phc z l mt s thc B C Mụun ca s phc z l mt s phc D Mụun ca s phc z l mt s thc dng Mụun ca s phc z l mt s thc khụng õm Câu 79 : S no cỏc s sau õy l s thc? 10 A ( 2i) ( 2i) B (2 i 5) (2 i 5) i C (1 i 3)2 D C S thc dng D S o khỏc i Câu 80 : Vi mi s o z , s z z l: A S thc õm B S Câu 81 : Trờn hp s phc, phng trỡnh x4 16 nhn giỏ tr no di õy l nghim? A 1 i 2 B 1 i 2 C i D 2i 11 P N 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 { { { { { { { ) { { ) { { { { { { { { { { ) ) { { { { ) | ) | | ) ) | | | | | | | | | | | | | | | | ) ) | ) } ) } ) ) } } } ) ) } ) } } } ) } } } ) ) } } } } ) } ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ) ) ) ~ ) ) ) ~ ~ ~ ~ ~ ~ ~ ~ 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 ) ) ) { { ) { ) { { ) ) { { ) { ) { { { { { { { { ) ) | | | | ) | ) | | | | | | | | | | ) | | | | | ) | | | } } } } } } } } ) ) } } } } } } } } } ) } ) ) } } } } ~ ~ ~ ) ~ ~ ~ ~ ~ ~ ~ ~ ) ) ~ ) ~ ~ ) ~ ) ~ ~ ~ ) ~ ~ 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 ) { ) { { { { { { { { { { { ) ) ) { { { { ) { { { { { | ) | | | | ) ) | ) | | | ) | | | | | ) | | | ) ) ) | } } } } } ) } } ) } ) ) } } } } } } } } ) } } } } } } ~ ~ ~ ) ) ~ ~ ~ ~ ~ ~ ~ ) ~ ~ ~ ~ ) ) ~ ~ ~ ) ~ ~ ~ ) 12 GROUP NHểM TON NGN HNG CU HI TRC NGHIM 2017 CHUYấN : S PHC 007 Câu : Tỡm hp cỏc im biu din s phc z trờn mt phng phc cho ( z 1)( z i) l s thc A ng thng x y B ng trũn x2 y x y C ng trũn x2 y x y D ng thng x y Câu : Cho z = 2i i S phc liờn hp ca z l: B + i A -3 + i D i C 3i Câu : Trong mt phng phc, gi A, B, C ln lt l cỏc im biu din cỏc s phc z1 (1 i)(2 i), z2 3i, z3 3i Tam giỏc ABC l: A Mt tam giỏc u B Mt tam giỏc vuụng (khụng cõn) C Mt tam giỏc vuụng cõn D Mt tam giỏc cõn (khụng u) Câu : Tỡm s phc z bit z 3i z 5z z z i B Câu : Cho s phc : z A A z 3 z i C z D z i 2 3i Kt lun no sau õy l sai? B 64 C Bỡnh phng ca s phc i l z z i 8 D S phc liờn hp ca z l 2(1 3i) Câu : Cho s phc z tha phng trỡnh z (1 9i) (2 3i)z Phn thc ca s phc z l: A -1 B C D -2 Câu : Tp nghim C ca phng trỡnh z z z l: A 1;1; i B i; i; C D i; i;1 Câu : Bit rng s phc z x iy tha z 6i Mnh no sau õy sai? A 2 x y xy B x4 8x2 y x x x hay y y D x2 y 2xy 6i C Câu : Cho s phc z m m i m R Giỏ tr no ca m z A m Câu 10 : i 2i Vit s phc A B m 2i 13 3i B C m m D m2 di dng i s 2i 11 C 11 14i D 2i + 13 Câu 11 : Tớnh z z bit z , z l nghim ca phng trỡnh z z 17 2 A 68 B 51 C 17 D 34 Câu 12 : Cho s phc z tha z 2i i Mụdul ca s phc w iz z l : A 2 B C D Câu 13 : Tỡm mnh sai cỏc mnh sau: a b A S phc z a bi v ch B S phc z a bi c biu din bi im M(a; b) mt phng phc Oxy C S phc z a bi cú mụun l a b2 D S phc z a bi cú s phc i z ' a bi Câu 14 : A Tỡm mt s phc z tha iu kin z i B z 2i z 3i l s thun o vi z zi C C A v B u ỳng D C A v B u sai Câu 15 : Gi M, N, P ln lt l cỏc im biu din ca cỏc s phc i, + 4i , + i Tỡm s phc z biu din bi im Q cho MNPQ l hỡnh bỡnh hnh B + 6i A 6i Câu 16 : S phc z tha 3i z A Câu 17 : z i B z D + 7i C 7i 4i z l : 3i i C z Cho s phc z x iy x iy (vi x, y i D z i ) Vi giỏ tr no ca x, y thỡ s phc ú l s thc B x = -1 A x = v y = C x = hoc y = D x = Câu 18 : Cho s phc z a bi,a,b R v cỏc mnh sau: Khi số z z là: 1) im biu din s phc z l M a;b 2) Phn thc ca s phc z z l a 3) Mụdul ca s phc 2z z l 9a b2 4) z z A S mnh ỳng l B S mnh ỳng l C S mnh sai l D C u ỳng Câu 19 : Tìm mệnh đề sai mệnh đề sau: A Số phức z = a + bi có số phức đối z = a - bi B Số phức z = a + bi có môđun a b2 C Số phức z = a + bi đ-ợc biểu diễn điểm M(a; b) mặt phẳng phức Oxy a b D Số phức z = a + bi = Câu 20 : Cho phng trỡnh z mz 2m ú m l tham s phc; giỏ tr m phng trỡnh cú hai nghim z1; z2 tha z12 z22 10 A m 3i; m 3i B m 2i; m 2i C m 3i; m 3i D m 3i; m 3i Câu 21 : Xỏc nh hp cỏc im biu din s phc z trờn mt phng phc cho l z i s thun o A Trc honh, b im (1;0) B ng thng x , b im (1;0) C ng thng y = 1, b im (0; 1) D Trc tung, b im (0; 1) Câu 22 : Trong mt phng phc Oxy ,cho ba im A, B, C biu din cho s phc z1 i, z2 3i, z3 2i Xỏc nh ln ca s phc biu din trng tõm G ca tam giỏc ABC B A Câu 23 : Phn thc, phn o ca s phc z tha z A 1;1 D C B 1; 3i ln lt l: 2i D 1; C 1;2 Câu 24 : Cho phng trỡnh z mz m , trờn trng phc v m l tham s thc Giỏ tr m (1) cú hai nghim o z1; z2 ú z1 cú phn o õm v phn thc ca s phc z1 i z2 bng B m A Khụng cú m Câu 25 : Cho hai s phc z1 A z1 z2 2 B z1 z2 i, z i C m 1 D m i Kt lun no sau õy l sai: C z1.z 2 D z1 z2 Câu 26 : Mnh no sau õy sai A z1 z2 z B z1 z z2 C Tp hp im biu din cỏc s phc z tha iu kin z | l ng trũn tõm O, bỏn kớnh R = D Hai s phc bng v ch phn thc v phn o tng ng bng Câu 27 : A z 2i vi z =1 3i z 2i Tớnh giỏ tr ca biu thc A = 2i 13 B 2i 13 C 3i 13 D 4i 13 Câu 28 : Tng tt c cỏc nghim phc ca phng trỡnh z z l z 0, z 1, z B A -1 Câu 29 : C D 3 i i bng i i 2 Cho s phc z x yi ( x, y ) Phn o ca s phc x y2 B Câu 31 : Cho hai s phc : z A 3 B x y A C Tng phn thc v phn o ca s phc z A Câu 30 : i 2 z1.z B 2x x z1 z2 y2 3i; z z1 l: z xy C x 2 D y2 D 2y x y2 +3i La chn phng ỏn ỳng C z1 z2 D z1 z2 Câu 32 : Tp hp cỏc im biu din cỏc s phc z tha z i z l A x y B x y C x y D x y Câu 33 : Tỡm s phc z bit i z 3i 4i i A z 8i B z 8i C z 8i D z 8i Câu 34 : Phng trỡnh x2 x cú hai nghim l: A i ; i C i ; Câu 35 : A B i B i; D Tỡm mt s phc z tha z z 3i i; 2 i 2 i 2 5i z z 3i C z 3i D z 3i Câu 36 : Gi z1; z2 l hai nghim phng trỡnh z z 0; ú z1 cú phn o dng s phc w 2z1 z2 z1 l: A Câu 37 : z 12 6i B z im M biu din s phc z A M 2,1 C 11 6i i B M(0;2) z 6i i D z 12 6i cú ta l: C M( 2;0) D ( 2, 1) Câu 38 : Gi M, N, P ln lt l cỏc im biu din ca cỏc s phc + i , + 3i , 2i S phc z biu din bi im Q cho MN 3MQ l: A i 3 B i 3 C i 3 D i Câu 39 : Tp hp cỏc im biu din cỏc s phc z tha z i l A ng trũn tõm I 1,1 , bỏn kớnh R B ng trũn tõm I 1, , bỏn kớnh R C Hỡnh trũn tõm I 1,1 , bỏn kớnh R Hỡnh trũn tõm I 1, , bỏn kớnh R D Câu 40 : Tỡm mụun ca s phc z bit i z 2i z i A z 13 B z 97 C z i D z 97 Câu 41 : A Cho s phc b i; c 2i; d 2i Vit s phc z z4 B z 3i cb dng chun db z 2i C z i D Câu 42 : Tp hp cỏc nghim ca phng trỡnh z z 35 trờn s phc l A Câu 43 : A i, i B 3i, 3i D 5i,5i C 5,5 Mụ un ca s phc z i i i i z 20 B z 210 C 19 z D bng: z 210 Câu 44 : Trong mt phng phc cho tam giỏc ABC vuụng ti C Bit rng A, B ln lt biu din cỏc s phc: z1 A z 4i 4i, z -2 B z -2i Khi ú, C biu din s phc: 2i C z 2i D z 4i Câu 45 : Phn thc ca z tha phng trỡnh z 3z i i l: A B 15 Câu 46 : Trong s phc 15 , phng trỡnh z 3z cú bao nhiờu nghim? B A D C -10 D C Câu 47 : Cho s phc z a bi z l mt s thc, iu kin ca a v b l: A b v a bt kỡ hoc b2 3a B b 3a C b2 5a D a v b bt kỡ hoc b2 a Câu 48 : S nghim ca phng trỡnh z 16 trờn s phc l bao nhiờu ? B A D C Câu 49 : Hai s thc x;y tha x y i y 2i 7i ln lt l: A Câu 50 : A x 2; y B x 2; y Tỡm phn o ca s phc z bit z B 2i x C i 1; y D x 1; y 2i C D 2i Câu 51 : Cho phng trỡnh z 3z 10i cú nghim z1 , z2 trờn s phc C Tớnh A z1 z2 A B 5 Câu 52 : Cho hai s phc z1 3i, z D C 3i, z z1.z La chn phng ỏn ỳng: A Câu 53 : A z3 25 B z z1 C z1 z2 z1 z2 Tỡm s phc z tha z (1 i)(3 2i) 5iz S phc z l: 2i 2i C 2i B 2i Câu 54 : Cho cỏc s phc: z1 3i; z 2 +2i; z D z1 D z2 2i i c biu din ln lt bi cỏc im A, B, C trờn mt phng Gi M l im tha món: AM AB AC Khi ú im M biu din s phc: A z B z 6i C z 6i D z 2 Câu 55 : Cho s phc z 3i , z l s phc liờn hp ca z Phng trỡnh bc hai nhn z, z lm cỏc nghim l A z z 13 B z z 13 C z z 13 D z z 13 Câu 56 : Tromg mt phng phc cho hai im A(4; 0), B(0; -3) im C tha món: OC A z OA OB Khi ú im C biu din s phc: 4i B z 3i C z 4i Câu 57 : Trong mt phng Oxy cho im A biu din s phc z1 D z 3i 2i , B l im thuc ng thng y = cho tam giỏc OAB cõn ti O B biu din s phc no sau õy: A z Câu 58 : 2i B z 2i C z i D z 2i Tng bỡnh phng cỏc nghim ca phng trỡnh z trờn s phc l bao nhiờu A B C D Câu 59 : A Câu 60 : 5i i Tỡm phn o ca s phc z bit z 3i 25 B Cho z = A B 3 25 D i 25 D C 1 2i Mụun ca z l: i 10 A 10 B Câu 62 : Trong s phc Câu 63 : C z1 Cho h phng trỡnh z2 Tớnh z1 z2 z1 z2 A Câu 61 : i 25 C D , phng trỡnh z cú bao nhiờu nghim? B Cho cỏc s phc z D C 3i 3i Trong cỏc kt lun sau: , z' 7i 7i (I) z z ' l s thc, (II) z z ' l s thun o, (III) z z ' l s thc, kt lun no ỳng? A C I, II, III Câu 64 : A B Ch II III C Ch III, I Trong cỏc s phc sau, s no tha iu kin z z 2i B z i 2 C D Ch I, II z ? z z2i D z i 2 Câu 65 : Cho s phc i, 3i, i cú im biu din mt phng phc l A, B, C Tỡm s phc biu din trng tõm G ca tam giỏc ABC A i 3 3 B i C i 3 3 D i Câu 66 : Tp hp cỏc im M biu din s phc z tha z 5i l: A ng trũn tõm 2;5 v bỏn kớnh B bng C ng trũn tõm O v bỏn kớnh bng Câu 67 : Cho hai s phc z1 i 2i D , z2 ng trũn tõm 2; v bỏn kớnh bng ng trũn tõm 2; v bỏn kớnh bng i 2i La chn phng ỏn ỳng : A z1.z B z1 z2 C z1.z D z1 z2 Câu 68 : Tỡm mụun ca s phc z bit i z 2i z A z i 5 B z 10 C z 10 D z 10 Câu 69 : Tỡm s phc z cú phn o gp ln phn thc ng thi z 10 z z A z 3i B z 3i C z 6i D z 12i Câu 70 : Gi z1; z2 l hai nghim ca phng trỡnh z z Trong ú z1 cú phn o õm Giỏ tr biu thc M z1 3z1 z2 l A M 21 B M 21 C M 21 D M 21 10 P N 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 { { { { ) { { { { { { ) { { { ) { ) ) ) { { ) ) ) ) { | ) | ) | | ) | | ) ) | | | ) | | | | | | | | | | | ) } } } } } } } } ) } } } } ) } } ) } } } } ) } } } } } ) ~ ) ~ ~ ) ~ ) ~ ~ ~ ~ ) ~ ~ ~ ~ ~ ~ ~ ) ~ ~ ~ ~ ~ ~ 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 { { { { { { { { ) { { { { { { { ) { { { { ) { { ) { ) | | | ) | ) ) ) | | ) | ) | | | | | | | | | | | | | | } } } } ) } } } } ) } ) } } ) } } } } } ) } ) ) } } } ) ) ) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ) ~ ) ~ ) ) ) ~ ~ ~ ~ ~ ) ~ 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 { { ) { { { { { { { { { ) { { ) | ) | | | | ) | | | ) ) | ) | | ) } } ) ) ) } ) } } } } } } ) } ~ ~ ~ ~ ~ ~ ~ ~ ) ) ~ ~ ~ ~ ~ ~ 11 [...]... là hai số phức thì số phức x y có số phức liên hợp là x y z 2 z 2 a 2 b2 2 B Số phức z=a+bi thì C Cho x,y là hai số phức thì số phức xy có số phức liên hợp là xy D Cho x,y là hai số phức thì số phức x y có số phức liên hợp là x y C©u 19 : Trong các kết luận sau, kết luận nào sai? A Môđun của số phức z là một số thực B Môđun của số phức z là một số thực dương C Môđun của số phức. .. NGÂN HÀNG CÂU HỎI TRẮC NGHIỆM 2017 CHUYÊN ĐỀ : SỐ PHỨC – ĐỀ 002 C©u 1 : Cho số phức z, thỏa mãn điều kiện (3 2i)z (2 i)2 4 i Phần ảo của số phức w (1 z)z là: B 2 A 0 C -1 D - 2 C©u 2 : Cho số phức z 12 5i Mô đun của số phức z bằng A 7 17 B 119 C D 13 C©u 3 : Cho hai số phức z1 1 2i;z2 2 3i Tổng của hai số phức là A 3 – 5i B 3 – i C 3 + i D 3 + 5i C©u 4 : Cho số phức z thỏa... hợp số thực là tập con của số phức 6 B Nếu tổng của hai số phức là số thực thì cả hai số ấy đều là số thực C Hai số phức đối nhau có hình biểu diễn là hai điểm đối xứng nhau qua gốc tọa độ O D Hai số phức liên hợp có hình biểu diễn là hai điểm đối xứng nhau qua Ox C©u 42 : Khẳng định nào sau đây là sai A Trong tập hợp số phức, mọi số đều có số nghịch đảo B Căn bậc hai của mọi số thực âm là số phức. .. nhiêu nhận xét đúng trong số các nhận xét sau 1 Phương trình vô nghiệm trên trường số thực R 2.Phương trình vô nghiệm trên trường số phức 3 Phương trình không có nghiệm thuộc tập hợp số thực 4 Phương trình có bốn nghiệm thuộc tập hợp số phức 5 Phương trình chỉ có hai nghiệm là số phức 6.Phương trình có hai nghiệm là số thực A 1 B 2 C 3 D 5 C©u 24 : Phần thực và phần ảo của số (2 – i).i.(3 + i) lần lượt... (IV) Môđun của số phức z 1 bằng môđun của số phức z 3 (V) Trong mặt phẳng Oxy , số phức z 3 được biểu diễn bởi điểm M (1;1) (VI) 3z1 z 2 z 3 là một số thực Trong các phát biểu trên, có bao nhiêu phát biểu đúng? A 2 C©u 46 : B 5 C 3 D 4 Cho hai số phức z và w thoả mãn z w 1 và 1 z.w 0 Số phức A Số thực B Số âm C Số thuần ảo zw là : 1 z.w D Số dương C©u 47 : Cho số phức z thỏa mãn điều... GROUP NHÓM TOÁN NGÂN HÀNG CÂU HỎI TRẮC NGHIỆM 2017 CHUYÊN ĐỀ : SỐ PHỨC – ĐỀ 004 C©u 1 : A Tìm phần ảo của số phức z thỏa mãn: B 3 2 2 4 3i 1 z z 3 i 8 13i 2i 1 D 7 C 1 C©u 2 : Số phức z thỏa mãn 2z 2( z z) 6 3i có phần thực là: B 0 A 2 C©u 3 : Cho z A 1 i 3 2 1 i 3 D 6 C 1 Số phức liên hợp của z là: B 1 2 i 3 2 C 1 2 i 3 2 D 1 i 3 C©u 4 : Cho số phức z thỏa mãn z 1 ... và 3 C©u 25 : Xét các câu sau: 1 Nếu z z thì z là một số thực 2 Môđun của một số phức z bằng khoảng cách OM, với M là điểm biểu diễn z 3 Môđun của một số phức z bằng số z.z Trong 3 câu trên: A Cả ba câu đều đúng B Chỉ có 1 câu đúng 4 C Cả ba câu đều sai C©u 26 : A Cho z z.z 2 D Chỉ có 2 câu đúng i 1 2i 2 i 1 2i 2 i 22 5 2 B i Trong các két luận sau, kết luận nào đúng? z là số thuần ảo C z D z z... Môđun của một số phức z bằng số z.z Trong 3 câu trên: 5 A Cả ba câu đều sai B Cả ba câu đều đúng C Chỉ có 1 câu đúng D Chỉ có 2 câu đúng C©u 34 : Môđun của số phức z thỏa mãn phương trình (2z 1)(1 i) (z 1)(1 i) 2 2i là: A C©u 35 : A B 2 2 2 3 Cho số phức z = 2i + 3 khi đó z 5 12i 13 B z B 7 C 2 3 C z D 4 2 3 D z z bằng : z 5 12i 13 5 6i 11 5 6i 11 C©u 36 : Số 12 5i bằng:... là số phức C Phần thực và phần ảo của số phức z bằng nhau thì z nằm trên đường phân giác góc phần tư thứ nhất và góc phần tư thứ ba D Hiệu hai số phức liên hợp là một số thuần ảo C©u 43 : Ta có số phức z thỏa mãn z 1 9i 5i Phần ảo của số phức z là: 1 i B 1 A 0 D 2 C 3 C©u 44 : Cho số phức z = 12 – 5i Môđun số phức z là: B A 13 7 C 119 D 7 C©u 45 : Tích số 3 3i 2 3i có giá trị bằng:... ~ ~ ~ ~ ) 12 GROUP NHÓM TOÁN NGÂN HÀNG CÂU HỎI TRẮC NGHIỆM 2017 CHUYÊN ĐỀ : SỐ PHỨC – ĐỀ 003 C©u 1 : Nghiệm của phương trình z 2 z 1 0 3 i 2 A B C 1 i 3 3 i D 1 i 3 2 C©u 2 : Điểm M (1;3) là điểm biểu diễn của số phức: A z 1 3i B z 1 3i C z 2i D z 2 C©u 3 : Xét các điểm A,B,C trong mặt phẳng phức theo thứ tự biểu diễn lần lượt các số phức z1 4i 2 6i , z2 1 i 1