Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 14 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
14
Dung lượng
431,5 KB
Nội dung
TRƯỜNG THCS NGHUYỄN HỒNG SƠN TỔ TOÁN SỐ DẠNG PHƯƠNG TRÌNH NGHIỆM NGUYÊN Ở CẤP THCS Ho tên : BÙI XUÂN PHONG Tx Sông cầu, ngày 26 tháng 12 năm 2011 I MỞ BÀI 1.LÍ DO CHỌN ĐỀ TÀI Phương trình nghiệm nguyên dạng phương trình mà Học sinh cấp Trung học sở làm quen học tập hợp số tự nhiên N , tập hợp số nguyên Z , phép nhân , chia tập hợp N , Z , đa thức ,số phương Trong chương trình cấp Trung học sở không đề cập nhiều dạng phương trình phương pháp giải dạng phương trình nghiệm nguyên mặt dù có số sở lý thuyết cho phép giải số dạng phương trình nghiệm nguyên Nhưng tập nâng cao sách giáo khoa , kì thi Học sinh giỏi , thi violimpic mạng internet lại nêu làm cho Học sinh cảm thấy lung túng phương pháp giải đa số Học sinh trường , trường THCS Nguyễn hồng Sơn giải tốt Chính tình hình mà , với trình độ hiểu biết hạn chế nội dung phương trình nghiệm nguyên , cố gắng xây dựng chuyên đề : Số dạng phương trình nghiệm nguyên cấp Trung học sở 2.MỤC ĐÍCH XÂY DỰNG CHUYÊN ĐỀ Chuyên đề “ Số dạng phương trình nghiệm nguyên cấp Trung học sở” xây dựng với mục đích : + Để có tài liệu , xem giáo án giảng dạy , để trang bị cho Học sinh kiến thức , hệ thống phương trình nghiệm nguyên Từ Học sinh rèn luyện kỉ giải phương trình nghiệm nguyên sách giáo khoa , kì thi , kì thi violimpic mạng internet + Thực kế hoạch chuyên môn tổ toán trường THCS Nguyễn hồng Sơn Sau hết , qua xây dựng chuyên đề , hy vọng khả hiểu biết thân phương trình nghiệm nguyên nâng cao thêm ĐỐI TƯỢNG VÀ PHẠM VI NGUYÊN CỨU a) Đối tượng nguyên cứu : + Học sinh cấp từ 6, 7, 8, trường THCS Nguyễn hồng Sơn + Các dạng phương trình nghiệm nguyên phương pháp giải b) Phạm vi nguyên cứu : + Học sinh 6,7, 8, trường THCS Nguyễn hồng sơn tham gia vào nhóm học sinh bồi dưỡng dự thi cấp trường , dự thi cấp thi xã, dự thi cấp tỉnh , dự thi giải toán mạng internet + Các dạng phương trình nghiệm nguyên phương pháp giải thuộc chương trình cấp THCS NHIỆM VỤ XÂY DỰNG CHUYÊN ĐỀ Xây dựng hệ thống đơn vị kiến thức phương trình nghiệm nguyên phù hợp với yêu cầu kiến thức chương trình cấp THCS Lập dạng phương pháp giải tương ứng linh hoạt dạng phương trình nghiệm nguyên PHƯƠNG PHÁP NGUYÊN CỨU a) Tài liêu : - Sách giáo khoa môn toán 6, 7, 8, - Sách số học tác giả Hoàng Chúng - Trên mạng internet b) Phương pháp : - Tổng hợp tài liệu , chọn lọc nội dung phù hợp chương trình THCS ,sắp xếp nội dung thành hệ thống logic NỘI DUNG CỦA ĐỀ TÀI a) LÍ THUYẾT 1a Phép chia hết phép chia có dư 1a.1) Hai số nguyên a b ( b>0) Khi chia a cho b ta có a chia hết cho b a không chia hết cho b + a chía hết cho b , kí hiêu a b ta củng nói b chia hết a hay b ước a , a bội b + Định nghĩa : ab ⇔ có số nguyên q cho a = bq + a không chia hết cho b chia a cho b ta thương q số dư r ( < r < b) viết : a = bq + r với < r < b Tổng quát : + Với hai số nguyên a b ( b > ) có hai số nguyên q r ( ≤ r < b) cho a = bq + r Nếu r = a chia hết cho b Nếu r ≠ a không chia hết cho b + Khi chia số nguyên a cho số nguyên b ( b >0) số dư r b số từ đến b – 1a.2) Ước chung lớn bội chung nhỏ + Định nghĩa : - Số nguyên d ước chung a b d ước a d ước b - Số nguyên dương lớn tập hợp ước chuung a b gọi ước chung lướn a b Ước chung lớn a b kí hiêu ƯCLN(a ,b) hay (a,b) - Số nguyên m bội chung a b m a m b - Số nguyên dương nhỏ tập hợp bội chung a, b gọi la bội chung nhỏ a b Bội chung nhỏ a b kí hiêu BCNN(a, b) hay [a , b] 1a.3) Các tính chất chia hết + Nếu (a, b) = gọi a, b hai số nguyên tố + Số nguyên tố số lớn có hai ước Định lí : Mội số nguyên lớn phân tích thừa số nguyên tố cách ( không kể thứ tự thừa số) Định lí : vơi a, b, c số nguyên dương a) ( ac , bc) = c(a,b) a b c c b) , = ( a , b) với c ƯC(a, b) c acb (a,b) = ⇒ c b Định lí : ca , cb (a,b) = ⇒ c Định lí : Định lí 4: Nếu (a, b) =d tồn hai số nguyên x0 , y0 cho ax0 + by0 = d , x0 , y0 xác định thuật toán Ơ-clit • Thuật toán Ơ-clit : a = bq + r với ≤ r ≤ b – (a,b) = (b, r) 2a Đa thức : + Định nghĩa đơn thức : sgk lớp + Định nghĩa đa thức : sgk lớp +Các đẳng thức đáng nhớ : • (a ± b)2 = a2 ± 2ab + b2 • a2 – b2 = (a + b )( a – b ) • ( a ± b)3 = a3 ± 3a2b + 3ab2 ± b3 • a3 ± b3 = ( a ± b)( a2 ab + b2) + Phân tích đa thức thành nhân tử 3a Lũy thừa với số mũ số tự nhiên : sgk lớp + Định nghĩa + Các phép toán + Tính chất 4a Phân thức + Định nghĩa : sgk lớp 5a Các phép biến đổi phương trình + Định nghĩa phương trình nhiều biến : sgk lớp + Định nghĩa nghiệm phương trình : sgk lớp + Định nghĩa hai phương trình tương đương sgk lớp + Các phép đổi phương trình : sgk lớp • Phép chuyễn vế hạn tử • Phép nhân cố khác + Phương trình bậc hai cách giải : sgk lớp 6a Căn thức bậc hai : sgk lớp + Định nghĩa + Các phép biến đổi b) CÁC DẠNG PHƯƠNG TRÌNH NGHIỆM NGHUYÊN VÀ PHƯƠNG PHÁP GIẢI 1b Phương trình bậc hai ẩn ax + by = c (*) a,b nguyên khác Cách giải 1: + Nếu (a,b) = d ≠ c không chia hết cho d phương trình (*) vô nghi + Nếu (a, b, c) = d ≠ Thì ta chia hai vế phương trình (*)cho d để phương trình đơn gian Ví dụ : 6x + 4y = 14 ⇔ 3x + 2y = 12x + 6y = 15 ⇔ 4x + 2y = + Nếu (a ,b) = phương trình (*) có nghiệm nguyên nghiệm xác định : x = x0 + bt y = y0 − at Trong t ∈ Z (x0 ; y0) nghiệm riêng phương trình (*) Xác định nghiệm riêng theo định lí Chứng minh : Ta có (a, b) = ⇒ có hai số nguyên p , q : ap + bq = ⇒ apc +bqc = c Mà ax + by = c nên : a(x – pc ) = b( qc – y) (1) , (a, b) = ⇒ ( x – pc ) b ⇒ có số nguyên t cho : x = pc +bt hay x = x0 + bt (2) Với x0 = pc Thay (2) vào (1) : abt = b(qc – y) ⇒ y = qc – at hay y = y0 – at với y0 = qc Ví dụ : Giải phương trình 40x + 31y = Giải : Ta có (40,31) = nên phương trình có nghiệm nguyên Tìm nghiệm riêng : 40 = 31.1 + 31 = 9.3 + = 4.2 + ⇒ 40.7 + 31.( -9) = ⇒ x0 = , y0 = - ⇒ Phương trình có nghiệm x = + 31t , y = - – 40t với t ∈ Z Cách giải : Dùng tính chất chia hết để xét nghiệm hệ số a, b , c Ví dụ : Tìm nghiệm nguyên phương trình: 11x + 18y = 120 Giải: Ta thấy 11x6 nên x6 Đặt x = 6k (k nguyên) Thay vào (1) rút gọn ta được: 11k + 3y = 20 Biểu thị ẩn mà hệ số có giá trị tuyệt đối nhỏ (là y) theo k ta được: y= 20 − 11k Tách riêng giá trị nguyên biểu thức này: y = − 4k + Lại đặt k −1 k −1 = t với t nguyên suy k = 3t + Do đó: y = − 4(3t + 1) + t = − 11t x = 6k = 6(3t + 1) = 18t + Thay biểu thức x y vào (1), phương trình nghiệm Vậy nghiệm nguyên (10 biểu thị công thức: x = 18t + với t số nguyên tùy ý y = − 11t Cách giải: - Rút gọn phương trình, ý đến tính chia hết ẩn - Biểu thị ẩn mà hệ số có giá trị tuyệt đối nhỏ (chẳng hạn x) theo ẩn - Tách riêng giá trị nguyên biểu thức x - Đặt điều kiện để phân bố biểu thức x số nguyên t1 , ta phương trình bậc hai ẩn y t1 - Cứ tiếp tục ần biểu thị dạng đa thức với hệ số nguyên 2b) Phương trình bậc ba ẩn Công nhận tính chất : Người ta chứng minh : Một phương trình bậc n ẩn ( sau chia hai vế phương trình cho UCLN hệ số nó) có nghiệm nguyên hệ số ẩn nguyên tố Ví dụ 1: Giải phương trình 2x – 5y – 6z = Giải : Phương trình có nghiệm nguyên (2,5,6) = Ta có ( 2, 5) = nên đưa phương trình dạng 2x – 5y = + 6z Lấy z= u với u tùy ý ∈ Z , đặc c = + 6u Khi ta có phương trình 2x – 5y = c Phương trình có nghiệm riêng x0 = 3c , y0 = c nghiệm tổng quát x = 3c – 5t , y = c – 2t với t ∈ Z Thay c = + 6u vào nghiệm tổng quát 2x – 5y = c ta có nghiệm tổng quát phương trình 2x – 5y – 6z = x = 12 − 18u − 5t y = + 6u − 2t z = u Trong u ,t ∈ Z Ví dụ : Phương trình có hệ số 1ẩn Giải phương trình 6x + y +3z = 15 Nhận xét : x , z lấy giá trị nghuyên ta củng có giá trị y nguyên tương ứng Vậy phương trình có nghiệm tổng quát : x = u y = 15 − 6u − 3t z = t Trong u ,t ∈ Z 3b) Phương trình bậc hai hai ẩn Ví dụ Tìm nghiệm nguyên phương trình: 5x – 3y = 2xy – 11 Giải: Biểu thị y theo x: (2x + 3)y = 5x + 11 Dễ thấy 2x + ≠ ( x nguyên ) đó: x + 11 x+5 =2+ 2x + 2x + Để y ∈ ¢ phải có x + 52 x + ⇒ 2( x + 5)2 x + ⇒ x + + 72 x + ⇒ 72 x + y= Ta có: 2x + X Y -1 -1 -2 -1 -7 -5 Thử lại cặp giá trị (x , y) thỏa mãn phương trình cho Ví dụ 2:Tìm nghiệm nguyên phương trình: x − x − 11 = y Giải: Cách 1: Đưa phương trình ước số: x − x + − 12 = y ⇔ ( x − 1) − y = 12 ⇔ ( x − + y )( x − − y ) = 12 Ta có nhận xét: a) Vì (1) chùa y có số mũ chẵn nên giả thiết y ≥ Thế x −1+ y ≥ x −1− y b) ( x − + y ) − ( x − − y ) = y nên x − + y x − − y tính chẵn lẻ Tích chúng 12 nên chúng chẵn Với nhận xét ta có hai trường hợp: x–1+y x–1-y -2 -6 Do đó: x-1 y x Đáp số: (5 ; 2), (5 ; -2), (-3 ; 2), (-3 ; -2) Cách 2: -4 -3 Viết thành phương trình bậc hai x: x − x − (11 + y ) = V' = + 11 + y = 12 + y Điều kiện cần để (2) có nghiệm nguyên: V' số phương ⇔ 12 + y = k ( k ∈ ¥ ) ⇔ k − y = 12 ⇔ ( k + y )( k − y ) = 12 Giả sử y ≥ k + y ≥ k – y k + y ≥ (k + y) – (k – y) = 2y nên k + y k – y tính chẵn lẻ phải chẵn Từ nhận xét ta có: k + y = k − y = Do đó: y = Thay vào (2): x − x − 15 = ⇒ x1 = 5, x2 = −3 Ta có bốn nghiệm: (5 ; 2), (5 ; -2), (-3 ; -2), (-3 ; 2) Ví dụ 4: Tìm nghiệm nguyên phương trình: x + y + 3xy − x − y + = (1) Giải: Viết thành phương trình bậc hai x: x + (3 y − 1) x + (2 y − y + 3) = (2) V= (3 y − 1) − 4(2 y − y + 3) = y − y − 11 Điều kiện cần đủ để (2) có nghiệm nguyên V số phương ⇔ y − y − 11 = k ( k ∈ ¥ ) (3) Giải (3) với nghiệm nguyên ta y1 = 5, y2 = −3 Với y = thay vào (2) x + 14 x + 48 = Ta có: x1 = −8, x2 = −6 Với y = -3 thay vào (2) x − 10 x + 24 = Ta có x3 = 6, x4 = Đáp số: (-8 ; 5), (-6 ; 5), (6 ; -3), (4 ; -3) 4b) Phương trình chứa thức Ví dụ 1: Tìm nghiệm nguyên phương trình: y = x + x −1 + x − x −1 Giải: Điều kiện: x ≥ y = ( x − 1) + + x − + ( x − 1) + − x − =| x − + | + | x − − | = x − + 1+ | x − − | Xét hai trương hợp: a) Với x = y =2 b) Với x ≥ y = x − + + x − − = x − Do đó: y = 4( x − 1) Do x ≥ nên đặt x – = t với t nguyên dương x = t2 + Ta có: y = 2t Kếtt luận: nghiệm phương trình là: (1 ; 2), ( t + ; 2t) với t số nguyên dương tùy ý Ví dụ 2: Tìm nghiệm nguyên phương trình: x+ x+ x+ x = y Giải: Ta có: x ≥ 0, y ≥ Bình phương hai vế chuyển vế: x + x + x = y − x = k (k ∈ ¥ ) Bình phương hai vế chuyển vế: x + x = k − x = m(m ∈ ¥ ) Bình phương hai vế: x + x = m2 Ta biết với x nguyên x số nguyên số vô tỉ Do x + x = m (m ∈ ¥ ) nên x không số vô tỉ Do x số nguyên số tự nhiên Ta có: x ( x + 1) = m Hai số tự nhiên liên tiếp x x + có tích số phương nên số nhỏ 0: x =0 Suy ra: x = 0; y = thỏa mãn phương trình cho Nghiệm phương trình (0 ; 0) Ví dụ 3: Tìm nghiệm nguyên phương trình: x + y = 1980 (1) Giải: x = 1980 − y (2) Với điều kiện ≤ x, y ≤ 1980 : (2) ⇔ x = 1980 + y − 1980 y ⇔ x = 1980 + y − 12 55 y Do x, y nguyên nên 12 55y nguyên Ta biết với y nguyên 55y số nguyên số vô tỉ Do 55y số nguyên, tức 55y số phương: 11.5.y = k Do đó: y = 11.5.a = 55a với a ∈ ¥ Tương tự: x = 55b với b ∈ ¥ Thay vào (1): a 55 + b 55 = 55 ⇔a+b=6 Giả sử y ≤ x a ≤ b Ta có: y = 55b2 A b x = 55a 1980 55 1375 220 880 3 495 495 Có đáp số: (0 ; 1980), (1980 ; 0), (55 ; 1375), (1375 ; 55), (220 ; 880), (880 ; 220), (495 ; 495) c) Bài tập Bài Tìm nghiệm nguyên phương trình : a) 5x +3y = ; b) 32x – 40y = 38 c) 38x + 117y = 15 ; d) 21x – 17y = -3 e) 2x + 3y + 5z = 15 ; f) 23x – 53y + 80z = 101 Bài Tìm số tự nhiên chia hết cho chia cho , , 4, , cho số dư Bài Tìm năm sinh nhà thơ Nguyễn Du , biết ông sống không 86 năm năm 1786 tuổi ông tổng chữ số năm ông sinh Bài Tìm nghiệm nguyên dương phương trình: xy2 + 2xy – 243y + x = Hướng dẫn: Ta có xy2 + 2xy – 243y + x = ⇔ x(y + 1)2 = 243y (1) Từ (1) với ý (y + 1; y) = ta suy (y + 1) ước 243 Vậy (x, y) = (54, 2) ; (24, 8) Bài Tìm x, y ∈ ¢ thỏa mãn : 2x2 – 2xy = 5x – y – 19 Tìm tất cặp nghiệm nguyên (x, y) thỏa mãn : y(x – 1) = x2 + Hướng dẫn: Ta có y(x – 1) = x2 + ⇒ y = x2 + = x +1+ x −1 x −1 Bài Tìm nghiệm nguyên phương trình sau : a) 15x2 – 7y2 = b) 29x2 – 28y2 = 2000 c) 1999x2 – 2000y2 = 2001 Hướng dẫn: a) Từ phương trình cho ta suy y chia hết cho Đặt y = 3y1 Ta có 5x2 – 21y12 = (1) Từ (1) suy x chia hết cho Đặt x = 3x1 Ta có 15x12 – 7y12 = (2) Từ (2) suy y12 ≡ -1 (mod 3), vô nghiệm b) Từ phương trình cho ta suy x2 ≡ (mod 7) Vậy phương trình cho vô nghiệm c) Từ phương trình cho ta suy x2 ≡ -1 (mod 4) Vậy phương trình cho vô nghiệm Bài Tìm x, y nguyên thỏa mãn : x2y2 – x2 – 8y2 =2xy Hướng dẫn: Viết lại phương trình cho dạng: y2(x2 – 7) = (x + y)2 (1) Phương trình cho có nghiệm x = y = Xét x, y ≠ Từ (1) suy x2 – số phương Đặt x2 – = a2, ta có (x – a)(x + a) = Từ tìm x Đáp số: (0, 0) ; (4, -1) ; (4, 2) ; (-4, 1) ; (-4, -2) Bài Tìm nghiệm nguyên dương phương trình : x+2 = y+ z Hướng dẫn: Vì vai trò x, y, z nên giả sử y ≥ z Từ phương trình cho ta suy x + = y + z + yz Suy ( x − y − z ) + 3( x − y − z ) = yz − 12 (1) Vì số vô tỉ nên từ (1) ta suy : x – y – z = 4yz – 12 = ⇒ yz = ⇒ y = 3, z = x = y + z =4 Đáp số : phương trình có nghiệm (4; 3; 1) (4; 1; 3) Bài Tìm số nguyên không âm x, y cho : x2 = y2 + y + Hướng dẫn: Nếu y = x = Nếu y ≥ từ phương trình cho ta suy y < x < y + 1, vô lí Bài 10 Tìm nghiệm x , y nguyên dương phương trình : y2 = x2 + 12x + 1995 (1) Ta có (1) ⇔ y2 = (x + 6)2 + 1959 ≥ 1959 ⇒ y ≥ 45 Ta có -1959 = (x + 6)2 - y2 = (x + y + 6)(x - y + 6) với x + y + ≥ 52 1959 = 653 Bài 11 Tìm số tự nhiên có chữ số biết chia cho 131 dư 112 chia cho 132 dư 98 ( HSG Bến tre ) 2 Bài 12 Tìm nghiệm nguyên phương trình 3x + 2xy + 5y = 45 ( HSG Bến tre) Bài 13 Cho phương trình x2 – 2(m – 1)x + m – = ( m tham số ) (*) 10 a) Cm phương trình (*) có hai nghiệm phân biệt với m b) Tìm số nguyên m cho hai nghiệm x1, x2 (*)củng số nguyên ( HSG Gia Lai ) Bài 14 Cho phương trình x – 2ax – (a + 3) = ( a tham số ) ( 1) a) giải (1) với a = b) Tìm a nguyên cho ( 1) có nghiệm nguyên ( HSG Hải Phòng ) 2 Bài 15 Tìm nghiệm nguyên phương trình 5( x + xy + y ) = ( x + 2y) ( HSG Nghệ An ) II.NỘI DUNG SÁNG KIẾN KINH NGHIỆM CHƯƠNG I : CƠ SỞ LÝ LUẬN LIÊN QUAN ĐẾN ĐỀ TÀI CƠ SỞ PHÁP LÝ - Căn theo hế hoach năm học 2011 – 2012 trường THCS Nguyễn hồng Sơn - Căn kế hoạch tổ chuyên môn năm học 2011 – 2012 tổ toán trường THCS Nguyễn hồng Sơn - Căn vào kế hoach cá nhân đăng kí năm học 2011 – 2012 cá nhân - Căn vào phân phối chương trình giảng dạy yêu cầu kiến môn toán sở GD & ĐT ban hành CƠ SỞ LÝ LUẬN - Phương trình nghiệm nguyên dạng phương trình mà ta cần tìm nghiệm số nguyên - Phương trình nghiệm nguyên có đề cập đến tập sách giáo khoa chương trình chuẩn kiến thức kỉ dạng toán khó thường cho tập nâng cao , kì thi HSG , thi giải toán mạng internet Do việc nguyên cứu dạng phương trình nghiệm nguyên phương pháp giải dạng phương trình nghiệm nguyên cần thiết để bồi dưỡng cho học sinh kiến thức phù hợp phương trình nghiệm nguyên nhằm trang bị cho em kiến thức kỉ để không lúng túng giải toán giải phương trình nghiệm nguyên kì thi 3.CƠ SỞ THỰC TIỂN - Khi mở rộng toán 105 –trang 97 sgk toán : Tìm số nguyên a, b biết ab = đa số học sinh tìm a = , b = Mà không tìm hết cặp số nguyên a , b toán - Khi giải toán violympio mạng có toán : tìm x , y nguyên dương biết 11 xy – x – y = học sinh giải phương pháp mà học sinh đoán x = , y = -1 Chính sở thực tế mà xây dựng sáng kiến kinh nghiệm với đề tài : “ Các dạng phương trình nghiệm nguyên cấp THCS” CHƯƠNG II : THỰC TRẠNG CỦA SÁNG KIẾN KINH NGHIỆM KHÁI QUAT PHẠM VI - Các dạng cách giải phương trình nghiệm nguyên giới hạn chương trình nội dung đơn vị kiến thức cấp THCS - Đối tượng áp dụng sáng kiến kinh nghiệm “ số dạng phương trình nghiệm nguyên cấp THCS” học sinh trường THCS nguyễn hồng sơn chủ yếu số học sinh đội tuyển thi cấp trường , cấp thị xã , thi violympia , học sinh giỏi lớp 6,7, 8, THỰC TRẠNG CỦA SÁNG KIẾN KINH NGHIỆM - Khi áp dụng sáng kiến kinh nghiệm “ Số dạng phương trình nghiệm nguyên cấp THCS” vào trường THCS nguyễn hông Sơn kết sau : Bài toán : Tìm hai số nguyên a, b biết ab = kiểm tra 15’ ( 2đ) Điểm 0,5 Lớp 6a 24 6b 24 Bài toán : tìm nghiêm nguyên phương trình xy – x – y = cho 11 Hs thi violympia trường THCS Nguyễn hồng Sơn kết : Học sinh Giải Giải 75% TRẦN NGUYỄN NGỌC LANH TRẦN LÊ DẠ QUỲNH HỒ TRẦN ANH THƯ HỒ THỊ KIM NGÀ LƯU HỒNG NGỌC CAO THỊ MỸ QUỲNH TRẦN THỊ HỒNG LOAN HỒ NHẬT NINH TRẦN THỊ THANH MỸ TRẦN VĂN THỤ HỒ THỊ HỒNG LUYẾN Biến đổi 1+ x thành y = x −1 Không giải mà không làm tiếp x x X x x x x X x x X 12 NGUYÊN NHÂN CỦA THỰC TRẠNG - So sánh kết ban đầu lúc chưa triển khai “ Số dạng phương trình nghiệm nguyên cấp THCS” kết sau triển khai “ Số dạng phương trình nghiệm nguyên cấp THCS” có đánh giá sau : + Kiến thức chương trình tương đối đủ để trang bị cho học sinh cấp THCS giải số dạng phương trình nghiệm nguyên theo yêu cầu chuẩn kiến thức kỉ dạng tập ( sgk ) giáo viên bồi dưỡng HSG dạy cá toán chia hết mà không dạy phương trình nghiệm nguyên nên học sinh lúc ban đầu phương pháp giải toán phương trình nghiệm nguyên + Khi triển khai dạy “ Số dạng phương trinhg nghiệm nguyên cấp THCS” theo kết lạc quan CHƯƠNG III :BIỆN PHÁP ,GIẢI PHÁP CHỦ YẾU ĐỂ THỰC HIỆN SÁNG KIẾN KINH NGHIỆM CƠ SỞ ĐỀ XUẤT CÁC GIẢI PHÁP - Theo kế hoạch năm học trường THCS Nguyễn hồng Sơn xây dựng đội ngủ HSG trường từ lớp 6, 7, , để bồi dưỡng khếu học toán cho em để em tham gia kì thi HSG cấp trường ,cấp thị xã, thi violympia -Nôi dung kiến thức phương trình nghiệm nguyên phù hợp với nội dung chương trình toán THCS ban hành CÁC GIẢI PHÁP CHỦ YẾU - Thực giảng dạy lý thuyết tập phương trình nghiệm nguyên theo cấp học TỔ CHỨC VÀ TRIỂN KHAI THỰC HIỆN - Soạn giáo án cho tiết dạy - Đưa tập phương trình nghiệm nguyên phù hợp theo cấp học cho học sinh nhà xem dạng tập nâng cao - Đưa tập phương trình nghiệm nguyên vào tiết kiểm tra định kì tùy thuộc vào cấp học dạng tập khó để phân loại - Lập đội HSG cấp học dành tiết để giảng dạy phương trình nghiệm nguyên theo cấp học III KẾT LUẬN VÀ KIẾN NGHỊ KẾT LUẬN : - Sáng kiến kinh nghiệm đươc xây dựng bước đầu triển khai trường THCS Nguyễn hồng Sơn thu kết cho phép lạc quan tính hệ thống hiệu ứng dụng Tuy nhiên với trình độ hạn chế khả chưa chuyên sâu phương trình nghiệm nguyên nên viết dạng phương trình nghiệm nguyên cáh giải chưa đầy đủ ,phong phú vốn có phương trình nghiệm nguyên chẳn hạn dang x + y2 = z2 , x2 + Py2 = vói P số không phương Các tập ứng dụng trực tiếp vào tiết học cho học sinh cấp không sưu tầm nhiều mong muốn KIẾN NGHỊ : 13 - Vói hạn chế nhận thấy phần kết luận , tha thiết yêu cầu đồng nghiệp tổ toán trường THCS Nguyễn hồng Sơn chân thành góp ý kiến bổ sung để xây dựng “ Số dạng phương trình nghiệm nguyên” hoàn chỉnh hệ thống lí thuyết dạng tập Tôi tha thiết yêu cầu Hội đồng khoa học cấp cho đánh giá ưu điểm , khuyết điểm viết thật rỏ ràng để , với tinh thần cầu thị , rút kinh nghiệm Tx Sông cầu , ngày 26 tháng 12 năm 2011 Bùi xuân Phong PHẦN ĐÁNH GIÁ CỦA HỘI ĐỒNG KHOA HỌC CÁC CẤP DANH MỤC CÁC TÀI LIỆU THAM KHẢO Sách giáo khoa toán 6,7,8,9 Số học Hoàng Chúng Trang wep vnmath , trang wep violet Bài thi violympia năm 2010 – 2011 14 [...]... LUẬN - Phương trình nghiệm nguyên là dạng phương trình mà ta cần tìm nghiệm là số nguyên - Phương trình nghiệm nguyên có ít đề cập đến trong các bài tập của sách giáo khoa và chương trình chuẩn kiến thức kỉ năng vì đây là dạng toán khó và thường được cho trong các bài tập nâng cao , các kì thi HSG , thi giải toán trên mạng internet Do vậy việc nguyên cứu các dạng phương trình nghiệm nguyên và phương. .. x x X x x x x X x x X 12 3 NGUYÊN NHÂN CỦA THỰC TRẠNG - So sánh kết quả ban đầu lúc chưa triển khai “ Số dạng phương trình nghiệm nguyên ở cấp THCS” và kết quả sau khi triển khai “ Số dạng phương trình nghiệm nguyên ở cấp THCS” thì tôi có đánh giá sau : + Kiến thức trong chương trình tương đối đủ để trang bị cho học sinh cấp THCS giải được một số dạng phương trình nghiệm nguyên nhưng vì theo yêu cầu...a) Cm phương trình (*) có hai nghiệm phân biệt với mọi m b) Tìm số nguyên m sao cho hai nghiệm x1, x2 của (*)củng là các số nguyên ( HSG Gia Lai ) 2 Bài 14 Cho phương trình x – 2ax – (a + 3) = 0 ( a là tham số ) ( 1) a) giải (1) với a = 2 b) Tìm a nguyên sao cho ( 1) có nghiệm nguyên ( HSG Hải Phòng ) 2 2 Bài 15 Tìm các nghiệm nguyên của phương trình 5( x + xy + y ) = 7 ( x... phương pháp giải các dạng phương trình nghiệm nguyên là cần thiết để bồi dưỡng cho các học sinh kiến thức phù hợp về phương trình nghiệm nguyên nhằm trang bị cho các em kiến thức và kỉ năng để không quá lúng túng khi giải các bài toán giải phương trình nghiệm nguyên trong các kì thi 3.CƠ SỞ THỰC TIỂN - Khi mở rộng bài toán 105 –trang 97 sgk toán 6 : Tìm các số nguyên a, b biết ab = 5 đa số học sinh chỉ... nhưng vì theo yêu cầu chuẩn kiến thức kỉ năng và dạng bài tập quá ít ( hầu như là không có trong sgk ) và vì các giáo viên bồi dưỡng HSG chỉ dạy về cá bài toán chia hết mà không dạy về phương trình nghiệm nguyên nên học sinh lúc ban đầu không có phương pháp giải các bài toán về phương trình nghiệm nguyên + Khi triển khai dạy “ Số dạng phương trinhg nghiệm nguyên ở cấp THCS” thì theo kết quả trên tôi rất... II : THỰC TRẠNG CỦA SÁNG KIẾN KINH NGHIỆM 1 KHÁI QUAT PHẠM VI - Các dạng và cách giải phương trình nghiệm nguyên được giới hạn trong chương trình và nội dung các đơn vị kiến thức ở cấp THCS - Đối tượng áp dụng sáng kiến kinh nghiệm “ số dạng phương trình nghiệm nguyên ở cấp THCS” là học sinh trường THCS nguyễn hồng sơn và chủ yếu là số học sinh trong đội tuyển thi cấp trường , cấp thị xã , thi violympia... hiện giảng dạy lý thuyết và bài tập về phương trình nghiệm nguyên theo từng cấp học 3 TỔ CHỨC VÀ TRIỂN KHAI THỰC HIỆN - Soạn giáo án cho các tiết dạy - Đưa các bài tập về phương trình nghiệm nguyên phù hợp theo cấp học cho học sinh về nhà và xem là dạng bài tập nâng cao - Đưa bài tập phương trình nghiệm nguyên vào các tiết kiểm tra định kì tùy thuộc vào cấp học ở dạng bài tập khó để phân loại - Lập đội... giỏi trong lớp 6,7, 8, 9 2 THỰC TRẠNG CỦA SÁNG KIẾN KINH NGHIỆM - Khi áp dụng sáng kiến kinh nghiệm “ Số dạng phương trình nghiệm nguyên ở cấp THCS” vào trường THCS nguyễn hông Sơn thì được kết quả như sau : Bài toán : Tìm hai số nguyên a, b biết ab = 5 trong kiểm tra 15’ ( 2đ) Điểm 0,5 1 2 Lớp 6a 24 5 6b 24 4 Bài toán : tìm nghiêm nguyên của phương trình xy – x – y = 1 cho 11 Hs thi violympia của trường... về phương trình nghiệm nguyên theo từng cấp học III KẾT LUẬN VÀ KIẾN NGHỊ 1 KẾT LUẬN : - Sáng kiến kinh nghiệm của tôi đã đươc xây dựng và bước đầu triển khai ở trường THCS Nguyễn hồng Sơn và thu được kết quả cho phép tôi rất lạc quan về tính hệ thống và hiệu quả ứng dụng của nó Tuy nhiên với trình độ còn hạn chế và khả chưa chuyên sâu về phương trình nghiệm nguyên nên bài viết về các dạng phương trình. .. cặp số nguyên a , b của bài toán - Khi giải toán violympio trên mạng có bài toán : tìm x , y nguyên dương biết 11 xy – x – y = 1 thì không có học sinh nào giải được đúng phương pháp mà chỉ một học sinh đoán được x = 0 , y = -1 Chính vì cơ sở thực tế trên mà tôi xây dựng sáng kiến kinh nghiệm với đề tài : “ Các dạng phương trình nghiệm nguyên ở cấp THCS” CHƯƠNG II : THỰC TRẠNG CỦA SÁNG KIẾN KINH NGHIỆM