1. Trang chủ
  2. » Giáo Dục - Đào Tạo

TOÁN CAO CẤP DÀNH CHO SINH VIÊN ĐẠI HỌC

262 516 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 262
Dung lượng 2,69 MB

Nội dung

Giải pháp giúp sinh viên có những phương pháp học đơn giản hiệu quả , việc học tìm hiểu kiến thức trở nên nhẹ nhàng hơn, vấn đề được hiểu rõ ràng không đánh đố , gây khó khăn cho ngườChi tiết sản phẩm :1Tích phân hai lớp, bội 2, kép2Tích phân mặt loại 13Tích phân đường loại 2 dạng green4Tich phân bội 3, 3 lop5Tích phân mặt loại 26 Phương trình vi phân

Lý thuyết : Tính tích phân kép (hai lớp, bội 2) tính thể tích y  ham or const V   Zdxdy   D D  xconst f ( x ; y )dy   dx   xconst yham or const f ( x ; y )dxdy   yconst xham or const   dy xhamor const f ( x ; y)dx  yconst const thẳng Khi hàm Z =1 tích diện tích S=  1dxdy quy ước D Kiến thức cần nhớ! : Vẽ Tất đồ thị học y  x  y  2x   y  3x  + đường thẳng : y  ax  b, a x  by  C    y  3x   x  y   y   x x  y   y   x   x   y y  x2     x   y  x   1 y  y  1 x2    x    y   x  1 y 1   y  ax  bx  c  y  x  2x  y   x  2x   y   (x  1)      x   y   x  ay  by  c   y   x x  y     y   x   y   x  x   y     y    x   y  2x  : đường Tính chất tích phân kép : a) Nếu f ( x ; y) hàm lẻ x ; nghĩa : f ( x ; y)   f ( x ; y) miền D có trục đối xứng qua oy  f ( x ; y )dxdy  D b) Nếu f ( x ; y) hàm lẻ y ; nghĩa : f ( x ;  y)   f ( x ; y) miền D có trục đối xứng qua ox  f ( x ; y )dxdy  D c) Nếu f ( x ; y) hàm lẻ x ;nghĩa : f ( x ; y)  f ( x ; y) miền D có trục đối xứng qua oy  f ( x ; y )dxdy   f ( x ; y )dxdy Với D’ phần D mà x  D D' Công thức đổi biến sang tọa độ cực : x  r cos  Đặt   y  r sin  I  D(X;Y) x  y2  r J  r f (x; y)dxdy   D(X;Y)    D x ,y  D / ,r    r (rcos ;rsin ) J drd  D(X;Y) (rcos ;rsin ) r drd Dạng : Parabol, đường thẳng : Bài :10/08/2015 x  0,y  Vẽ miền D :  tính tích phân kép hàm số f ( x ; y)  x  y miền D x  y  Giải Vẽ hình Cố định x, tính tích phân theo y 1 x  y2  x  I   dx  (2 x  y )dy    xy   dx  0 0  (1  x)2     x.(1  x)   dx  0  Cố định y, tính tích phân theo x 1 y 1  1 y  I   dy  (2 x  y )dx    x  xy  dy  0 0    (1  y )  (1  y ) y  dy  Bài 2: 30/12/2008 2 x2 Đổi thứ tự lấy tích phân sau: I =  dx 2  f ( x ; y )dy x Giải 2 x2 I =  dx  2 x   x2  f ( x ; y ) dy    y  dx     x  x  dx  x 2  2  y I =D1 +D =  dy 2  1dx   dy  2 y 2 y  1dx  2 y 2  y  2 y   dy =  x  dy +   x       y 2     2 y 1   =  y   y dy +  2 =    y   y dy 19  1,333333333  4,5 Bài : Tính I   xy dxdy D Y   D giao đường Y  X X  Y   Giải y   Phải vẽ đường  y  x để tìm miền D  y   x  Vẽ hình Cố định y, tính tích phân theo x 1  x2y  y  (2  y)2 y  I   dy  xy dx      dy      2 y 0 0 y   y 1  y  y  dy      (2  y)2 y y  0    dy  24 Cố định x, tính tích phân theo y x2 I   dx  xydy   dx 0  x2    x  0  2 x   y x2   y2  x  xydy    x dx    x  dx     0  2  2 2   x  x2  x x    dx   x  dx   dx    x     2 1 1    x  x  x3  x  dx   dx      2 1     12 24 24        dx   Bài 4: Tính tích phân I =  xydxdy ,nếu D giới hạn đường cong y  x  4, y2  2x D Giải   y2    y  4 y 4   y 4  4  ( y  4) y y  x y ( y  4) y       I =  xydxdy =  dy  xy dx   dy       dy  90  dy     y  2  D 2 2  2 2   y         2x I =D1 +D =  dx xydy   dx   2x 2x  xydy x4  xy  xy 2 x  2x   dx +   =   dx    2 x   2x  2   2 2 x 8 x 2x x  2x  2x  dx +  =   2    2 0          2  x  x  4   dx     x.2 x x  x  2   x.2 x x.2 x  I =     dx   90  dx +    2 2   2  Bài Tính diện tích giới hạn y  x  y  x Giải Vẽ hình Cố định x, tính tích phân theo y x 3  x  I   dx  1dy    y  dx   x  x  dx  27  x  6 0 x 6   Cố định y, tính tích phân theo x y 6 I   dy  6 y 6 1dx   dy  y 1dx   y  dy   6   y   y dy  27 Bài 6: Đổi thứ tự lấy tích phân sau: I =  dy y2  y  f ( x ; y )dx Giải Cố định y : y2  y I =  dy  f ( x ; y ) dx   dy 0 y2  y   y2  1dx    x  0 y  dy    y  y  dy   Cố định x :    1   I =  dx  1dy =   y dx =   x    dx = 0,833333333334 1    x  0 0 1    x   2 y2  y  x 1  y2  y   x  4 1   y  2   y  x 1 1   x  y    x 4 x2 2 Bài Đổi thứ tự tính tích phân sau : I =  dx  f ( x ; y ) dy x 2 x  Giải x2  I =  dx  x2   f ( x ; y )dy     y  dx   x   ( x  x  2) dx   x  2x   0    x 2 x   Cố định y, tính tích phân theo x 1 y 1 I   dy 1 y 1 1dx   dy  1 y 1  y 2 2  2  5 1dx   1  y    y   dy   1  y   y   dy 1 2 1 2 16 x 2 Bài Đổi thứ tự tính tích phân sau : I =  dx  f ( x ; y ) dy x  x2 Giải 16 x I =  dx  xx 2 16  x   dx  f ( x ; y )dy     y 0  x  x    Cố định y, tính tích phân theo x  16 y 12 I  dy  16  y 1dx   12 dy   16  x  x  x dx  2,7394  1 y  1dx    x  xy  dy  2,7934 0  x2 Bài 9: Đổi thứ tự lấy tích phân : I =  dx  f ( x ; y) dy   dx 0 3 x f ( x ; y )dy  Giải I   dy 3 y  1dx  1,333 y Bài 10: Đổi thứ tự tính tích phân sau: I   dy 4 y f ( x ; y )dx   dy  4 y 2 4 y  f ( x ; y )dx Giải Bài 11 : 05/06/2015 2 Cho I =  dy  f ( x ; y )dx   dy  f ( x ; y )dx Vẽ miền lấy đổi thứ tự tích phân y y Giải Bài 12: Giả sử mật độ dân số (đơn vị : ngàn người/ km ) thành phố cho  x2  y hàm số p(x, y)  5000e (trong x,y có đơn vị km) Hãy ước lượng dân số vòng bán kính 1km xunh quanh tòa nhà thị (được đặt gốc tọa độ) Giải  yr  x   Qn  x  e x   Ax  B e1x  e x  Ax  B (1) Tính đạo hàm cấp nè  y'r  x   ex  Ax  B  ex A (2) Tính đạo hàm cấp nè  y''r  x   e x  Ax  B   e x A  ex A  e x  Ax  B   2e x A Thế (1), (2), (3) vào (*) ta có : y '' y  4xe x (*)  e x  Ax  B   2e x A  e x  Ax  B   4xe x  2e x  Ax  B   2e x A  4xe x  Ax  B  A  2x A  A    y r  x   e x  Ax  B   e x  2x     B  A  B  2  nghiệm tổng quát phương trình : y(x)  yo (x)  yr (x)  C1Cos x+C2Sin x  e x  2x   (3) x   Bài : y'' 4y' 4y  e x  (*) Giải Giải PT : y '' 4y ' 4y  Phương trình đặc trưng : K  4K    K   yo (x)  C1 e2.x  C2 x.e2.x x   C1 ,C2  R   Vế phải e x  có   nghiệm pt đặc trưng  y r  x   Q n  x  e  x   A x  Bx  C  e1.x  e x  A x  Bx  C  (1) Tính đạo hàm cấp nè  y 'r  x   e x  A x  Bx  C   e x  A x  B  (2) Tính đạo hàm cấp nè  y ''r  x   e x  A x  Bx  C   e x  A x  B   e x  A x  B   e x A  e x  A x  Bx  C   2e x  A x  B   e x A (3) Thế (1), (2), (3) vào (*) ta có : y'' 4y' 4y  e x  x  1 (*)  e x  A x  Bx  C   2e x  2A x  B   e x 2A  e x  A x  Bx  C   e x  2A x  B    4.e x  A x  Bx  C   e x  x  1  e x  A x  Bx  C   2e x  2A x  B   e x 2A  e x  x  1   A x  Bx  C    2A x  B   2A  x   A x  Bx  C  4A x  2B  2A  x   A x   B  4A  x  2B  2A  C  x  A  A     B  4A   B   y r  x   e x  A x  Bx  C   e x  x  4x   2B  2A  C  C     nghiệm tổng quát phương trình : y(x)  C1 e2.x  C2 x.e2.x  ex  x  4x   Bài : y'' 3y' 10y  e 2x  x (*) 24/12/2010 Giải Giải PT : y '' 3y ' 10y  K  K  5 Phương trình đặc trưng : K  3K  10     yo (x)  C1 e2.x  C2 e5.x Bài có hai nghiệm riêng thấy có dấu cộng Thứ ta tìm nghiệm riêng PT : y'' 3y' 10y  e Vế phải pt (** ) e 2x 2x (** ) có   nghiệm pt đặc trưng  y r1  x   xQ n  x  e  x  x A e x (1) Tính đạo hàm cấp  y 'r  x   A e x  2x A e x (2) Tính đạo hàm cấp  y ''r1  x   A e x  A e x  4x A e x  A e x  4x A e x (3) Thế (1), (2), (3) vào (** ) ta có : y'' 3y ' 10y  e 2x (** )  4A e 2x  4x A e 2x  3.(A e 2x  2x A e 2x )  10.x A e 2x  e2x  A e 2x  e2x  7A 1 A  y r1  x   x A e 2x  x e 2x Thứ hai ta tìm nghiệm riêng PT : y'' 3y' 10y  x (** *) Vế phải pt (** *) x có   nghiệm pt đặc trưng  y r  x   Qn  x  e x   A x  B  e0 x  A x  B (4) Tính đạo hàm cấp nè  y'r  x   A (5) Tính đạo hàm cấp nè  y''r  x   (6) Thế (4), (5), (6) vào (** *) ta có : y '' 3y ' 10y  x (** *)   3.A  10.(A x  B)  x  3A  10Ax  10B  x 1  A   10A  1 13 10     yr2  x   A x  B  x  10 100 3A  10B   B  13  100 Bây cộng hai nghiệm riêng lại ta nghiệm riêng tổng : 1 13  y r  x   y r1  x   y r  x   x e2x  x  10 100  nghiệm tổng quát phương trình : 1 13 y(x)  C1 e2.x  C2 e 5.x  x e 2x  x  10 100 x Bài 10 : y'' y  xe  2e x (*) Giải Giải PT : y '' y  K  K  1 Phương trình đặc trưng : K      yo (x)  C1 e1.x  C2 e1.x  C1 ,C2  R  Bài có hai nghiệm riêng thấy có dấu cộng x Thứ ta tìm nghiệm riêng PT : y''  y  xe (** ) x Vế phải pt (** ) xe có   nghiệm đơn pt đặc trưng  y r1  x   x.Q n  x  e x  x  A x  B  e x  e x  A x  B x  (1) Tính đạo hàm cấp nè  y 'r  x   e x (A x  Bx)  e x (2 A x  B) (2) Tính đạo hàm cấp nè  y ''r1  x   e x (A x  Bx)  e x (2 A x  B)  e x (2 A x  B)  e x A  y ''r1  x   e x (A x  Bx)  2e x (2 A x  B)  e x A (3) Thế (1), (2), (3) vào (** ) ta có : y''  y  xe x (** )  e x (A x  Bx)  2e x (2A x  B)  e x 2A  e x  A x  Bx   xe x  2e x (2A x  B)  e x 2A  xe x  2.(2A x  B)  2A  x  4A x  2B  2A  x  A  4A    y x  e x A x  Bx  e x  x  x       4  r1   2B  2A   B    Thứ hai ta tìm nghiệm riêng PT : y'' y  2e Vế phải pt (** *) 2e x x (** *) có   1 nghiệm pt đặc trưng  yr2  x   x.Qn  x  e x  x.A.e x  A xe x Tính đạo hàm cấp nè  y 'r  x   A e  x  A xe  x  (5) Tính đạo hàm cấp nè  y''r  x    A e  x   A e x  A xe x  y ''r  x    A e x  A e  x  A xe  x  y ''r  x   2 A e x  A xe x Thế (4), (5), (6) vào (** *) ta có :  (4) y'' y  2e  x  2 A e  x  A xe  x  A xe x  2e  x   2A e  x  2e  x  2 A   A  1  y r  x   A xe x   xe x Bây cộng hai nghiệm riêng lại ta nghiệm riêng tổng :  1  y r  x   y r1  x   y r  x   e x  x  x   xe  x  4  nghiệm tổng quát phương trình :  1 y(x)  C1 e1.x  C2 e1.x  e x  x  x   xe x  4 Bài 11 : y'' 4y' 8y  e 2x  sin 2x (*) Giải Giải PT : y '' 4y ' 8y  Phương trình đặc trưng : K  4K    K   2i  a  2;b    yo (x)  ea.x  C1Cos bx+C2Sin bx   e2x  C1Cos 2x+C2Sin 2x   C1 ,C2  R  Bài có hai nghiệm riêng thấy có dấu cộng có e mũ anpha Thứ ta tìm nghiệm riêng PT : y'' 4y' 8y  e Vế phải pt (** ) e 2x (** ) có   nghiệm pt đặc trưng  y r1  x   Q n  x  e  x  A e x Tính đạo hàm cấp nè 2x (1)  y 'r  x   A e x (2) Tính đạo hàm cấp nè  y ''r1  x   A e x (3) Thế (1), (2), (3) vào (** ) ta có : y '' 4y ' 8y  e 2x (** )  4A e 2x  4.2 A e 2x  8A e2x  e 2x  4A e 2x  e2x  4A  1 A  y r1  x   A e2x  e 2x Thứ hai ta tìm nghiệm riêng PT : y'' 4y' 8y  sin 2x Vế phải pt (** *) pt đặc trưng (** *) sin 2x có   0;      i  2i nghiệm  yr2  x    A cos x  Bsinx  e x  ex  A cos x  Bsinx   yr2  x   e0x  Acos 2x  Bsin2x   A cos 2x  Bsin2x (4) Tính đạo hàm cấp nè  y'r  x   2Asin2x  2Bcos 2x (5) Tính đạo hàm cấp nè  y ''r  x   4 A cos 2x  Bsin 2x Thế (4), (5), (6) vào (** *) ta có : (6) y'' 4y' 8y  sin 2x (** *)  4 A cos 2x  Bsin 2x  4. 2 Asin2x  2Bcos 2x   8. A cos 2x  Bsin2x   sin 2x   4A cos 2x  4Bsin 2x  8Asin2x  8Bcos 2x  8A cos 2x  8Bsin2x  sin 2x  4 A cos 2x  8A cos 2x  8Bcos 2x  4Bsin 2x  8Asin2x  8Bsin2x  sin 2x  4A cos 2x  8B cos 2x  4Bsin 2x  8Asin2x  sin 2x   4A  8B  cos 2x   4B 8A  sin 2x  sin 2x  A   4A  8B  1 10     y r  x   A cos 2x  Bsin2x  cos 2x  sin2x 10 20 4B 8A  B   20 Bây cộng hai nghiệm riêng lại ta nghiệm riêng tổng : 1  y r  x   y r1  x   y r  x   e2x  cos 2x  sin2x 10 20  nghiệm tổng quát phương trình : 1 y(x)  e 2.x  C1Cos 2x+C2Sin 2x   e2x  cos 2x  sin2x 10 20 Bài 12 : y'' y' 2y  cos x  3sin x (*) Giải '' ' Giải PT : y  y  2y K  K  2 Phương trình đặc trưng : K  K      yo (x)  C1 e1.x  C2 e2.x  C1 ,C2  R  '' ' Thứ ta tìm nghiệm riêng PT : y  y  2y  cos x (** ) Vì   0,        i không nghiệm phương trình đặc trưng  yr1  x   ex  Acos x  Bsinx   e0x  Acos1x  Bsin1x   Acos x  Bsinx (1) Tính đạo hàm cấp nè  y ' r  x    As inx  B cos x (2) Tính đạo hàm cấp nè  y ' ' r1  x    A cos x  Bsin x Thế (1), (2), (3) vào (** ) ta có : y''  y'  2y  cos x (** )   A cos x  Bsin x  Asinx  Bcos x  2. A cos x  Bsinx   cos x   A cos x  Bsin x  Asinx  Bcos x  2A cos x  2Bsinx  cos x   A cos x  Bcos x  2A cos x  Bsin x  Asinx  2Bsinx  cos x    A  B 2A  cos x   B A +2B  sin x  cos x  A      A  B 2A   B 3A  10       B A +2B      3B A   B   10  y r1  x   A cos x  Bsinx   cos x  sinx 10 10 Thứ hai ta tìm nghiệm riêng PT : y'' y' 2y  3sin x (** *) Vì   0,        i không nghiệm phương trình đặc trưng  yr  x   ex  Acos x  Bsinx   e0x  Acos1x  Bsin1x   Acos x  Bsinx (1) Tính đạo hàm cấp nè  y ' r  x    As inx  B cos x (2) Tính đạo hàm cấp nè  y ' 'r  x    A cos x  Bsin x Thế (1), (2), (3) vào (** *) ta có : y'' y' 2y  3sin x (***)   A cos x  Bsin x  Asinx  Bcos x  2. A cos x  Bsinx   3sin x   A cos x  Bsin x  Asinx  Bcos x  2A cos x  2Bsinx  3sin x   A cos x  Bcos x  2A cos x  Bsin x  Asinx  2Bsinx  3sin x    A  B 2A  cos x   B A +2B  sin x  3sin x  A    A  B 2A  B 3A  10      B A +2B   3   3B A   3 B   10  y r  x   A cos x  Bsinx  cos x  sinx 10 10 Bây cộng hai nghiệm riêng lại ta nghiệm riêng tổng :  y r  x   y r1  x   y r  x    3 cos x  sinx  cos x  sinx = sinx 10 10 10 10  nghiệm tổng quát phương trình : y(x)  C1 e1.x  C2 e2.x  sinx Phương trình vi phân tuyến tính cấp (hay thi) Dạng : 1.y'' P y' q.y  f  x  Nghiệm tổng quát phương trình : y  yo (x)  yr (x) Cách giải :  BƯỚC : tìm Giải PT : yo (x) y '' P y ' q.y  Phương trình đặc trưng : K  P.K  q   K1  ?  y o (x)  C1 e K1x  C e K x K  ? TH1:Phương trình đặc trưng có hai nghiệm phân biệt   TH2:Phương trình đặc trưng có nghiệm kép  k  ?  yo (x)  C1 e K x  C2 x.eK x ax TH3:Phương trình đặc trưng có nghiệm phức  k  a  bi  yo (x)  e  C1Cosbx+C2Sinbx   BƯỚC : tìm y r (x) Nhìn xem vế phải thấy có dạng : so sánh  Qn  x  e x    Qn  x  đa thức bậc n với nghiệm pt đặc trưng : Là nghiệm đơn phương trình đặc trưng vế phải nhân với x  y r (x)  x.Q n  x  e x Là nghiệm kép phương trình đặc trưng vế phải nhân với x  y r (x)  x Q n  x  e x KO phải Là nghiệm phương trình đặc trưng vế phải không nhân  y r (x)  Q n  x  e x Tính đạo hàm cấp theo y r (x) Tính đạo hàm cấp theo y r (x) Nhìn xem vế phải thấy có dạng : so sánh Qn  x  e x sin x,cos x    ,     i với nghiệm pt đặc trưng : ax TH3:Phương trình đặc trưng có nghiệm phức  K  a  bi  yo (x)  e  C1Cosbx+C2Sinbx  Chỉ có TH : Là nghiệm đơn phương trình đặc trưng vế phải nhân với x  yr (x)  x.Qn  x  e x  x. A cos x  Bsinx  e x KO phải Là nghiệm phương trình đặc trưng vế phải giữ nguyên  yr (x)  Qn  x  e x   Acos x  Bsinx  e x x Bài 13 : y'' 2y' 5y  e cos 2x (*) 03/06/2015 Giải Giải PT : y '' 2y ' 5y  Phương trình đặc trưng : K  2K    K  a  bi   2i  yo (x)  e1.x  C1Cos 2x+C2Sin 2x   C1 ,C2  R  x Vế phải e cos2x có   1;    trưng    i   2i nghiệm đơncủa pt đặc  y r  x   Xex  A cos  x  Bsin x   Xe1x  A cos 2x  Bsin2x   Xe x  A cos 2x  Bsin2x   Xe x A cos 2x  Xe x Bsin2x (1) Tính đạo hàm cấp nè  y 'r  x   e x A cos 2x  Xe x A cos 2x  2Xe x Asin 2x  e x Bsin2x+Xe x Bsin2x  2Xe x Bc os2x (2)  Xe x cos 2x. A  2B  +Xe x sin2x  B A   e x A cos 2x  e x Bsin2x Tính đạo hàm cấp nè  y ''r  x   Xe x cos 2x  A  2B  +Xe x sin2x. B A   e x A cos 2x  e x Bsin2x   e x A cos 2x  e x Bsin2x  e x cos 2x. A  2B   e x cos 2x. A  2B    A  2B  Xe x sin 2x  x x x  +e sin2x  B A  +Xe sin2x  B A  +2  B A  Xe cos2x   x nháp  e  4Asin 2x  4XAcos 2x  Bsin2x+2X Bcos 2x+2Bcos 2x  4X Bsin 2x  Thế (1), (2), (3) vào (*) Bài 10/7/2013 b) giải phương trình vi phân : 3y'' 5y' 2y  e x  5sin x Bài 18/06/2013 Giải phương trình vi phân : a) ex  x cos y  ysin y  dy  ex  x sin y  ycos y  dx  b) y'' y' 2y   sin x Bài 26/12/2013 Giải phương trình vi phân sau : 1)  cos y  ysin x  dx   cos x  x siny  dy  2) y'' 4y  e2x  sin x Bài 2/7/2007 Giải phương trình vi phân sau : y'' 2y  sin 2x  e x Bài 13/01/2016 Giải phương trình vi phân sau : Đề bách khoa y '' y  cos x y'' 5y' 6y  (x  1)e2x (*) Bài 14 : y'' 3y' 2y  3x  5sin 2x (*) Bài 15 : y '' 4y ' 3y  (2x  1)e 3x Bài 16 : y '' 4y ' 4y  2xe 2x 3  (*) Ds:y  C1e  x  C e 3x  x   x   e 3x 4  (*) Ds:y  C1e 2x  C e 2x  x 3e 2x Bài 17 :  1 y '' 4y ' 8y  (x  3x)e 2 x (*) Ds:y  e 2x (C1 cos 2x  C sin 2x)   x  x  e 2x  4 2x (*) Ds:y  Bài 18 : y'' 5y'  (x  2)e [...]... )dy, Với L là đường tròn x  y  1 2 L Lấy theo chiều dương Giải y Đường tròn : x 2  y2  1 1 -1 x / P  2arctanx y Py  1  Đặt  2 / Q  x  y Qx  1 L là đường cong kín P,Q có đạo hàm riêng cấp 1 liên tục Áp dụng công thức Green   I   Q x/  Py/ dxdy   1  (1)  dxdy   2dxdy  2S ht  2.R 2  2..12  2  D D D 2 - 1 e2x Bài 2: Tính tích phân I   L e ln y  1  y dx  2... Py  e  2 2 y  1 y y  1 y 1  y2  Đặt  2x   1 e Q   6x    2    / 1 2e2x  e2x 2  1  y     3 Q x  2  6  2  2 1  y 1  y    L là đường cong kín P,Q có đạo hàm riêng cấp 1 liên tục Áp dụng công thức Green I   D   e2x e2x Q  P dxdy    3   2  1 y 1  y2 D  / x / y    dxdy   3dxdy  3S §t  3.R2  3..1  3  D  - Bài 3: Tính tích phân đường loại... (C) là đường tròn x 2  y2  1, theo chiều dương Giải y x 1 -1  Py/  e x  y  2  P  e x  y  2 y  Đặt  x y Q  e  2 x  xy Qx/  e x  y  2  y L là đường cong kín P,Q có đạo hàm riêng cấp 1 liên tục Áp dụng công thức Green I    Qx/  Py/  dxdy    e x  y  2  y  e x  y  2  dxdy   ydxdy D D D Cách 1 giải trong tọa độ đề các : 1 x 2 1 I =  ydxdy =  dx D 1   1...  y  4 , lấy theo ngược chiều kim đồng hồ y Đường tròn : x 2  y 2  4 2 O x 2 / 2 2 2 P  1  x  yx Py  x  Đặt  2 Q  1  xy  5x Q x/  y2  5 L là đường cong kín P,Q có đạo hàm riêng cấp 1 liên tục Áp dụng công thức Green     I   Q x/  Py/ dxdy   y 2  5  (x 2 ) dxdy   (x 2  y2  5)dxdy D D  x  r cos   y  r sin  Đặt   0   2  0 r  2 J  r ha ha x 2 ... C  trong đó (C) là biên của miền    : 4  x 2  y 2  9 lấy theo chiều dương Giải y x / 2 P  1  y3 Py  3y  Đặt  / 2 3 y2 Q  x  e Q x  3x L là đường cong kín P,Q có đạo hàm riêng cấp 1 liên tục Áp dụng công thức Green        I   Q x/  Py/ dxdy   3x 2  3y2 dxdy   3 x 2  y2 dxdy D D x  r cos   y  r sin  Đặt  2 J  r x2  y2  r 2 2 3 D  0   2 Dxy...  x  2  (y  3)2  4 lấy theo chiều dương C Giải y Đường tròn : x  2 2  (y  3)2  4 3 2 1 O 2 x Py/  6 P  6y  x  Đặt  / Q  y  2x  Q x  2 L là đường cong kín P,Q có đạo hàm riêng cấp 1 liên tục Áp dụng công thức Green   I   Q x/  Py/ dxdy    2  6  dxdy   4dxdy   4S § t  4.R2  4..4  16  D D D - Bài 7: Tính tích phân đường loại hai 2 I = (6y  sin x)dx... 16 lấy ngược chiều  C KĐH Giải y Đường tròn : x  2 2  (y  5)2  16 2 1 O x 2 Py/  6 P  6y  sin x  Đặt  2 / Q   (1  8x  x )  Qx  8  2x C là đường cong kín P,Q có đạo hàm riêng cấp 1 liên tục Áp dụng công thức Green I    Qx/  Py/  dxdy    8  2 x  6  dxdy    2  2 x  dxdy   2 1  x  dxdy D D D D X  x  2  X 2  Y 2  16 Y  y  5 Đặt   X  r cos ... phương trình Giải Đường tròn : x2  2 x  1  y 2  1 y  ( x  1)2  y 2  1 / 2 P  sinx  y3 Py  3y  Đặt  3 / 2 Q x  3x Q  arctan y  x O x 2 1 L là đường cong kín P,Q có đạo hàm riêng cấp 1 liên tục Áp dụng công thức Green     I   Q x/  Py/ dxdy   3x 2  (3y 2 ) dxdy   3(x 2  y 2 )dxdy D D D       DD  2 2  0  r  2 cos  x  r cos  2 Đặt  x  y2  r 2... cùng chiều kim đồng hồ x2  2x  1  y2  1 Đường tròn : y  (x  1)2  y2  1 Py/  5 P  1  x2  5y  Đặt  / Q  1  xy  10x  Q x  y  10 O 1 2 x L là đường cong kín P,Q có đạo hàm riêng cấp 1 liên tục Áp dụng công thức Green I     Qx/  Py/  dxdy     y  10  (5)  dxdy    (y  15)dxdy    y dxdy   15dxdy D D D D D Giả bộ giải nek x  r cos  Đặt   y  r sin ... hồ y x2  y2  4y  4  4 Đường tròn : 2 4 2  x  (y  2)  4 3 / P  x  x2  5y  4xy Py  5  4x  Đặt  2 / Q  y  6x  10x Q x  12x  10  2 1 L là đường cong kín P,Q có đạo hàm riêng cấp 1 liên tục Áp dụng công thức Green  x O  I    Q x/  Py/ dxdy    12x  10  (5  4x)  dxdy    (8x  5)dxdy    8x dxdy   5dxdy D D D D D Giả bộ giải nek : x  r cos   y  r

Ngày đăng: 12/10/2016, 12:22

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w