Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 19 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
19
Dung lượng
175 KB
Nội dung
A Đặt vấn đề 1. Lời nói đầu Bậc tiểu học là bậc học nền tảng rất quan trọng trong việc hình thành và phát triển nhân cách cho học sinh trên cơ sở cung cấp những tri thức khoa học ban đầu về tự nhiên và xã hội, phát triển các năng lực nhận thức, trang bị phơng pháp và kỹ năng ban đầu về hoạt động nhận thức và hoạt động thực tiễn, bồi dỡng và phát huy tình cảm, thói quen, đức tính tốt đẹp của con ngời Việt Nam. Mục tiêu nói trên đợc thực hiện thông qua việc dạy học các môn học và thực hiện các hoạt động định hớng theo yêu cầu giáo dục. Toán học với t cách là một môn khoa học nghiên cứu một số mặt của thế giới hiện thực có một hệ thống kiến thức cơ bản và phơng pháp nhận thức cơ bản cần thiết cho đời sống sinh hoạt và lao động. Đó cũng chính là những công cụ rất cần thiết để học các môn học khác và để tiếp tục nhận thức thế giới xung quanh giúp cho hoạt động trong thực tiễn có hiệu quả. Khả năng giáo dục nhiều mặt của mônToán rất to lớn nó có nhiều khả năng để t duy lô gic, bồi dỡng và phát triển những thao tác trí tuệ cần thiết để nhận thức thế giới hiện thực nh trừu tợng hóa, khái quát hóa, phân tích và tổng hợp, so sánh và dự đoán, chứng minh (phân tích tổng hợp) và bác bỏ. Nó có vai trò to lớn trong việc rèn luyện phơng pháp suy nghĩ, phơng pháp suy luận, phơng pháp giải quyết vấn đề có căn cứ khoa học, toàn diện, chính xác nó có nhiều tác dụng trong việc rèn luyện nề nếp, tác phong, phong cách làm việc khoa học rất cần thiết trong mọi lĩnh vực 1 hoạt động của con ngời; góp phần giáo dục ý trí và đức tính tốt nh cần cù, nhẫn nại, ý thức vợt khó khăn . Với vị trí và tầm quan trọng về khả năng giáo dục của mônToán nói chung và môntoán trờng tiểu học nói riêng, ngời giáo viên cần phải làm gì? làm nh thế nào để nâng cao hiệu quả dạy học môntoán ? Qua kinh ngiệm giảng dạy đặc biệt là trong việc phụ đạo cho đối tợng học sinh giỏi môntoán ở các lớp 3;4;5 cùng với việc nghiên cứu các tài liệu, tôi đã tìm ra đợc một số cách giải các dạng toán ở tiểu học giúp cho ngời dạy có thể thuận lợi hơn trong việc hớng dẫn các em, làm cho các em bớt khó khăn hơn trong việc giải các dạng toán này. Trong khuôn khổ đề tài này, tôi xin mạnh dạn đề ra một số cách giải dạng toán thờng gặp mang nội dung hình học chủ yếu dành cho đối tợng học sinh khá giỏi các lớp 3;4;5 . Hy vọng với sự quan tâm và khả năng sáng tạo phong phú của thầy cô giáo đồng nghiệp, đề tài sẽ nhận đợc những ý kiến quý báu để hoàn thiện hơn và thực sự có ứng dụng thiết thực, rộng rãi trong thực tế giảng dạy. II. Thực trạng của việc giải một số dạng toán mang nội dung hình học của học sinh tiểu học Mục đích của việc dạy các yếu tố hình học ở tiểu học là góp phần củng cố kiến thức số học phát triển năng lực thực hành và năng lực t duy đối với học sinh tiểu học, đồng thời dạy các yếu tố hình học là biện pháp quan trọng gắn học với hành, nhà trờng với đời sống. 2 Trong chơng trình mônToán ở tiểu học, các đối tợng hình học đợc đa vào đều cơ bản, cần thiết và thờng gặp trong đời sống nh: điểm; đoạn thẳng, đờng thẳng, hình vuông, hình chữ nhật, hình tam giác, hình thang, hình tròn, hình trụ . Tuy nhiên các yếu tố hình học không đợc cấu thành chơng trình riêng mà sắp xếp xen kẽ các kiến thức khác, thậm trí nhiều nội dung hình học đa vào dới dạng bài tập liên quan với các kiến thức khác, do đó việc dạy học hình học ở bậc tiểu học mang ý nghĩa quan trọng trong việc chuẩn bị học hình học một cách có hệ thống ở các lớp trên. Đặc điểm nhận thức của học sinh tiểu học ở các lớp đầu cấp là : năng lực phận tích tổng hợp cha phát triển, tri giác còn dựa vào những hình dạng bên ngoài, nhận thức chủ yếu dựa vào cái quan sát đợc, cha biết phân tích để nhận ra thuộc tính đặc trng nên khó phân biệt các hình khi thay đổi kích thớc vị trí đến các lớp cuối cấp, trí tởng tợng của học sinh đã phát triển nhng vẫn còn phải phụ thuộc vào mô hình thực, suy luận của học sinh phát triển song vẫn còn là một dãy phán đoán nhiều khi cảm tính. Do đó việc nhận thức các khái niệm hình học theo lôgíc Toán học đối với các em không phải dễ dàng, bởi vậy trong việc giải các bài toán mang nội dung hình học với các em rất khó khăn. Chính vì vậy trong việc dạy học ngời giáo viên phải biết khai thác các bài toán mang nội dung hình học bằng cách từ những bài Toán khó, tổng quát cần phân tích ra thành các bài toán đơn giản hơn và ngợc lại từ những bài toán đơn giản chúng ta phải đề ra một số bài toán khó hơn, phức tạp hơn và mang tính tổng quát để hình 3 thành cho các em nắm vững hơn các kỹ năng giải các dạng toán mang nội dung hình học. ở đơn vị trờng tiểu học Thống Nhất, việc nâng cao chất lợng thực sự cho học sinh là việc làm luôn đợc các đồng chí trong Ban giám hiệu chú trọng nhất và đợc tất cả các giáo viên nhận thức sâu sắc. Chính vì vậy mà việc học tập, nghiên cứu tìm ra những biện pháp tối u trong dạy học luôn đợc phát huy cao ở bất kỳ một môn học nào. MônToán là một trong những môn học chủ đạo đợc các đồng chí giáo viên rất quan tâm. Tuy nhiên do các yếu tố hình học trong môntoán tiểu học đợc sắp xếp xen kẽ với các yếu tố khác nhiều khi không xây dựng thành bài dạy mà đợc đa ra dới dạng bài tập nên trong quá trình giáo viên còn khó khăn trong việc xây dựng hệ thống dạng bài và đề ra các phơng pháp dạy hiệu quả dẫn đến việc học sinh vẫn còn lúng túng và ngại với những loại bài tập này. 1. Ví dụ : 1. Với dạng đếm hình: Học sinh thờng mắc sai lầm nh chỉ đếm các A B hình đặt rời nhau hoặc hình đơn lẻ dễ nhận thấy mà không đếm đợc các hình tạo thành khi ghép các hình đơn lẻ với nhau do khả năng tởng D C tợng kém và cha nắm chắc dấu hiệu đặc trng và các yếu tố tạo thành hình hình học tơng ứng cũng nh hạn chế về khả năng suy luận, không nắm đợc cách đếm. 4 Khi dùng chữ để đọc, kể tên các hình học, học sinh thờng tự tiện đổi chỗ các chữ trong tên gọi chẳng hạn: các em coi viết tứ giác ABCD cũng nh tứ giác ACDB; ADBC . do khả năng suy luận của các em thờng dựa vào phán đoán không có căn cứ, cũng có thể do các em bị ảnh hởng tính chất giao hoán của phép cộng và phép nhân các số tự nhiên, số thập phân, cũng có thể bị ảnh hởng của phép đo đạc trong thực hành là đoạn thẳng AB và BA có độ dài nh nhau. 2. Với dạng toán cắt ghép hình. (Các em thờng chia theo cảm tính). Đây là dạng toán khó, trừu tợng và rất ít đợc quan tâm đối với các em. ở dạng toán này, các em chủ yếu chỉ thực hiện đợc trên mô hình vật thật còn thực hiện qua việc vẽ hình là rất khó. Trong qua trình xác định lát cắt các em chủ yếu làm mô hình mà không có phơng pháp suy luận, bởi vậy các em đa số rất ngại dạng này. 3. Với dạng toán chia hình : Các em thờng chia theo cảm tính mà ít khi dựa vào mối quan hệ giữa các yếu tố trong hình, nó thể hiện ở việc học sinh lúng túng trong việc giải thích cách chia hình . Dựa trên cơ sở khoa học của việc dạy các yếu tố hình học ở bậc tiểu học, dựa trên những tồn tại của việc dạy và học của bản thân và qua việc nghiên cứu tài liệu cùng những kinh nghiệm đợc rút ra trong quá trình giảng dạy, Tôi đã rút ra những biện pháp giúp học sinh giải một số dạng toán mang nội dung hình học. 5 B Giải quyết vấn đề I. các giải pháp thực hiện 1. Xây dựng hệ thống ví dụ bài tập cho mỗi dạng từ đơn giản đến phức tạp và hớng dẫn một số bớc giải từ đó khái quát thành các bớc chung. 2. Xử lý các tài liệu về môntoán có liên quan đến các yếu tố hình học nh SGK từ lớp 1 đến lớp 5. Tài liệu bồi dỡng môntoán dành cho học sinh tiểu học. Tài liệu hớng dẫn giảng dạy môntoán từ lớp 1 đến lớp 5. Một số chuyên san toán học và tài liệu phơng pháp dạy học Toán ở tiểu học. 3. Dự giờ Toán của giáo viên cũng nh khảo sát kết quả học tập của học sinh để rút ra những tồn tại cần giải quyết. 4. Qua quá trình giảng dạy rút ra những kinh nghiệm để tìm cách khắc phục. II. Các biện pháp để tổ chức thực hiện Qua việc khai thác các ví dụ theo các mức độ từ đơn giản đến phức tạp, rút ra cách giải tổng quát hoặc các bớc chung để giải từng dạng bài. Cụ thể nh sau: A- Nhận dạng các hình hình học: 1. Nội dung : Cho các hình hình học cùng với các điều kiện nào đấy (cụ thể bằng hình vẽ hoặc đồ vật). Yêu cầu học sinh: - Tô mầu hoặc chỉ ra một loại hình hình học nào đấy. - Đếm số các hình hình học đợc tạo thành - Gọi tên các hình hình học. 2. Ví dụ: Bài 1 : Cho một đoạn thẳng AB. Trên đoạn thẳng đã cho lấy 3 điểm tùy ý không trùng với đầu mút. Có bao nhiêu đoạn thẳng đợc tạo thành ? 6 Hớng dẫn : Để làm đợc bài này, học sinh cần nắm đợc đặc điểm của đoạn thẳng là đ- ờng nối hai điểm. Từ đó học sinh suy ra cứ chọn hai điểm ta sẽ có đợc một đoạn thẳng và sẽ tìm đợc cách đếm ra số các đoạn thẳng có trên đoạn AB. Cách 1 : Sử dụng sơ đồ cây: D E B C A B E D E B B - Chọn A là điểm mút của đoạn thẳng ta sẽ có các đoạn thẳng: AC; AD ; AE ; AB (theo sơ đồ) - Chọn C làm điểm mút ta sẽ có các đoạn thẳng: CD; CE; CB ( theo sơ đồ) - Chọn D làm điểm mút ta sẽ có các đoạn thẳng: DE; DB - Chọn E làm điểm mút ta có các đoạn thẳng : EB. Vậy số đoạn thẳng đợc tạo thành là: 4 + 3 + 2 + 1 = 10 ( đoạn thẳng) Cách 2 : Đánh số thứ tự các đoạn thẳng riêng lẻ: 1 2 3 4 7 A C D E B Ta đánh 4 đoạn thẳng riêng lẻ theo thứ tự 1; 2; 3; 4 ( nh hình vẽ) ta có 4 đoạn thẳng. - Đếm số đoạn thẳng đợc tạo thành do ghép hai đoạn thẳng riêng lẻ ta có: 3 đoạn (đoạn 1 + 2 ); (đoạn 2 + 3 ); (đoạn 3 + 4 ). - Đếm số đoạn thẳng đợc tạo thành do ghép 3 đoạn thẳng riêng lẻ ta có 2 đoạn thẳng (đoạn 1 + 2 + 3 ) (đoạn 2 + 3 + 4) - Đếm số đoạn thẳng đợc tạo thành do ghép 4 đoạn thẳng riêng lẻ ta có 1 đoạn thẳng [đoạn (1+2+3+4) ] Vậy số đoạn thẳng đợc tạo thành là: 4 + 3 + 2 + 1 = 10 (đoạn thẳng) Bài 2 : Hình vẽ bên có bao nhiêu tam giác Hớng dẫn: A B E F C Để làm đợc bài này học sinh cần nhận dạng đợc đặc điểm của tam giác: có 3 cạnh; 3 góc; 3 đỉnh. Từ đó thấy đợc cứ 3 điểm không cùng nằm trên một đoạn thẳng ta sẽ vẽ đợc một tam giác và sẽ tìm ra cách đếm tam giác. Cách 1 : Dùng sơ đồ cây E F B C 8 F A E C F C Từ nhánh thứ nhất ta có tam giác : ABE; ABF; ABC Từ nhánh thứ hai ta có tam giác: AEF; AEC Từ nhánh thứ ba ta có tam giác: AFC Vậy số tam giác ở hình bên là: 3+2+1=6 (tam giác) Cách 2: Đánh số thứ tự các tam giác riêng lẻ A Ta đánh số 3 tam giác riêng lẻ theo thứ tự 1; 2; 3 (nh hình vẽ) Ta có đợc 3 tam giác. - Đếm số tam giác tạo thành do 1 2 3 ghép hai tam giác riêng lẻ thành một tam giác ta có 2 tam giác là: B E F C Tam giác (1+2) và tam giác (2+3). - Đếm số tam giác tạo thành do 3 tam giác riêng lẻ ghép lại thành một tam giác ta có: 1 tam giác là: Tam giác (1+2+3). - Vậy số tam giác đếm đợc ở hình bên là : 3+2+1= 6 (tam giác) Cách 3 : Phơng pháp suy luận Ta nhận thấy đỉnh A nối với hai đầu mút của một đoạn thẳng bất kỳ trên BC bằng hai đoạn thẳng ta sẽ đợc một tam giác. Do đó để xác định đợc số tam giác tạo thành ta chỉ cần đếm số đoạn thẳng tạo trên cạnh BC là: 3+2+1=6 (đoạn thẳng). Nh vậy số tam giác đợc tạo thành là 6 tam giác. Qua hai ví dụ và các cách giải ở trên ta rút ra đợc các bớc chung giải các dạng toán nhận dạng hình hình học nh sau: Bớc 1 : Xác định yêu cầu của bài toán là nhận dạng các hình dựa vào hình dạng hay đặc điểm của hình. 9 Bớc 2 : Nhắc lại định nghĩa các hình liên quan đến bài toán (bằng cách mô tả hoặc bằng vật mẫu) và đặc điểm của các hình đó. Bớc 3 : Nhớ lại một số phơng pháp đếm hình thờng sử dụng - Đếm trực tiếp trên hình vẽ hoặc trên đồ vật. - Sử dụng sơ đồ để đếm rồi khái quát thành công thức tính số hình cần nhận dạng. - Đánh số thứ tự các hình riêng lẻ dễ nhận biết. - Sử dụng phơng pháp suy luận lôgic. Với các bớc thực hiện nh trên, hy vọng các bạn sẽ dễ dàng hớng dẫn các em nhận dạng hình đầy đủ và chính xác hơn. B. Dạng cắt, ghép hình: 1. Nội dung : Cho trớc một hoặc một số hình hình học. bằng một số lát cắt hãy chia một hình đã cho thành những mảnh rời rồi ghép những mảnh rời đó thành những hình đã học thỏa mãn yêu cầu nào đấy. 2. Ví dụ : Bài 1 : Em hãy cho biết, nếu cắt một hình vuông theo một đờng chéo của nó thành hai mảnh thì có thể ghép hai mảnh đó thành những hình nào ? Nhận xét : Đây là bài toán đơn giản giúp cho học sinh dựa trên mô hình vật thật cắt, ghép hình theo yêu cầu từ đó nắm vững hơn về bản chất của dạng cắt, ghép hình (thực chất là bài toán về diện tích thao tác cắt ghép sao cho diện tích hình không đổi). 10 [...]... thành 4 hình tam giác có diện tích bằng nhau Nhận xét hớng dẫn: Để làm đợc bài toán này cần hớng dẫn học sinh nắm đợc : - Hai tam giác có cùng chiều cao và số đo của đáy bằng nhau thì diện tích bằng nhau ( Hai tam giác tơng đơng) - Hai tam giác có chung đáy và số đo của đờng cao bằng nhau thì diện tích bằng nhau Để giải đợc bài toán này trớc hết ta kẻ đờng chéo AC để chia hình chữ nhật thành hai tam giác... Các bớc giải chung: Qua các ví dụ và hớng dẫn làm các ví dụ trên ta rút ra đợc các bớc để làm bài toán chia hình nh sau: Bớc 1: Nắm vững công thức tính diện tích của tam giác hay diện tích của một hình đã học và mối quan hệ của các yếu tố trong tam giác với diện tích của nó Bớc 2: Phân tích yêu cầu bài toán Bớc 3: Tìm mối quan hệ giữa các dữ kiện đã cho và các điều cần tìm Bớc 4: Nêu cách chia và giải... hứng và thích thú làm các bài toán mang nội dung hình học và làm có hiệu quả cao hơn 18 Cụ thể: TT Dạng bài 1 HS làm đúng HS làm sai Số lợng Tỷ lệ Số lợng Tỷ lệ Nhận dạng các hình hình học 17/18 94,5% 1 5,5% 2 Dạng cắt ghép hình 15/18 83,5% 3 16,5% 3 Dạng chia một hình hình học theo một yêu cầu nào đó 16/18 89% 2 11% 2 Kiến nghị đề xuất Để giúp học sinh làm tốt các bài toán mang nội dung hình học ngời... sao cho đỉnh B trùng với đỉnh C đợc hình bình hành (hình c) Bài 2 : Hãy cắt một hình chữ nhật có chiều dài 16 cm, chiều rộng 9 cm thành 2 mảnh sao cho khi ghép lại ta đợc một hình vuông Nhận xét : Bài toán này cho ta biết kích thớc của hình đã cho bởi vậy ta có thể dựa vào diện tích của hình để xác định cạnh hình vuông từ đó tìm ra cách cắt ghép Hớng dẫn: Bớc 1 : Diện tích của hình chữ nhật ban đầu... trớc hết ta kẻ đờng chéo AC để chia hình chữ nhật thành hai tam giác có diện tích bằng nhau Sau đó ta chia mỗi tam giác ABC và ADC thành hai tam giác có diện tích bằng nhau Vậy ta sẽ đợc lời giải một bài toán Cách 1: Chọn AC làm đáy chung của B C 15 hai tam giác sẽ chia ra Nh vậy để đợc hai tam giác có diện O tích bằng nhau có cùng đờng cao hạ từ B (và từ D) xuống AC, thì ta phải chia đáy AC thành hai... dài là 4 cm (Hình vẽ) A E B F G I H D M C 12 - Bớc 4: Ghép hình (nh hình vẽ): A B F G I H M C Bài 3: Cắt hình chữ thập (hình bên) bằng hai lát cắt và ghép lại thành hình vuông Nhận xét : 13 Đây là bài toán khó tởng tợng, khó xác định đợc cơ sở để xác định lát cắt Giáo viên cần giúp học sinh lựa chọn điểm cắt trên hình chữ thập sao cho độ dài các lát cắt bằng nhau để khi ghép các mảnh cắt ta đợc hình... đờng BD Ghép các mảnh 1; 2; 3 nh hình vẽ ta đợc hình vuông B 2 3 A B 1 C D 1 2 3 A D B 3 Các bớc giải : Qua việc hớng dẫn các ví dụ trên theo mức độ từ dễ đến khó , ta có thể rút ra cách giải các dạng toán này nh sau: Bớc 1: Nhắc lại định nghĩa và một số tính chất của những hình học có liên quan Bớc 2: Tính diện tích của hình ban đầu để suy ra cạnh của hình cần ghép (nếu có) Bớc 3: Xác định điểm cắt... viên cần phải cho học sinh nắm vững các biểu tợng của hình học, từ đó để nhận ra mối quan hệ giữa các yếu tố trong hình và phân biệt đợc sự khác nhau về hình, có nh vậy mới giúp cho việc giải các dạng Toán trên thuận lợi và đạt hiệu quả cao Thống Nhất, ngày 25 tháng 2 năm 2007 Ngời viết Lê Thị Hồng 19 . dục của môn Toán nói chung và môn toán trờng tiểu học nói riêng, ngời giáo viên cần phải làm gì? làm nh thế nào để nâng cao hiệu quả dạy học môn toán ?. kỳ một môn học nào. Môn Toán là một trong những môn học chủ đạo đợc các đồng chí giáo viên rất quan tâm. Tuy nhiên do các yếu tố hình học trong môn toán