1. Trang chủ
  2. » Giáo Dục - Đào Tạo

skkn HƯỚNG dẫn học VIÊN GDTX sử DỤNG máy TÍNH cầm TAY GIẢI TOÁN TRUNG học PHỔ THÔNG

78 776 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 78
Dung lượng 3,36 MB

Nội dung

Sáng kiến kinh nghiệm Giáo viên: Nguyễn Văn Hòa! SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỒNG NAI Đơn vị: Trung Tâm GDTX Long Thành Mã số: ……… SÁNG KIẾN KINH NGHIỆM ĐỀ TÀI: HƯỚNG DẪN HỌC VIÊN GDTX SỬ DỤNG MÁY TÍNH CẦM TAY GIẢI TOÁN TRUNG HỌC PHỔ THÔNG Người thực hiện: Nguyễn Văn Hoà Lĩnh vực nghiên cứu: - Quản lý giáo dục - Phương pháp dạy học môn: Toán THPT - Lĩnh vực khác: Năm học 2011 – 2012 Trang Sáng kiến kinh nghiệm Giáo viên: Nguyễn Văn Hòa! SƠ LƯỢC LÝ LỊCH KHOA HỌC I THÔNG TIN CHUNG VỀ CÁ NHÂN Họ tên: Nguyễn Văn Hoà Ngày tháng năm sinh: 09/10/1982 Nam, nữ: Nam Địa chỉ: Khu 5, ấp 8, An Phước, Long Thành, Đồng Nai Điện thoại: 0613844583(CQ)/ 0613529676 (NR); ĐTDĐ: 0988387047 Fax: E-mail: vanhoadn2010@gmail.com Chức vụ: Phó Giám đốc Đơn vị công tác: Trung Tâm GDTX Long Thành II TRÌNH ĐỘ ĐÀO TẠO - Học vị ( trình độ chuyên môn, nghiệp vụ) cao nhất: cử nhân - Năm nhận bằng: 2004 - Chuyên ngành đào tạo: Toán – Tin học III KINH NGHIỆM KHOA HỌC - Lĩnh vực chuyên môn có kinh nghiệm: Dạy học môn Toán – Tin học - Số năm có kinh nghiệm: 07 năm - Các sáng kiến kinh nghiệm có năm gần đây: • Một số phương pháp giải toán vectơ hình học 10; • Một số kinh nghiệm giúp học viên yếu học tốt Giải tích 12 Trang Sáng kiến kinh nghiệm Giáo viên: Nguyễn Văn Hòa! Sáng kiến kinh nghiệm: HƯỚNG DẪN HỌC VIÊN GDTX SỬ DỤNG MÁY TÍNH CẦM TAY GIẢI TOÁN TRUNG HỌC PHỔ THÔNG I LÝ DO CHỌN ĐỀ TÀI Thuận lợi - Được quan tâm, giúp đỡ Ban Giám Đốc trung tâm đồng nghiệp - Bản thân học phương pháp dạy học nhằm phát huy tính chủ động tích cực học sinh - Bộ giáo dục Đào tạo cho phép học sinh sử dụng máy tính cầm tay kì thi tốt nghiệp, đại học Hằng năm, Sở Giáo dục Đào tạo Đồng Nai, Bộ Giáo dục Đào tạo tổ chức kì thi học viên giỏi sử dụng máy tính cầm tay giải toán Khó khăn - Trình độ học sinh không đồng đều, đa phần học yếu, lại nghỉ học nhiều - Bản thân giáo viên có kinh nghiệm giảng dạy máy tính cầm tay Lý chọn đề tài: Học viên Trung Tâm GDTX Long Thành đa phần không thích học môn toán Học viên cộng, trừ, nhân, chia phân số, số thập phân, số nguyên… tay thường nhiều thời gian cho kết thường không xác Do đó, việc hướng dẫn học viên sử dụng máy tính cầm tay để giải toán việc làm cấp bách, cần thiết cho học viên Trong chương trình toán trung học phổ thông, sử dụng máy tính cầm tay giúp giải toán nhanh giải tay dạng toán giải phương trình bậc hai, bậc ba, giải hệ phương trình bậc hai ẩn, ba ẩn, tính giá trị lượng giác, tìm giá trị lớn giá trị nhỏ hàm số, khảo sát biến thiên vẽ đồ thị hàm số, tính giá trị đạo hàm điểm, tính tích phân… Tuy nhiên, học viên biết sử dụng máy tính cầm tay để giải toán thành thạo Vì vậy, giáo viên giảng dạy cần phải hướng dẫn cho học viên biết cách sử dụng máy tính cầm tay giải nhanh dạng toán Đồng thời học viên có kĩ giải toán để tham dự kì thi kì thi học viên giỏi giải toán nhanh máy tính cầm tay cấp tỉnh, kì thi tốt nghiệp bổ túc trung học phổ thông… Do đó, thân trăn trở, tìm tòi phương pháp mới, kĩ thuật tính toán mới, dạng toán thích hợp để hướng dẫn cho học viên sử dụng máy tính cầm tay giải toán dễ dàng Tôi xin trình bày kinh nghiệm “Hướng dẫn học viên GDTX sử dụng máy tính cầm tay để giải toán THPT” để quý đồng nghiệp tham khảo đóng góp ý kiến cho để bước hoàn thiện Những kĩ thuật, kinh nghiệm trình bày sau dùng với máy tính CASIO FX-570MS (được phép sử dụng kì thi) nhằm giúp học viên giải nhanh dạng toán chương trình trung học phổ thông mà em lúng túng khả vận dụng kiến thức kĩ tính toán hạn chế Trang Sáng kiến kinh nghiệm Giáo viên: Nguyễn Văn Hòa! Với nội dung có trình bày dạng toán, cú pháp dãy phím bấm, ví dụ minh họa tập luyện giải Dù cố gắng thiếu sót điều khó tránh khỏi, mong quý thầy cô giáo góp ý, xin chân thành cảm ơn II TỔ CHỨC THỰC HIỆN ĐỀ TÀI Cở sở lý luận Máy tính cầm tay sử dụng rộng rãi để giải toán từ lâu Các nhà toán học sử dụng máy tính cầm tay vào giải toán, nghiên cứu biết trợ giúp lớn từ máy tính cầm tay vào công việc Sử dụng máy tính cầm tay để giải toán hầu hết học viên, giáo viên sử dụng Nhưng việc sử dụng máy tính cầm tay giải toán nhanh, xác đòi hỏi học viên phải biết cách sử dụng máy tính thành thạo, phải biết cách giải dạng toán học, phải có nhiều dạng tập đa dạng để luyện giải đạt kết cao Việc hướng dẫn học viên sử dụng máy tính cầm tay giải toán trung học phổ thông có chương trình, cụ thể có 15 tiết học khối sử dụng máy tính cầm tay để giải toán Nhưng thời gian có giới hạn nên giáo viên rèn luyện hết dạng toán sách giáo khoa Vì vậy, giáo viên giảng dạy thường lồng ghép sử dụng máy tính vào tiết dạy Ví dụ dạng toán giải phương trình bậc 2, bậc 3, giải hệ phương trình, tính giá trị điểm hàm số, tính giá trị đạo hàm điểm,vẽ đồ thị hàm số bậc 2, bậc 3, tìm cực trị, tìm giá trị lớn nhỏ hàm số, tính tích phân…Đồng thời, giáo viên cho thêm tập nhà để học viên tự luyện giải, sau giáo viên kiểm tra việc giải tập để chỉnh sữa sai sót, rút kinh nghiệm cho học viên Sau phần nội dung, biện pháp thực đề tài Nội dung, biện pháp thực giải pháp đề tài PHẦN I HƯỚNG DẪN SỬ DỤNG MÁY TÍNH CASIO FX-570MS MỞ MÁY, TẮT MÁY VÀ CÁCH ẤN PHÍM: Mở máy: ON Tắt máy: SHIFT OFF Các phím chữ trắng DT : ấn trực tiếp Các phím chữ vàng: ấn sau ấn SHIFT Các phím chữ đỏ: ấn sau ấn ALPHA CÁC LOẠI PHÍM TRÊN MÁY: Trang Sáng kiến kinh nghiệm Giáo viên: Nguyễn Văn Hòa! Phím Chức ON Mở máy xóa nhớ hình (SHIFT) OFF Tắt máy SHIFT Chuyển sang kênh chữ vàng ALPHA Chuyển sang kênh chữ đỏ MODE Thiết lập chế độ cài đặt máy (kiểu, trạng thái, loại đơn vị đo …) vào chức tính toán (SHIFT) CLR Xóa nhớ / cài đặt / trả lại trạng thái mặc định AC Xóa hình để thực phép tính khác (Không xóa nhớ hình) DEL Xóa ký tự trước trỏ trỏ nhấp nháy (SHIFT) INS Cho phép chèn ký tự vị trí trỏ nhấp nháy bỏ chế độ ghi chèn ◄REPLAY ► Cho phép di chuyển trỏ đến ký tự cần sửa ▲ ▼ RCL Sau lần tính toán, máy lưu biểu thức kết vào nhớ hình Các phím bên cho phép tìm lại biểu thức để sử dụng lại sửa chữa trước dùng lại Gọi lại liệu ô nhớ (SHIFT) STO (kí Gán – ghi liệu vào ô nhớ (A, B , C , D , E , F , X,Y , M) tự) M+ Cộng dồn kết vào ô nhớ độc lập (M) (SHIFT) M- Trừ bớt (kết quả) từ số nhớ ô nhớ độc lập Ans Mỗi ấn phím = SHIFT %, M+, SHIFT M-, SHIFT STO, kết tự động gán vào phím Ans Có thể dùng Ans biến biểu thức sau • Nhập dấu phân cách phần nguyên phần thập phân số thập phân ab/c Cho phép nhập liệu phân số hỗn số EXP n Nhân với 10n Trang Sáng kiến kinh nghiệm Giáo viên: Nguyễn Văn Hòa! (-) Nhập số âm o Nhập đọc độ phút giây ”’ (SHIFT) m/K/M/G/T −3 12 Nhân với 10 / 10 / 10 /10 /10 (SHIFT) Rnd Làm tròn số (theo số chữ số phần thập phân cài đặt) (SHIFT) Rnd# Nhập số ngẫu nhiên khoảng 0,000 đến 0,999 n (SHIFT) nCr k Số tổ hợp chập k n phần tử n (SHIFT) nPr k Số chỉnh hợp chập k n phần tử CÁC THAO TÁC SỬ DỤNG MÁY 3.1 Thiết lập kiểu tính toán (chọn mode): Trước sử dụng máy tính để tính toán, cần phải thiết lập Mode, việc sử dụng phím MODE phím , , MODE Chức MODE → (COMP) Máy trạng thái tính toán MODE → (CMPLX) Máy trạng thái tính toán với số phức MODE → MODE → 1(SD) Máy trạng thái giải toán thống kê biến Viết tắt: MODE2 → MODE3 → (EQN) Máy trạng thái giải hệ phương trình, phương trình • Hệ phương trình bậc ẩn: ấn • Hệ phương trình bậc ẩn: ấn • Phương trình bậc hai (ba) ẩn: ấn ► → (3) MODE3 → (MAT) Máy trạng thái giải toán ma trận MODE3 → (VCT) Máy trạng thái giải toán vectơ MODE4 → (Deg) Máy trang thái dùng đơn vị đo góc độ phút Trang Sáng kiến kinh nghiệm Giáo viên: Nguyễn Văn Hòa! giây MODE4 → (Rad) Máy trạng thái dùng đơn vị đo góc radian MODE5 → 1(Fix) → n Cài đặt chế độ hiển thị số thập phân với n chữ số phần thập phân MODE5 → 2(Sci) → n Cài đặt chế độ hiển thị số khoa học với n chữ số có nghĩa MODE6 → → ► • Có thể nhập liệu dạng phân số hỗn số: ấn ab/c ; • Chỉ nhập liệu dạng phân số: ấn (d/c) MODE6 → → ► → ► • Cài đặt chế độ hiển thị số thập phân theo kiểu Mỹ: ấn (Dot) • Cài đặt chế độ hiển thị số thập phân theo kiểu Pháp: ấn (Comma) Chú ý: Muốn đưa máy trạng thái mặc định (mode ban đầu nhà sản xuất): ấn SHIFT CLS = = Nhập, xóa biểu thức:  Nhập: • Trình tự bấm phím giống viết biểu thức hàng Thứ tự phép tính theo thứ tự quy ước troán học Tuy vậy, số trường hợp cần ghi dấu ngoặc (chẳng hạn tổng … ) • x Nhập phân số y bấm phím: x a b/c • y Nhập hỗn số x z bấm phím: x a b/c • Các phép toán: + ( cộng), - (trừ), x ( nhân), ÷ (chia) • Nâng lũy thừa: a bấm: a y y a b/c z x ; a bấm: a SHIFT x ; Trang Sáng kiến kinh nghiệm a n bấm: a • ^ n Khai căn: bậc a ( a ) bấm: SHIFT Giáo viên: Nguyễn Văn Hòa! a , bậc a ( a ) bấm: a , bậc n a ( n a ) bấm: n SHIFT a Nếu a biểu thức phải ghi a dấu ngoặc • −1 x x −1 −1 Các hàm log, ln, e , 10 , sin, cos, tan, sin , cos , tan , (-) số âm, …: ấn phím hàm sau giá trị đối số • Nhập đơn vị độ, phút, giây (giờ, phút, giây): độ °’’’ phút °’’’ giây °’’’  Ghi chú: Khi nhân số với hàm với biến nhớ hoặc ∏ , bỏ qua dấu nhân Chẳng hạn 10ln(3x+5) thay 10 x ln(3x+5); bỏ ) qua dấu trước dấu =  Thêm, Xóa, Sửa: • Sử dụng phím ◄ ► để di chuyển trỏ đến chỗ cần sửa • Ghi chèn kí tự vào vị trí trỏ nhấp nháy: ấn phím SHIFT INS gõ kí tự cần chèn Để bỏ chế độ ghi chèn, ấn SHIFT INS • Xóa ký tự vị trí trỏ nhấp nháy: ấn phím DEL • Ghi đè ký tự lên vị trí trỏ nhấp nháy: gõ ký tự PHẤN II SỬ DỤNG MÁY TÍNH CASIO FX-570MS GIẢI TOÁN 10 I CÁC BÀI TOÁN VỀ ĐẠI SỐ: TẬP HỢP: Ví dụ 1: Xác định tập hợp sau cách liệt kê phần tử: a A = { x ∈ N : ( 2x + x ) (x + x − 2) ( x − x − 12 ) = 0} b B = { x ∈ Z : 2x + x − 13x + = 0} Giải a Ta có: Trang Sáng kiến kinh nghiệm Giáo viên: Nguyễn Văn Hòa!  2x + x =  x + x − = 2 ( 2x + x ) (x + x − 2) ( x − x − 12 ) = ⇔  x − x − 12 = ⇔ x =  x = 1, x =   x = −2, x = −3 cách ấn: MODE MODE MODE ► = = = ta nhận x1 = x = −2 AC = = ( −) = ta nhận x1 = x = −2 AC = ( −) = ( −) 12 = ta nhận x1 = x = −3 Vì −2, −3 ∉ N nên ta A = { 0,1,4} b Ta có: x =  x = −3  2x + x − 13x + = ⇔  x = 0,5 cách ấn: MODE MODE MODE ► ( −) = 1= 13 = = ta nhận x1 = , x = −3 x = 0,5 Vì 0,5 ∉ Z nên ta B = { 2, −3} Bài tập luyện tập: Xác định tập hợp sau cách liệt kê phần tử: a A = { x ∈ Q : ( 2x + 1) (x + x − 1) ( 2x − 3x + 1) = 0} b B = { x ∈ Z : 2x − 13x − 26x + 16 = 0} HÀM SỐ VÀ ĐỒ THỊ Ví dụ 2: Cho hàm số f (x) = 25 − x Tính f(2), f (2 6) , f(6) Giải Ta nhận bảng: x f(x) P Trang Sáng kiến kinh nghiệm cách ấn: ( Giáo viên: Nguyễn Văn Hòa! ) 25 − ALPHA X x CALC = CALC 6= CALC Math ERROR Ví dụ Cho hàm số: y = 3x Đồ thị hàm số qua điểm sau đây: 11     ;1÷ D 1 ;4 ÷ A  −2 ;4 ÷ B − 3;9 C   , ,   ,  16  ( ) Giải Nhập vế phải hàm số vào máy tính cách ấn: ALPHA X x • Để kiểm tra điểm A, ta ấn: CALC − a b/c 1a b/c 16 3= tức điểm A không thuộc đồ thị hàm số • Để kiểm tra điểm B, ta ấn: CALC − 3= tức điểm B thuộc đồ thị hàm số • Để kiểm tra điểm C, ta ấn: CALC − a b/c 3= tức điểm C thuộc đồ thị hàm số • Để kiểm tra điểm D, ta ấn: CALC a b/c 1a b/c 4= 11 16 tức điểm D thuộc đồ thị hàm số Ví dụ Cho hàm số: f (x) = 2x + x + Tìm x để f (x) = 7, f (x) = −2 Giải Ta lần lượt: Trang 10 Sáng kiến kinh nghiệm Giáo viên: Nguyễn Văn Hòa! h = v t − gt (h độ cao, v vận tốc ban đầu, t thời, g gia tốc trọng trường) Trong máy, biến ký hiệu chữ A, B, C, D, E, F, X, Y, M Do đó, ta biểu thị công thức sau: A = BC − DC đó, A độ cao, B vận tốc đầu, C thời gian, D gia tốc trọng trường Trong công thức trên, có biến Khi biết giá trị biến tính giá trị biến lại Chẳng hạn, tính vận tốc đầu vật rơi biết độ cao 14m, thời gian 2s, gia tốc trọng trường 9,8 m/s2 Bước 1: Nhập công thức ALPHA A ALPHA = ALPHA B ALPHA C − a b/c ALPHA D ALPHA C x Bước 2: Nhập giá trị cho biến Ấn SHIFT SOLVE A? ấn = B? ấn 16.8 = C? ấn = D? ấn 9.8 = Bước 3: Giải hàm Ấn phím ▲▼ phím COPY để tìm lại A? ấn phím SHIFT SOLVE Kết A = 14 m/s Chú ý: Từ minh họa trên, ta thấy sử dụng hàm SOLVE để tìm nghiệm thực gần cho phương trình (bởi hàm SOLVE sử dụng phương pháp Newton) Trong trường hợp tìm nghiệm ta nhập vào giá trị giả định gần nghiệm thực phép tính trở lại Trường hợp phương trình có nhiều nghiệm tìm nghiệm x1 , ta lại nhập thêm giá trị gần nghiệm gọi lại hàm SOLVE để tiếp tục giải Trang 64 Sáng kiến kinh nghiệm Giáo viên: Nguyễn Văn Hòa! Nếu tiếp tục mà máy trả giá trị tìm dừng lại Ví dụ 2: Tìm nghiệm gần phương trình: x − 0,5x − 9x + 4,5 = Giải Ta thực hiện: • Nhập phương trình vào máy, cách ấn: ALPHA X ^ − 0.5 ALPHA X ^ − ALPHA X + 4.5 ALPHA = • Tìm nghiệm: Ấn SHIFT SOLVE X? X? Giá trị gần thứ = X= 0.5 SHIFT SOLVE X? SHIFT SOLVE X? Giá trị gần thứ hai = SHIFT SOLVE X= 1.732050808 X? SHIFT SOLVE X? Giá trị gần thứ ba -2 = SHIFT SOLVE • -2 X = -1.732050808 Với giá trị khác x ta nhận x = 0.5, x = 1.732050808 x = - 1.732050808 dừng lại • Vậy, phương trình có nghiệm: x = 0.5, x = 1.732050808 x = -1.732050808 Chú ý: Khi nhập phương trình vào máy bỏ qua đoạn cuối ALPHA = 0, máy tự động thêm vào Trang 65 Sáng kiến kinh nghiệm Giáo viên: Nguyễn Văn Hòa! Phép giải hàm gần giống giải phương trình với ẩn biến biến lại tham số nhận giá trị cụ thể Do đó, ta vận dụng để giải phương trình dạng đặc biệt Ví dụ 3: Giải phương trình: x – cosx = (phương trình siêu việt) Giải Ta thực hiện: • Thiết lập máy trạng thái đơn vị đo góc radian: MODE MODE MODE MODE (Rad) (vì phương trình siêu việt có ẩn x tính radian) • Nhập phương trình vào máy, cách ấn: ALPHA X − cos ALPHA X ALPHA = • Tìm nghiệm: Ấn SHIFT SOLVE = SHIFT SOLVE Kết quả: Chú ý: X = 0.739085133 Hàm Solve không tìm nghiệm phương trình cho dù phương trình có nghiệm thực đòi hỏi số điều kiện nghiêm ngặt khác (xem thêm phần giải phương trình phương pháp lặp) Bài tập luyện tập: Tìm nghiệm gần phương trình sau khoảng (0; 3): 2sinx + 4cosx – = (Đề thi giải toán MTCT BTTHPT năm 2005) Tính hoành độ giao điểm đồ thị hai hàm số: y = − x y = (x − 3) (Lấy giá trị gần với chữ số phần thập phân) Tính giá trị gần x (độ, phút, giây) biết: 2sin x − 4cos x − = 1800 < x < 7200 Tìm nghiệm gần phương trình sau: x x a) − 5.2 + = ; b) log 52 x + lgx − π =0 Trang 66 Sáng kiến kinh nghiệm Giáo viên: Nguyễn Văn Hòa! III TÍNH TÍCH PHÂN XÁC ĐỊNH Bài toán: Cho hàm số y = f (x) liên tục đoạn [a; b] Hãy tính tích phân hàm số y = f (x) đoạn [a; b] Sử dụng phím MODE để thiết lập kiểu COMP ta muốn sử dụng máy tính để tính tích phân, cụ thể ta ấn: MODE Để tính ∫ b a f (x)dx ∫ dx , ta khai báo theo cú pháp: < hàm số f(x) > , a , b ) = Trong cận a, b hàm số f (x) nhập trực tiếp từ bàn phím Chú ý: • Nếu ta nhập sai hàm số f (x) không liên tục x ∈ [ a;b ] máy báo lỗi “Math ERROR” bị treo, điều phù hợp với định nghĩa tích phân SGK 12 • Nếu f(x) có dạng lượng giác cài đặt máy mode R (tính theo đơn vị radian) Ví dụ 1: Tính tích phân ∫ (x + 2x + 1)dx Giải Ta thực hiện: • Ấn MODE • Khai báo tính toán: ∫ dx - Thiết lập kiểu COMP ALPHA X x + ALPHA X + , , ) = Ta nhận ∫ (x + 2x + 1)dx = Chú ý: Máy cần thời gian đáng kể để hoàn tất phép tính tích phân Trong thời gian tính toán hình không số hay biểu thức Trang 67 Sáng kiến kinh nghiệm Giáo viên: Nguyễn Văn Hòa! Ví dụ 2: Tính tích phân π ∫ sin xdx Giải Ta thực hiện: • Ấn MODE - Thiết lập kiểu COMP • Ấn MODE MODE MODE MODE - Thiết lập kiểu Radian • Khai báo tính toán: ∫ dx sin ALPHA X , , π ÷ ) = Ta nhận π ∫ sin xdx = Dùng máy tính cầm tay để giải toán trắc nghiệm tích phân Toán trắc nghiệm tích phân viết nhiều các tài liệu tham khảo với lời giải thông thường dùng công thức Newton-Leibniz hay khó phải dùng phương pháp đổi biến tích phân phần Đây điều khó khăn cho học sinh khoảng thời gian ngắn phải thực nhiều thao tác Máy tính CASIO fx – 570MS công cụ mạnh để giải tốt toán dạng đặc biệt số toán tương đối dài khó Ví dụ 1: Tích phân ∫ A/ x3 dx x + bằng: B/ 9763 C/ 50000 D/ 0.2345 Giải Ta thực hiện: • Ấn MODE • Khai báo tính toán: ∫ dx ALPHA X SHIFT x a b/c - Thiết lập kiểu COMP ( ALPHA X x + ) , , ) = 1 Trang 68 Sáng kiến kinh nghiệm Ta nhận x3 9763 dx = 50000 Vậy ta chọn đáp án C/ x2 + ∫ Giáo viên: Nguyễn Văn Hòa! Nhận xét: Qua tập ta thấy ưu điểm MTCT, giải cách thông thường khó khăn thời gian Ví dụ 2: Tích phân ∫ 1223 A/ 5650 x +1 dx x + 3x + bằng: 2349 B/ 2506 4923 C/ 6250 D/ Một đáp số khác Giải Cú pháp: ∫ x +1 dx − A x + 3x + 2 • Nhập tích phân vào máy tính • Ấn phím CALC nhập vào biến A giá trị phương án ấn phím dấu kết không chọn phương án Kết chọn C 5503 Ví dụ 3: Trong tích phân sau tích phân có giá trị 12500 ? ∫x A/ x + 1dx B/ ∫x x + 1dx x C/ ∫ x + 1dx x D/ ∫ x + 1dx Giải Cú pháp: ∫x A x B + 1dx − 5503 12500 • Nhập tích phân vào máy tính • Ấn phím CALC máy hỏi A?, B? ta nhập vào cho cặp (A, B) (2, 2), (1, 1), (1, 2), (2, 1) tương ứng với phương án ấn phím dấu kết không chọn phương án Kết chọn D Tích phân chứa trị tuyệt đối: Khi tính tích phân chứa dấu trị tuyệt đối ta bình phương biểu thức trị tuyệt đối đưa vào bậc hai ta tính tích phân dễ dàng xác Ví dụ 1: Tính tích phân sau: ∫ −2 x − 1dx Trang 69 Sáng kiến kinh nghiệm Giáo viên: Nguyễn Văn Hòa! Giải Ta ấn: ∫ dx ( ALPHA X ( −) ) x , ( −) , ) = 2 Ta nhận ∫ −2 x − 1dx = Ví dụ 2: Tích phân tích phân sau: ∫ −2 x − 1dx Giải Ta ấn: ∫ dx ( ALPHA X x ( −) ) x , ( −) , ) = 2 Ta nhận ∫ −2 x − 1dx = Tính diện tích hình phẳng: Ví dụ 1: Tính diện tích hình phẳng giới hạn đồ thị hàm số y = sin x đoạn [ 0;2π] trục hoành Giải 2π Ta có: S = ∫0 sin x dx = (đvdt) cách ấn: MODE MODE MODE MODE ∫ dx - Đổi đơn vị đo rad ( sin ALPHA X ) x , , SHIFT π ) = 2π Ta nhận S = ∫0 sin x dx = Ví dụ 2: Tính diện tích hình phẳng nằm đường: y = x , y = , x = −1 , x = Giải Trang 70 Sáng kiến kinh nghiệm Giáo viên: Nguyễn Văn Hòa! Ta có: S = ∫−1 x dx = 4.25 (đvdt) cách ấn: ∫ dx ( ALPHA X SHIFT x ) x , ( −) , ) = 2 Ta nhận S = ∫−1 x dx = 4.25 Ví dụ 3: Tính diện tích hình phẳng nằm đường: y = x − 9x + , y = − x Giải Hoành độ giao điểm hai đường nghiệm phương trình: x − 9x + = − x ⇔ 2x − 9x + = ⇔ x1 = , x = 0.5 Khi đó: S = ∫0.5 2x − 9x + 4dx ≈ 14.292 cách ấn: ∫ dx ( ) , , ) = ALPHA X x − ALPHA X + x 0.5 4 Ta nhận S = ∫0.5 2x − 9x + 4dx ≈ 14.292 Ví dụ 4: Tính diện tích hình phẳng nằm đường: y = x − 3x , y = x Giải Hoành độ giao điểm hai đường nghiệm phương trình: x − 3x = x ⇔ x − 4x = ⇔ x1 = , x = , x = −2 Khi đó: S = ∫−2 x − 4x dx = 4.25 cách ấn: Trang 71 Sáng kiến kinh nghiệm ∫ dx Giáo viên: Nguyễn Văn Hòa! ( ALPHA X SHIFT x − ALPHA X ) x , ( −) , ) = 2 S = ∫−2 x − 4x dx = 4.25 Ta nhận Bài tập luyện tập: Tính tích phân sau: x ∫0 (1 + 3x)3 dx b dx ∫1/3 x a d S= g ∫ cos x.sin xdx e dx 1− x π /2 ∫ 1+ x + x +1 Tích phân ∫ 0 (1 + x)5 2 −1 ∫ h ∫ ln(x + π c S = ∫ cos3 x.cos5xdx dx f ∫ −1 x3 dx x +1 x + 1)dx −2 x9 dx (1 + x )3 bằng: A B 45 C 45 D Tích phân A A = ∫ x | x − A | dx = B A=− 10 khi: C A= 14 D Cả B C Tính tích phân sau: a ∫ x + 2x − 3dx ∫ ( x + | − | x − ) dx b −15 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = sin x cos x đoạn Trang 72 Sáng kiến kinh nghiệm Giáo viên: Nguyễn Văn Hòa!  π  0;  trục hoành Tính diện tích hình phẳng nằm đường: a y = x − 2x ; y = ; x = −1 ; x = ; b y= 1 π π ;y= ;x= x= 2 sin x cos x 6; Tính thể tích vật thể: Ví dụ 1: Tính thể tích vật thể tròn xoay sinh phép quay xung quanh Ox hình giới hạn trục Ox Parabol (P): y = x − x Giải Phương trình hoành độ giao điểm (P) Ox là: x − x = ⇔ x = x = Khi đó, thể tích cần xác định cho bởi: V = π ∫ (x − x) 2dx ≈ 0.105 đvtt cách ấn: SHIFT π ∫ dx ( ALPHA X x − ALPHA X ) x , , ) = Kết 0.104718707 Ví dụ 2: Tính thể tích vật thể tròn xoay tạo nên ta quay quanh trục Ox hình x phẳng S giới hạn đường: y = xe , x = 1, y = , với ≤ x ≤ Giải x Hoành độ giao điểm hai đường y = xe y = nghiệm phương trình: xe x = ⇔ x = Thể tích vật thể tròn xoay cần tính cho bởi: Trang 73 Sáng kiến kinh nghiệm Giáo viên: Nguyễn Văn Hòa! V = π ∫ (xe x ) 2dx ≈ 5.018 đvtt cách ấn: SHIFT π ∫ dx ( ALPHA X SHIFT e x ALPHA X ) x , , ) = Kết là: 5.018065946 Ví dụ 3: Cho hình phẳng giới hạn bởi: D = { y = tan x; x = 0; x = π3 ; y = 0} a Tính diện tích hình phẳng giới hạn D b Tính thể tích vật tròn xoay D quay quanh Ox Giải π /3 S = ∫ | tan x |dx ≈ 0.693 Ta có: cách ấn: MODE MODE MODE MODE ∫ dx ( tan Kết là: - Đổi đơn vị đo rad ALPHA X ) x , , SHIFT π a b/c ) = 0.69315 b.Thể tích vật thể tròn xoay cần tính là: V = π∫ π /3 tan xdx ≈ 2.152 đvtt cách ấn: SHIFT π ∫ dx ( tan Kết là: ALPHA X ) x , , SHIFT π a b/c ) = 2.151519729 Bài tập luyện tập: Tính thể tích khối tròn xoay tạo nên ta quay hình H quanh trục Ox, với: Trang 74 Sáng kiến kinh nghiệm Giáo viên: Nguyễn Văn Hòa! 4 π a H = { y = 0; y = + cos x + sin x ; x = ; x = π} b H = { y = 0; y = x ln x ; x = 1; x = e} π x = 6 H = y = 0; { y = cos x + sin x ; x = 0; c } 2 2 Cho miền D giới hạn đường tròn (C): x + y = Parabol (P): y = 2x D = { y = tan x; x = 0; x = π3 ; y = 0} a Tính diện tích S miền D b Tính thể tích V sinh D quay quanh Ox III HIỆU QUẢ CỦA ĐỀ TÀI Trên vài kinh nghiệm rút trình giảng dạy máy tính cầm tay cho học viên Máy tính cầm tay dụng cụ hỗ trợ học tập, khai thác tốt, học viên có công cụ mạnh mẽ để giải toán Từ giúp em giải toán nhanh, xác làm phát huy tính tích cực, chủ động, sáng tạo học viên góp phần nâng cao chất lượng dạy học Sau giảng dạy số kinh nghiệm “Hướng dẫn học viên GDTX sử dụng máy tính cầm tay để giải toán trung học phổ thông”, nhận thấy học viên thích học môn toán, không sợ, tính toán lúng túng trước Đa phần học viên giải hầu hết tập sách giáo khoa Bảng phân tích số liệu trước vận dụng đề tài: Năm 2011 – 2012 Lớp 10N, 11N, 12N Sĩ số 112 Vận dụng Không vận dụng đề tài đề tài 75 Tỉ lệ % vận dụng đề tài 37 70% Bảng phân tích số liệu sau vận dụng đề tài: Trang 75 Sáng kiến kinh nghiệm Năm 2011 – 2012 Lớp 10N, 11N, 12N Giáo viên: Nguyễn Văn Hòa! Sĩ số Vận dụng Không vận dụng đề tài đề tài 112 108 04 Tỉ lệ % vận dụng đề tài 96,4% Trong kì thi học viên giỏi giải toán máy tính cầm tay cấp tỉnh vừa qua Trung tâm GTDX Long Thành đạt giải nhì, giải ba hai giải khuyến khích Đó thành thầy trò cố gắng vận dụng sáng tạo đề tài vào việc giải toán IV ĐỀ XUẤT, KHUYẾN NGHỊ KHẢ NĂNG ÁP DỤNG Học viên biết sử dụng máy tính cầm tay giải toán thành thạo giúp em tự tin học tập, kiểm tra kì thi Đồng thời biết sử dụng thành thạo máy tính cầm tay để giải toán, học viên tự rèn luyện khả tư thuật toán, qua giúp em củng cố khắc sâu kiến thức hơn, nâng cao khả tư logic, giúp em học tốt Do đó, sử dụng máy tính cầm tay dạy học môn khoa học tự nhiên phát huy tính tích cực chủ động học viên đem lại kết cao Khi giáo viên giảng dạy tiết học máy tính cầm tay, giáo viên cần thêm tập nhà để học viên tự luyện giải Giáo viên cần theo dõi kiểm tra việc giải tập có hướng dẫn, đôn đốc học viên giải toán Bộ giáo dục nên đưa thêm vào sách giáo khoa sách giáo viên nhiều đọc thêm hướng dẫn sử dụng máy tính cầm tay để giải toán số loại máy mạnh mà Bộ cho phép học sinh sử dụng Sở nên khuyến khích thầy giáo cô giáo dạy môn khoa học tự nhiên nói chung cần quan tâm đến việc rèn luyện kỹ sử dụng máy tính cầm tay cho học sinh V TÀI LIỆU THAM KHẢO Tài liệu hướng dẫn sử dụng máy tính Sở Giáo dục Đào tạo Đồng Nai biên soạn Tài liệu hướng dẫn sử dụng máy tính Casio FX -570 MS kèm theo máy mua Sách giáo khoa Đại số 10, Hình học 10, Đại số Giải tích 11, Giải tích 12 Sách giáo viên Đại số 10, Hình học 10, Đại số Giải tích 11, Giải tích 12 Sách tập Đại số 10, Hình học 10, Đại số Giải tích 11, Giải tích 12 Trang 76 Sáng kiến kinh nghiệm Giáo viên: Nguyễn Văn Hòa! Các đề thi học viên giỏi sử dụng máy tính cầm tay để giải toán Sở Giáo dục Đào tạo Đồng Nai Long Thành, ngày 13 tháng năm 2012 NGƯỜI THỰC HIỆN Nguyễn Văn Hòa SỞ GD&ĐT ĐỒNG NAI CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM TT GDTX Long Thành Độc lập - Tự - Hạnh phúc Long Thành, ngày tháng năm 2012 PHIẾU NHẬN XÉT, ĐÁNH GIÁ SÁNG KIẾN KINH NGHIỆM Năm học: 2011 – 2012 Tên sáng kiến kinh nghiệm: HƯỚNG DẪN HỌC VIÊN GDTX SỬ DỤNG MÁY TÍNH CẦM TAY GIẢI TOÁN TRUNG HỌC PHỔ THÔNG Họ tên tác giả: Nguyễn Văn Hòa Đơn vị (Tổ): Khoa học Tự nhiên Lĩnh vực: Quản lý giáo dục Phương pháp giáo dục Tính □ □ Phương pháp dạy học môn: Toán THPT □ Lĩnh vực khác: ………………………… □ - Có giải pháp hoàn toàn □ - Có giải pháp cải tiến, đổi từ giải pháp có □ Hiệu - Hoàn toàn triển khai áp dụng toàn ngành có hiệu hiệu cao □ - Có tính cải tiến đổi từ giải pháp có triển khai áp dụng toàn ngành có hiệu cao □ - Hoàn toàn triển khai áp dụng đơn vị có hiệu cao □ - Có tính cải tiến đổi từ giải pháp có triển khai áp dụng đơn vị có hiệu □ Trang 77 Sáng kiến kinh nghiệm Giáo viên: Nguyễn Văn Hòa! Khả áp dụng - Cung cấp luận khoa học cho việc hoạch định đường lối, sách: - Tốt Khá □ Đạt □ Đưa giải pháp khuyến nghị có khả ứng dụng thực tiễn, dễ thực dễ vào sống: Tốt - □ □ Khá □ Đạt □ Đã áp dụng thực tế đạt hiệu có khả áp dụng đạt hiệu phạm vi rộng: Tốt XÁC NHẬN CỦA TỔ CHUYÊN MÔN (Ký tên ghi rõ họ tên) □ Khá □ Đạt □ THỦ TRƯỞNG ĐƠN VỊ (Ký tên, ghi rõ họ tên đóng dấu) Trang 78

Ngày đăng: 14/08/2016, 14:51

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
1. Tài liệu hướng dẫn sử dụng máy tính do Sở Giáo dục và Đào tạo Đồng Nai biên soạn Khác
2. Tài liệu hướng dẫn sử dụng máy tính Casio FX -570 MS kèm theo máy khi mua Khác
3. Sách giáo khoa Đại số 10, Hình học 10, Đại số và Giải tích 11, Giải tích 12 Khác
4. Sách giáo viên Đại số 10, Hình học 10, Đại số và Giải tích 11, Giải tích 12 Khác
5. Sách bài tập Đại số 10, Hình học 10, Đại số và Giải tích 11, Giải tích 12.Năm 2011 – 2012 Sĩ sốVận dụng được đề tàiKhông vận dụng được đề tàiTỉ lệ % vận dụng được đề tài.Lớp 10N, 11N, 12N112 108 04 96,4% Khác

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w