PHƯƠNG PHÁP S.O.S CHỨNG MINH BẤT ĐẲNG THỨC Phùng Mạnh Linh-11 Toán 1 Bất đẳng thứcBĐT luôn là một nội dung khó nhưng cũng rất đẹp của toán học sơ cấp.. Và trong các BĐT được chúng ta ng
Trang 1PHƯƠNG PHÁP S.O.S CHỨNG MINH
BẤT ĐẲNG THỨC Phùng Mạnh Linh-11 Toán 1
Bất đẳng thức(BĐT) luôn là một nội dung khó nhưng cũng rất đẹp của toán học sơ cấp
Và trong các BĐT được chúng ta nghiên cứu, có lẽ các BĐT 3 biến, mà đặc biệt là các BĐT 3 biến đồng bậc là các bài toán thu hút sự chú ý của chúng ta nhất bởi dạng phát biểu đơn giản và những kết quả rất đẹp của chúng Hiện nay ta có thể có rất nhiều đường lối để đi tới lời giải của một BĐT 3 biến Ta có thê sử dụng các phương pháp cổ điển như các BĐT: Cauchy, Cauchy – Schwart, Chebyshev, Holder … Hay ta cũng có thể sử dụng các BĐT cận đại: BĐT hoán vị, Schur, Fermat … Và hiệu quả hơn cả là những BĐT hiện đại mới được phát minh ra : MV(dồn biến) , ABC , GLA( hình học hoá đại số), DAC (chia để trị), S.O.S (phương pháp phân tích thành tổng các bình phương) … Trong
đó, S.O.S cho ta một cái nhìn chính tắc và vô cùng hiệu quả với các BĐT 3 biến, dù là đối xứng hay hoán vị Với phương pháp này, ta có thể giải quyết được hầu hết những BĐT 3 biến rất khó và chặt Trong bài viết này tôi sẽ trình bày về nội dung của phương pháp S.O.S, các định lý, chú ý và một số bài toán áp dụng để có thể thấy được sức mạnh của phương pháp này
1 Định lý S.O.S
Rất nhiều BĐT hay và đẹp được suy ra từ BĐT cơ bản :x2 0 Định lý S.O.S cũng xuất phát từ ý tưởng đó Ý tưởng của S.O.S là phân tích một biểu thức S bất kì (hoán vị hoặc đối xứng ) với 3 biến a, b, c về dạng chính tắc sau:
S= S a (bc)2 + S b (ac)2+ S c(ab)2 (*)
Theo suy nghĩ thông thường thì ta chỉ chứng minh được S 0 khi cả 3 biểu thức S , a
c
b S
S , cùng không âm Nhưng định lý S.O.S cho phép ta có các tiêu chuẩn để chứng minh BĐT trên ngay cả khi có một hoặc hai trong 3 số S a,S b,S c là âm hoặc không thể đánh giá được dấu của chúng Khi đó các biểu thức trên chỉ cần thoả mãn 1 trong các tiêu cuẩn sau thì BĐT (*) sẽ được chứng minh
a) 0S a 0;S b 0;S c
b) abc;S b 0;S a S b 0;S c S b 0
c) abc;S a 0;S c 0;S a 2S b 0;S c 2S b 0
d) abc;S b 0;S c 0;a2S b b2S a 0
e) S a S b S c 0;S aSb S aScS b S c 0
* Chứng minh định lý S.O.S:
a) Ta thấy khi S a,S b,S c 0 thì BĐT (*) là hiển nhiên
b) Ta có ( )2 ( )2 ( )2 ( )2 2( )( )
c b b a c
b b a c b b a c
2 2
2
2 2
2 ) ( )
( )
(
) ( ) ( ) ( 0 ) )(
(
c b S b a S c
a
S
c b b a c a c
b b a
c
b
a
b b
Trang 20 ) )(
( ) )(
(
) ( ) ( )
( )
(
2 2
2 2
2 2
b a S S c b
S
S
b a S c b S b a S c b
S
S
b c b
a
c b
b a
(vì 0S a S b 0;S c S b )
c)+Nếu 0S b thì theo tiêu chuẩn (a) ta có (*) đúng
+ Nếu 0S b
Ta có (ac)2 (abbc)2 2(ab)2 2(bc)2
0 ) 2 ( ) ( ) 2 (
)
(
) ( ) ) ( ) ((
2 ) (
)) ) ( ) ((
2 ) ( 0
2 2
2 2
2 2
2 2
2
b c b
a
c b
a
b b
b
S S c a S S
c
b
b a S c b b a S c
b
S
S
c b c a S c
a S
S
(vì S a 2S b 0;S c 2S b 0 )
d) Dễ thấy
0 ) (
) ( ) )
( ( ) ( ) ( )
(
) (
)
(
2
2 2
2 2
2 2
b
S b S a c b S c b
c a S c b c b S c
a
S
b
a
c
b
c
a
c b
a
b
c
a
a b
a b
a b
Mặt khác
0
0 ) (
S
b a S
e) S a S b S c 0trong 3 số S a S b,S a S c,S b S c luôn tồn tại 1 số không âm Không mất tính tổng quát giả sử S b S c 0
c
a S b a cS b bS c S a b c c S b b S c
Xét
0 ) (
) (
4
) )
( )(
( 4 ) (
4
2
2 2
2 2
c b c a b a
c b
a c b c
b
S S S S S S c b
S b S c c b S S S bS
cS
Mà S b S c 0
Theo định lý về dấu của tam thức bậc 2 ta có S 0
2 Một số lưu ý khi sử dụng S.O.S
-Việc đầu tiên cần làm khi sử dụng phương pháp S.O.S đó là phân tích BĐT cần chứng
minh về dạng chính tắc của S.O.S Việc này ban đầu có thể không dễ dàng nhưng chỉ cần tập phân tích một số đa thức đối xứng 3 biến quen thuộc về dạng S.O.S là ta có thể thông thạo việc này Khi phân tích, biến đổi cần chú ý tới các hằng đẳng thức quen thuộc mà có chứa các đại lượng (ab)2,(ac)2,(bc)2, ví dụ như:
Trang 3) ) ( ) ( ) )((
( 3
) ( ) ( ) ( 8
) )(
)(
(
2
) ( ) ( ) (
) )(
( ) (
) ( 2
2 2
2 3
3
3
2 2
2
2 2
2 2
2
2
2 3
3
2 2
2
c a c b b a c b a abc c
b
a
b a c c a b c b a abc c
b c
a
b
a
c b c a b a bc ac ab c
b
a
b a b a b a
ab
b
a
b a ab
b
a
Và hoàn toàn có thể phân tích mọi đa thức đối xứng 3 biến khác về dạng chính tắc của S.O.S với cách phân tích tương tự như trên và chú ý rút ra các đại lượng
2 2
2,( ) ,( )
)
(ab bc ac một cách hợp lí
-Với các đa thức mà ba biến a ,,b ccó tính hoán vị thì việc biến đổi của chúng ta gặp kho khăn hơn một chút và đòi hỏi phải linh hoạt, sáng tạo tuỳ vào từng bài toán Một kĩ thuật thường dùng để phân tích thành công các đa thức dạng hoán vị đó là cộng thêm vào đa thức các đại lượng k(ab),k(bc),k(ca) với số kđược chọn một cách hợp lí -Khi đã có trong tay biểu diễn chính tắc thì phần việc còn lại của chúng ta là tìm tiêu chuẩn phù hợp để áp dụng vào bài toán Thường thì chúng ta luôn kiểm tra tiêu chuẩn 1 đầu tiên bởi vì đó là tiêu chuẩn dễ áp dụng nhất và tự nhiên nhất Nếu tiêu chuẩn 1 không giúp ta giải quyết bài toán thì hãy xem tới 3 tiêu chuẩn 2,3,4, chúng có độ hiệu quả và phổ biến ngang nhau.Nếu sau khi sắp xếp thứ tự cho 3 biến a ,,b c(trong các bài toán hoán vị thì ta phải xét cả 2 trường hợp abc và abc), ta so sánh được 3 đại lượng S a,S b,S c thì bài toán thường được giải quyết bằng tiêu chuẩn 2 vì khi đó ta chỉ cần chứng minh được 0S a S b hoặc 0S b S c Nếu không so sánh được 3 đại lượng thì cố gắng chỉ ra đại lượng chắc chắn không âm, từ đó định hướng được ta sẽ dung tiêu chuẩn 3 hay tiêu chuẩn 4 Tiêu chuẩn 5 thường ít được dùng tới do tính cồng kềnh khi xét các đại lượng S a S b S c,S a S b S a S c S b S c
-Dù S.O.S là một phương pháp rất chính tắc và hiệu quả trong chứng minh các BĐT 3 biến, nhưng việc biến đổi BĐT cần chứng minh về dạng chính tắc không có nghĩa là bài toán đã được giải quyết Giải được bài toán hay không còn phụ thuộc rất nhiều vào sự nhanh nhạy của người làm toán trong việc phát hiện ra tiêu chuẩn để áp dụng, trong cách kết hợp các tiêu chuẩn với nhau hay thậm chí là sáng tạo ra tiêu chuẩn mới (một số tiêu chuẩn mới có thể được suy ra từ cách chứng minh cho tiêu chuẩn 4)
3 Các ứng dụng của phương pháp S.O.S
Đầu tiên ta tìm hiểu sức mạnh của S.O.S trong các BĐT đối xứng 3 biến
Bài toán 1 Cho a,b,c0 Chứng minh rằng(CMR) :
) ( ) ( ) ( 3
3
3
3
c b bc c a ac b a ab abc c
b
Giải Chú ý tới các đẳng thức
2 3
3
2 2
2 3
3
3
) )(
( ) (
2
) ) ( ) ( ) )((
( 3
b a b a b a
ab
b
a
c b c a b a c b a abc c
b
a
Từ đó ta có
Trang 40 2
)
(
0 2
) ( ) ( )
(
0 ) 3 (
)) ( ) ( ) ( 2
2 2
(
)
1
(
2
2 2
3 3 3 3
3 3 1
c b a b
a
c b a b a b
a b
a
abc c
b a c b bc c a ac b a ab c b a S
Như vậy
2
; 2
; 2
c b a S b c a S a c b
Không mất tính tổng quát ta giả sử abcS c S b S a
Mặt khác ta có S a S b c0S b 0;S b S c S a S b 0
Theo tiêu chuẩn 2 ta suy ra S1 0(1) đúng
Bài toán 2 Cho x,y,z0 CMR:
) (
4
9 )
(
1 )
(
1 )
(
1
2 2
y
Giải Đây là BĐT Iran 1996 rất nổi tiếng bởi độ khó cũng như vẻ đẹp và sức lôi cuốn của
nó Bài toán đã được tiếp cận và giải quyết bằng nhiều phương pháp khác nhau, trong đó
có nhiều phương pháp mạnh như sử dụng BĐT Schur, các phương pháp MV,
GLA,DAC… Trong đó, phương pháp S.O.S được đánh giá là đẹp mắt nhất, sáng tạo nhất
và phù hợp với mĩ quan toán học của nhiều người Sau đây là lời giải bài toán trên bằng phương pháp S.O.S
Đặt
2
; 2
; 2
;
;b y z c x z x a c b y a b c z b c a
y
x
9 ) ) (
1 )(
(
4
)
2
(
2 2 2 ) (
4
2
2 2 2
x y
yz xz xy
c b a bc ac ab yz
xz
xy
0 ) )(
1 2
(
9 ) 1 1 1 )(
2 2
2
(
2 2
2
2 2 2 2 2 2
a bc
S
c b a c b a bc ac
ab
Như vậy 2 12; 2 12; 2 12
c ab
S b ac
S a bc
Không mất tính tổng quát, giả sử abcS a 0
Tương tự như trong chứng minh cho tiêu chuẩn 4 ta có
c
b b a
c a
) (
) ( ) ( )
2 2
2 2
c
b S S b a a b S c
a
3 3 2
abc
bc a c b abc
abc c
b c
S b
Vậy theo tiêu chuẩn 4 ta có S2 0(2) đúng
Trang 5Bài toán 3 Cho a,b,c0 CMR: 5
) (
54
3 3 3
c b a
abc abc
c b a
(3) Giải Chú ý tới các hằng đẳng thức sau :
2 2
2
2 2
2 3
3
3
) ( 2
7 ) ( 2
7 ) ( 2
7 27
)
(
2
) ) ( ) ( ) )((
( 3
c b b a c c
a c a b c
b c b a abc c
b
a
c b c a b a c b a abc c
b
a
Từ đó ta đi đến phân tích chính tắc sau:
(3)
0 ) )(
) (
7 2
(
0 )
(
) 27 ) ((
2 3
2 3
3
3
3 3
3
3
c b a
c b a abc
c b a S
c b a
abc c
b a abc
abc c
b
a
Như vậy ta có
3 3 3
) (
7 2
) (
7 2
) (
7 2
c b a
b a c abc
c b a S
c b a
c a b abc
c b a S
c b a
c b a abc
c b a S
c b a
Mặt khác ta thấy
0
) 7
( 2 ) (
27 ) (
27 )
a
S
c b a abc c
b a abc c
b a abc c
b
a
Tương tự ta có S b 0;S c 0
Theo tiêu chuẩn 1 ta có S3 0(3) đúng
Bài toán 4 Cho a,b,c0 CMR :
3
) (
2
4 4 4
c b a c b a
abc bc
ac ab
c b
(4) Giải Ta có
) ) ( 2
( ) ( ) )(
( ) (
c b c b a c b bc
ac ab c b a c
b
(a2 b2 c2)(abc)9abc
2
3 )
c
Từ đó ta có:
) (
3
9 ) )(
( )
( 3
) )(
( ) (
c b a
abc c
b a c b a bc
ac ab
bc ac ab c b a c b
a
0 )) )
( ( 2 (
) (
0 ) 3
) ( 2 ) (
( )
(
2 2
2 2 2 4
2 2
2 2 2
c b a
a bc
ac ab
c b bc
ac ab
bc ac ab c b a c b
S
c b a
c b a bc
ac ab
c b c
b a c
b
Trang 6Đặt 2 2 2 0
bc ac ab
bc ac ab c b a
K
Như vậy ta có
) )
( ( 2
) )
( ( 2
) )
( ( 2
2 2 2
c b a
c bc
ac ab
b a K
S
c b a
b bc
ac ab
c a K
S
c b a
a bc
ac ab
c b K
S
c b a
Không mất tính tổng quát giả sử abcS a S b S c
Ta chứng minh S a S b 0
Mà K 0 nên chỉ cần chứng minh
c b a
b a bc
ac ab
c a c b
)2 ( )2 (
) )(
( ) )(
) ( )
bc ac ab b a c b a c b c
Ta có a2 b2 (ac)2 (bc)2
0
) )(
( ) )(
) ( )
((
0 ) 2
(
2 )
)(
( ) )(
(
2 2
3 3 2
2
b
a S
S
bc ac ab b a c b a c b c
a
c b
a
ab
abc b
a bc ac ab b a c b a
b
a
Theo tiêu chuẩn 2 ta có S4 0(4) đúng
Sau đây ta sẽ giải một số bài toán cho thấy sức mạnh của S.O.S trong các bài toán về giá trị tốt nhất
Bài toán 5 Tìm hằng số k lớn nhất sao cho BĐT sau đúng với mọi 0a,b,c
3 8
3 ) (
) )(
)(
3 3 3
k c
b a
bc ac ab k c b c a
b
a
c b
(5)
Giải Đầu tiên ta cho a c b, 0, từ đó suy ra
2
15 3
8
3 4
1 k k k
Ta sẽ chứng minh bài toán đúng với
2
15
k , tức là chứng minh:
8
23 )
( 2
15 ) )(
)(
3 3
3
c b a
bc ac ab c
b c
a
b
a
c b
a
Thật vậy theo những biến đổi tương tự như các bài toán ở trên ta có :
0 ) ) (
4
5 )
)(
)(
( 8
4 4 (
) (
)
5
a a b a b c c b c a b c
c b
) (
4
5 )
)(
)(
( 8
4 4
c b a c
b c a b a
c b a
S a
Trang 7
2
2
) (
4
5 )
)(
)(
( 8
4 4
) (
4
5 )
)(
)(
( 8
4 4
c b a c
b c a b a
b a c S
c b a c
b c a b a
c a b S
c b
Không mất tính tổng quát, giả sử abcS a S b S c
Khi đó ta chỉ cần chứng minh S b S c 0
) )(
)(
( 20 ) 8 5 5 ( )
(
0 ) (
10 )
)(
)(
(
2
8 5
5
2
2
c b c a b a c
b a c
b
a
c b a c b c a
b
a
a c b
(5’)
Xét
3
) (
) )(
)(
(
3 3 3 3
c b a c b a c b c a
b
(5’)
3
) (
20 ) 8 5 5 ( )
c b a c b
) 3
8 5 5 ( ) (
3
c b a c b
Theo tiêu chuẩn 2 ta có S5 0 (5) đúng với
2
15
k
Vậy
2
15
k là hằng số lớn nhất để (5) đúng với mọi 0a,b,c
Bài toán 6 Tìm hằng số k R nhỏ nhất để bất đẳng thức sau đúng a,b,c0
3 2
2 2 2 2
2 2
k c
b a
c b a k c a
ac c
b
bc b
a
Giải: Ta có:
2
2 2
4 4
1
b a
b a b
a
ab
2
2 2
4 4
1
c b
c b c
b
bc
2
2
2 4 4
1
c a
c a c
a
ac
3a2 b2 c2abc 2 ab 2 bc 2 ac2
3 3 4
1 4
1 4
1
2 2
2 2 2
2
c b a
c b a c b a k c
a
ac c
b
bc b
a
ab
1
2
b a c
b a
k b
a S
cyc
3 4
3 2 4 1
6 k k k
Trang 8Ta chứng minh 6 đúng với k 6 Khi đó ta có
2 2
2 2
2 2
4
1 2
4
1 2
4
1 2
b a c
b a
S
c a c
b a
S
c b c
b a
S
c
b
a
Giả sử abcS b 0,S c 0
Nếu abc
4
1 2 2 1
2 2 4
8
2 2
2 2
2 2
c b a c b
a c b a
c b c
b a c b
c b a c b
S a
0
6
S
Nếu abc
Xét
2 2
2 2
2 2
2 2
2
4
2 4
2
c b
b c
b a
b c
a
a c
b a
a S
b S
4 4
2
c b
b c
a
a c
b a
b a
Ta có
1 4
2 2
2
b c
a a
2
2 2
2
2
1
4
c b a
c b a b a c
b a
b a
Mà 2 21 abc2 21.3cc0
0
0
4 4
2
1 2
6
2 2
2
2 2
2 2
2 2
S
S b S
a
c b
b c
a
a c
b a
b a
a b
Vậy k 6 là hằng số cần tìm
Không chỉ có sức mạnh trong các BĐT 3 biến đối xứng và các bài toán tìm giá trị tối ưu, S.O.S còn phát huy sức mạnh trong các bài toán hoán vị, tuy nhiên để làm được điều này người làm toán phải có sự tinh ý và linh hoạt, sáng tạo Sau đây là một số bài toán minh họa cho điều này
Bài toán 7: Cho a ,,b c >0.CMR 2 2 2 3( 23 23 23)
c b a
c b a a
c c
b b
a
Trang 9Giải:Ta có
a
c a a c a c
c
c b c b c b
b
b a b a b a
2 2
2 2
2 2
) ( 2
) ( 2
) ( 2
Mặt khác
2 2
2
2 2 2 3 3
3
) )(
( ) )(
( ) )(
(
) )(
( ) (
3
c b c b c a c a b a
b
a
c b a c b a c b
a
0 ) ( 1
0 ) )(
( ) (
3 2
2 2
)
7
(
2 2
2 2 7
2 2 2
2 2 2 3 3 3 2
2 2
7
c b a
c b c
S
c b a
c b a c b a c b a a c a
c c b c
b b a b
a S
Như vậy
) (
) (
) (
1
2 2 2
2 2
2 2 2
2 2
2 2 2
2 2 2
2 2
c b a b
ab c a S
c b a a
ac c b S
c b a c
bc b a c
b a
c b c
S
c
b
a
Nếu abcS a 0,S c 0
c b ab abc b
bc ab ac b
c b a b
c
b
a
ac abc c
c b a
b
a
c ac c b a bc c b a S
2 2 3
2
2 3
2 2
3
2 2 2
2 2
0 ) )(
(
2 2
2
0 ) (
2 ) (
0
2
Mặt khác
0 2
2 2
2
2
2 0
) )(
(
2 2
2 3 3 3 2
2 3
3 2
2 2 3 3
2 3
3 2
2
b
S
abc ac
c b ab c a c c b a b a
b abc ac
c b ab c a
ac c
a c
ac a c a
Tương tự S c 2S b 0
Theo tiêu chuẩn 3 ta có S7 0
NếuabcS b 0
Trang 10,
0 ) (
) (
0
2 3
2 3 2 2
3
2 3 2
2 3
2 2 3
2 2 2
2
b
a
b
a
S
S
ac abc c
c b c c b a
b
a
ac c abc c b
c
b
c
ac abc c
c b a b a
c ac c b a bc b a S
S
Tương tự S b S c 0
Theo tiêu chuẩn 1 ta có S7 0
Vậy S7 0(7) đúng
2 :
0
,
4 3
3
4 3
3
4
c b a a c
c c
b
b b
a
a Cm c
b
Gi¶i
Ta có:
) (
4
) (
4
3
2 3 3 2
3 3
3
4
b a a
b a a
a
b b
a
a
2 3
3 2
2 2
2 2 3
3
4
2 2
2
2 2
2
3
4
2 )
( 4
) (
) ( 4
5 3
) (
2
) ( 2
a
a b b
a a
ab b
a b a a b b
a
a
a
b a b
a
a
b
a
b a b a
b
b
a
b
Tương tự
0 ) 4
5 3 (
)
8
(
4
2 )
( 4
) (
) (
4
5 3
4
2 )
( 4
) (
) (
4
5 3
3 3
4 8
2 3
3 2
2 2
2 2 3
3
4
2 3
3 2
2 2
2 2 3
3
4
a b b
a
a S
c
c a b
a c
ac c
a c a c a b
a
c
b
b c b
c b
cb c
b c b b c c
b
b
Ta có
) (
4
3 ,
) (
4
3
) (
4
3 4
2 ) (
4
) (
3 3
2 2
3 3
2 2
3 3
2 2
2 3
3 2
2 2
2
b a
a ab b
S c
a
c ac a
S
c b
b bc c
b
c b c
b b
bc c
b
S
c b
a