1. Trang chủ
  2. » Giáo Dục - Đào Tạo

FREE: KỸ THUẬT CÂN BẰNG ĐÁNH GIÁ TRONG GIẢI TOÁN BẤT ĐẲNG THỨC GTLN, GTNN

7 330 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 454,71 KB

Nội dung

Kỹ thuật “Cân đánh giá” TÀI LIỆU ÔN THI TRUNG HỌC PHỔ THÔNG QUỐC GIA 2016 KỸ THUẬT “Cân đánh giá” Trong giải toán Bất đẳng thức, Giá trị lớn nhất, Giá trị nhỏ Tác giả: ĐOÀN TRÍ DŨNG Giáo viên chuyên luyện thi THPT Quốc Gia Hà Nội Điện thoại: 0902.920.389 Kỹ thuật “Cân đánh giá” ĐÔI LỜI ĐẦU VỀ KỸ THUẬT “CÂN BẰNG ĐÁNH GIÁ” Trong dạng toán bất đẳng thức nay, xin phép chia làm hai dạng chính:  Dạng 1: Các bất đẳng thức dạng đối xứng, giả đối xứng,… sử dụng biến đổi bất đẳng thức, đánh giá phụ, bất đẳng thức phụ,… Các dạng toán bất đẳng thức khó, bạn đọc tham khảo tác phẩm viết Phạm Kim Hùng, Võ Quốc Bá Cẩn,…  Dạng 2: Các bất đẳng thức dạng bất đối xứng, yêu cầu đánh giá không khó xây dựng chủ yếu cần tảng biến đổi tương đương Các dạng toán xuất nhiều đề thi Trung học phổ thông quốc gia, đề thi thử trường trung học phổ thông,… Kỹ thuật cân đánh giá chia làm hai phần chính:  Phần 1: Đánh giá điểm rơi toán bất đẳng thức  Phần 2: Thay vào biểu thức cần đánh giá để nhận giá trị, từ tìm quy luật  Phần 3: Cân đánh giá! Để hiểu rõ hơn, xin mời bạn đọc xem ví dụ từ trang sau Kỹ thuật có lẽ bật, muốn viết cách chi tiết cẩn thận để chia sẻ cho người Mọi ý kiến đóng góp dù tốt hay xấu, xin vui lòng liên hệ mang tính cá nhân với tác giả Xin chân thành cảm ơn Kỹ thuật “Cân đánh giá” Ví dụ 1: Cho số thực x, y, z  1;2  thỏa mãn điều kiện  4x  y  z  x  2yz Tìm giá trị lớn biểu thức: P x2  z2   x2  y  z y2   x  y2  z  x  2yz Đề luyện tập số 15 lớp toán offline thầy Đoàn Trí Dũng Phần 1: Đánh giá điểm rơi: x  1, y  z    Phần 2: Với điểm rơi ta có: x  y  z  13  x  y  z  Phần 3: Cân đánh giá: Ta tạo đánh giá sau:   x  y  z  x  y2  z  Bài giải   Ta chứng minh: x  y  z  x  y  z         y  y   z  z   (Luôn đúng) Vậy ta có: P  x  y2  z x  y2  z   x  2yz Tới ta có đánh giá bản: x  2yz  x  y  z Do đó: P  x  y2  z  x  y2  z  x  y2  z Tìm điều kiện x  y  z Từ điều kiện ban đầu ta có:      9 9x  y  z  x  2yz  x  y  z 4      x  y  z  x  y  z  y  z   4x  y    4x  z        x  x  y2  y2    z   x  y  z  2y z  2x y  2x z  z   x  y  z   x  y  z  2 4 2 Do ta tìm Max P 2 2 2 2 2 62 x  1, y  z  117 Kỹ thuật “Cân đánh giá” Ví dụ 2: Cho a, b, c số thực thoả mãn a, b, c  [1;2] Tìm giá trị lớn biểu thức sau: P 2(ab  bc  ca ) b c    2(2a  b  c)  abc 2a(b  c)  bc  bc  Thi thử Trƣờng THPT Anh Sơn – Lần Phần 1: Đánh giá điểm rơi: a  1,b  c  Phần 2: Với điểm rơi ta có: 2(2a  b  c)  abc  16  2a(b  c)  bc  Phần 3: Cân đánh giá: Ta tạo đánh giá sau: 2(2a  b  c)  abc  2a(b  c)  bc  Bài giải Ta chứng minh: 2(2a  b  c)  abc  2a(b  c)  bc   2(2a  b  c)  abc  2a(b  c)  bc       abc  2ab  2ac  bc  4a  2b  2c    (a  1)(b  2)(c  2)  (Luôn đúng) Nhận xét: Rõ ràng đánh giá cuối khó phát  Vậy: P   2(ab  bc  ca) b c    2a(b  c)  bc  2a(b  c)  bc  bc  2a(b  c)  bc   bc  b  c   2a(b  c)  bc  bc  1 bc  b c   2a(b  c)  bc  bc  Vì a  đó: P   bc   bc  bc  bc  bc  Vậy, giá trị lớn P   a  1,b  c  Bình luận: Thực chất phương pháp mẻ, diễn cách hoàn toàn tự nhiên, hạn chế bước “suy đoán” Kỹ thuật “Cân đánh giá” a  2b  c Ví dụ 3: Cho a, b, c  thỏa mãn  2 a  b  c   ab  bc  ca Tìm giá trị lớn biểu thức: P a c  a b 1  a b  c  a  b  a  c a  2b  c      Thi thử Trƣờng THPT Hùng Vƣơng – Bình Phƣớc – Lần Phần 1: Đánh giá điểm rơi: a  b  b c   2  a b a  b   ab  b     a b  2 2  b  2,b  c  2 Phần 2: Với điểm rơi ta có: Các điểm rơi cần tìm: a  a c  2b    a b  c  a  b  2b  2  b          2b   a c 2 2    a b a b c a b 1 2b  2b   b b        Phần 3: Cân đánh giá: Ta tạo đánh giá sau: a c 2  a b c a b 1 a b   Phần 4: Với điểm rơi ta có: a b 1 2b   1    a  c a  2b  c 2b  2b  2b          1  a b a b   Phần 3: Cân đánh giá: Ta tạo đánh giá sau: a b 1 1   a b a  c a  2b  c a b      Kỹ thuật “Cân đánh giá” Bài giải Đánh giá 1: Ta chứng minh: a c 2  a b c a b 1 a b    a  b a  c    2a b  c   2a  2b   a2  ab  ac  bc  2a  2b  2ab  2ac  2a  2b   a  bc  ab  ac  Mặt khác sử dụng phép thế: ab  ac   a  b2  c2  bc ta được:  a  bc  a  b2  c2  bc  b  c Đánh giá 2: Ta chứng minh:   (Luôn đúng) a b 1 1   a b a  c a  2b  c a b      a b 1 a b 1    a  b   a  c a  2b  c  a  c a  2b  c  a  b2   a2  2ab  b2  a  ac  2ab  2bc  ac  c2  b  c   (Đúng) Vậy ta có đánh giá: P  Kết luận: MaxP  1   a b a b a b    1  a b a b   2 2 , a  ,b  c  2 BÀI TẬP TƢƠNG TỰ Bài 1: Cho x, y, z số thực dương thỏa mãn x  y  z  2x Tìm giá trị lớn biểu thức P  x z z 4x   x  2y  y  x  y   Trƣờng THPT Thực Hành Cao Nguyên – Tây Nguyên– Lần Bài 2: (Trƣờng THPT Anh Sơn – Nghệ An – Lần 1) Cho số    thực a  0;1 ,b  0;2 ,c  0; 3 Tìm giá trị lớn biểu thức: 2(2ab  ac  bc) b b P   2  2a  b  3c b  c  b(a  c)  12a  3b  27c  Kỹ thuật “Cân đánh giá” THAY LỜI KẾT Kỹ thuật tác dụng thay toán chứng minh bất đẳng thức mà đơn bổ trợ giúp bạn có thêm hướng tư việc tiếp cận bất đẳng thức Trên số kỹ thuật giải bất đẳng thức sử dụng giảng dạy offline xin chia sẻ với bạn đọc MỌI CHI TIẾT ĐÓNG GÓP Ý KIẾN XIN GỬI VỀ Thày giáo: Đoàn Trí Dũng Số điện thoại: 0902.920.389 Email: dungdoan.math@gmail.com

Ngày đăng: 29/05/2016, 10:45

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w