“Truy ng c dâu cac biêu th c liên h p đê giai ph ơng trinh vô ty” : ax bx c A x Vi du : G x 1 x D A(x)0 x D x3 3x 17 x 26 x x 1 x x 3x 18 x 27 x 1 x 3 x 3 x x x 1 x 1 x 3 x x x 1 Do x 1 x2 x x 1 x 1 x 3 x 3 0, x 1 x 1 Nhân xet : - x3 3x2 17 x 30 2 x x 3 x x 10 0 x 1 x x 10 x 1 - Khi ta t x 1 x 1 2 x 1 x 1 x x x 1 x 3 x 1 x2 x x 1 A(x)= x 1 x2 x x 1) 2) x3 x x x 3) x3 x x Vi du Phân tich x2 5x x x (TH&TT) x 2;4 - f(x)>0 , x 2;4 1 x - 1 x x2 x3 1 x x 3 1 0x 2;4 1 x 1 x x 1 x 3 0x 2;4 1 x x2 x 1 x2 0, x 2;4 x 1 L i giai 1 2 x4 4 x x2 x x2 x x 3 x x x x3 1 x x 1 x 3 1 x x3 1 x x2 x x 1 x2 x 0x 2;4 x 1 -Nhân xet ô 1 x 1 x 1 1 x 1 2x x 1 1 x x 3 : x x 3x 1) 2) 3) x x 3x x x Vi du 1 x 1 x x x 1 x x x2 ng x x 4x2 x 1 x 1 1 x x2 x6 x 1 1 x 1 x 1 x 2 x 1 1 x2 x 1 x 1 1 3 x 6 x x 14 x 6 16 x x x 14 x 6 x2 5x x x 14 x x 3 x 16 x 3 16 x 6 x 0x -Nhân xet x 1 x6 x 1 1 x 6 4 2 4x 3 1 x 6 x 1 10 x x 3x 1) 2) 3) x 3x x x x x 3x 3x x 14 x x x x 15 x x x 11x x 1 x x x 6 x x x TH & TT T / 419 x 3x x x x 11 x x x 1 x Vi du x 1 x 3x 5 x x x 1 x x 3x x 1 x2 x x 3x x x 1 x x2 x2 x3 3x x 1 x 1 x 3 3x 5 x 1 x2 x x 1 x 1 1 2 x x 1 x 1 3 x x x 1 Do x 1 x2 x2 x x 1 x 1 x 3 3x 5 0x -Nhân xet : x 2 x 1 x x 1 - x3 x x x x x x 1) 2) 3x x 1 x x x 3) x3 x 13x x x 3x 3x x 1 Vi du x x x x x 12 Phân tich - , x 2 x 2 x 1 x 1 x 2 x2 mx n x m m n : m n n - 3x 21x 36 x 1 x x x x 1 x 3 x 6 x x 1 x x x 6 x x x 3x 10 L i giai x 2 x 1 x x x 6 x x 3 x2 3x 10 x 1 x x x x x x x43 x2 x7 3 x 1 x 6 x x x 2 x7 3 x x x2 Do x 1 x43 x2 x 6 x7 x7 3 x 0x 2 x=2 1) 2) 3) 3x 14 x 13 x 1 x x x x 3x 1 x 17 x 28 x 13 x 8x2 x 1 x 1 x 3x 1 x Vi du 6: x 2 x x 5 x 6 x 23 x t t 0 x 1 t 6t t 17 4t 1 2t 4t 1 4t 1 2t t t 3t 4t t 2t 2t t t 3t 4t 4t t t 2 3t 4t 2t t t2 Do 4t t 2t t 3t 4t 0, t Nhân xet : 1) 2) 3) x x 1 x x 1 x 8 x 13 x 12 x 35 x x x 12 x x x 13 x ** Binh luân : BAI TÂP REN LUYÊN x 22 x x TH & TT T 11 / 396 x x x x x TH & TT T / 388 x 14 x x x x 15 x x x 11x x 1 x x2 2 x x x2 TH & TT T / 419 x 6 x 3x x x x 11 3x x ( TH&TT) x 1 x x 1 x 3x x