1. Trang chủ
  2. » Thể loại khác

tuyển chọn các bài toán hay và khó

7 116 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 140,19 KB

Nội dung

Ngô Minh Ngọc Bảo A B D C  nx + y 2  ny + x + x − xy = xy − y +   x + n ( xy − 1) + y x − y + =      a + bc a + bc ≤ f a , b , c ) ÷ ∑ ∑ ÷ ∑ (  cyc   cyc   cyc f ( a, b, c ) Tài Liệu Lưu Hành Facebook  ÷ ÷  Bài toán 1: Giải hệ phương trình :  x + y + ( x − y ) = x + y  8 x + x + y = Lời giải chi tiết Điều kiện : Đặt x − y ≥ 0, x + y ≥ a = x + y  b = x − y a, b ≥ , ( 1) ⇔ Ta có : hệ trở thành a + b ) = a − 2b = ( a − 2b a + 2b  a2 + b2 + 2b = a ( 1)   ( a + b ) + 4a − 3b = ( )  Dễ thấy, để hệ phương trình cho có nghiệm f ( a ) = ( a + b ) + 4a − 3b, ∀a ∈ [ 2b; +∞ ) a ≥ 2b Xét hàm số f ' ( a ) = ( a + b ) + > 0, ∀a ∈ R R Do hàm số f ( a) đồng biến f ( a ) ≥ f ( 2b ) = ( 2b + b ) + ( 2b ) − 3b = 27b3 + 5b Khi : Mặt khác, b ≥ ⇒ 27b3 + 5b ≥ ⇒ VT ( ) ≥ Đẳng thức xảy x − y = a =b=0⇔ ⇔ x= y=0 x + y =  Vậy nghiệm hệ phương trình : ( x; y ) = ( 0;0 ) f ( a) Nhận xét : Việc xét hàm số kiện a ≥ 2b ta dễ dàng suy có lẽ “ thừa” từ điều VT ( ) ≥ 27b3 + 5b ≥ Tuy nhiên số trường hợp việc đánh giá trực tiếp không thuận lợi khảo sát hàm số phát huy khả tối ưu! Bài toán 2: Giải hệ phương trình  1 x2 + + = ( 1)  y  x +y+ y x   xy + y = x + y ( ) Lời giải chi tiết x ≠ 0, y > Điều kiện : ( ) ⇔ xy + ⇔ xy − Từ phương trình y − x + y = ⇔ xy − ( ( 2) ) ta có : x2 + y − y =   x ÷= ⇔ y = = ⇔ x y −  ÷ x2 + y + y x + y + y   x2 Thay vào phương trình y x2 + + = ⇔ ( y + 1) x x y ( 1) ( y) + y = x3 + x Xét hàm số x2 + y + y ta có : y = ( x + 1) x ⇔ f ( t ) = t + t, t ∈ R x ( 3) f ' ( t ) = 3t + > 0, ∀t ∈ R Ta có : Do hàm số Khi f ( t) ( 3) ⇔ f ( x ) = đồng biến f ( y) ⇔ x = Thay vào phương trình ( 2) y ta có: y +1 = ⇔ y = −1 ⇒ x = R −1 = y y + y = 2y +1 ( x; y ) = Vậy hệ phương trình cho có nghiệm ) ( − 1; − ( )  2x −1 +  x + xy − x − y =   3 ( − y ) + = 3 x − 2 Bài toán 3: Giải hệ phương trình Lời giải chi tiết Điều kiện: x ≥ y, x ≥ Từ phương trình hệ ta có : x + xy − x − y = x − 2 x − ⇔ x + xy − x − y + x − − x = ⇔ x ( x + y − 1) + ( ) 2x −1 − x − y =  ⇔ ( x + y − 1)  x +  2x −1 + x − y   = ⇔ x + y −1 = ÷ ÷  Thay vào phương trình thứ hệ ta có: x3 + = 3 x − ( *) Từ điều kiện x − ≥ ⇒ VT ( *) > có nghiệm Do để phương trình 3 3x − > ⇔ 3x − > Theo bất đẳng thức AM − GM ta có : x3 + = 3 x − = 3 ( x − ) 1.1 ≤ x ⇔ ( x − 1) Đẳng thức xảy ( *) x =1⇒ y = ( x + 2) ≤ Vậy hệ phương trình có nghiệm ( x; y ) = ( 1;0 ) Nhận xét: Bài có lỗi mà nhiều bạn dễ mắc phải? Đó việc áp dụng AM − GM Bài toán chứng minh mà quên chứng minh 3x − > 3x − > đơn giản vế trái ( *) Trong trường hợp người đề muốn làm khó bạn đọc cách cho vế trái ( *) hàm số phức tạp bạn đọc cố gắng khảo sát chứng minh dùng đánh giá mạnh Min ( VT ) ≥ ( Bài toán : Giải hệ phương trình 3 y − = y x + + x    y + x = y + xy + ) Lời giải chi tiết Điều kiện : Nhận thấy y≥0 y=0 3y − Từ phương trình hệ ta có: t = x2 + + x = Đặt Xét hàm số x2 + − x = x + + x ( *) y ⇒ x + + x = 3t − t f ( f ( u) đồng biến ( 0; +∞ ) Khi ta có : ) y ≥ x x + + x ⇔ y = x2 + + x ⇔   y − xy − = y − 2x ⇔ x > y − 2x = ⇔   y = 4x y = x ⇒ 16 x − x − = ⇔ x = Với Thay vào phương trình hệ ta có : y − xy − = 4 f ( u ) = 3u − , ∀u ∈ ( 0; +∞ ) ⇒ f ' ( u ) = + > 0∀u u u Do hàm số ( *) ⇔ f ( y ) = y>0 không nghiệm hệ 1 ⇔x= ⇒ y=2 2   ;2 ÷   ( x; y ) =  Vậy hệ phương trình có nghiệm Bài toán : Giải hệ phương trình

Ngày đăng: 02/05/2016, 11:16

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w