1. Trang chủ
  2. » Giáo Dục - Đào Tạo

chuyên đề khảo sát hàm số luyện thi đại học hay

37 387 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 37
Dung lượng 1,05 MB

Nội dung

chuyên đề khảo sát hàm số luyện thi đại học haychuyên đề khảo sát hàm số luyện thi đại học haychuyên đề khảo sát hàm số luyện thi đại học haychuyên đề khảo sát hàm số luyện thi đại học haychuyên đề khảo sát hàm số luyện thi đại học haychuyên đề khảo sát hàm số luyện thi đại học haychuyên đề khảo sát hàm số luyện thi đại học hay

Gia s Thnh c www.daythem.com.vn KSHS 01: TNH N IU CA HM S Cho hm s y (m 1) x mx (3m 2) x (1) 1) Kho sỏt s bin thiờn v v th (C) ca hm s (1) m 2) Tỡm tt c cỏc giỏ tr ca tham s m hm s (1) ng bin trờn xỏc nh ca nú Cõu Tp xỏc nh: D = R y (m 1)x 2mx 3m (1) ng bin trờn R y 0, x m Cho hm s y x 3x mx (1) 1) Kho sỏt s bin thiờn v v th ca hm s (1) m 2) Tỡm tt c cỏc giỏ tr ca tham s m hm s (1) ng bin trờn khong (;0) Cõu m Cho hm s y x3 3(2m 1)x 6m(m 1) x cú th (Cm) 1) Kho sỏt s bin thiờn v v th ca hm s m = 2) Tỡm m hm s ng bin trờn khong (2; ) Cõu y ' x 6(2m 1)x 6m(m 1) cú (2m 1)2 4(m2 m) x m Hm s ng bin trờn cỏc khong (; m), (m 1; ) y' x m Do ú: hm s ng bin trờn (2; ) m m Cho hm s y x3 (1 2m) x2 (2 m) x m 1) Kho sỏt s bin thiờn v v th (C) ca hm s m = 2) Tỡm m hm ng bin trờn 0; Cõu Hm ng bin trờn (0; ) y 3x 2(1 2m)x (2 m) vi x (0; ) 3x x f (x) m vi x (0; ) 4x 2(6 x x 3) 73 6x2 x x Ta cú: f ( x ) 12 (4 x 1) Lp bng bin thiờn ca hm f ( x ) trờn (0; ) , t ú ta i n kt lun: 73 73 f m m 12 Cho hm s y x4 2mx2 3m (1), (m l tham s) 1) Kho sỏt s bin thiờn v v th ca hm s (1) m = 2) Tỡm m hm s (1) ng bin trờn khong (1; 2) Ta cú y ' x3 4mx x( x m) Cõu + m , y 0, x m tho + m , y cú nghim phõn bit: m , 0, Hm s (1) ng bin trờn (1; 2) ch WWW.ToanCaBa.Net m m m Vy m ;1 Trang mx (1) xm 1) Kho sỏt s bin thiờn v v th ca hm s (1) m 2) Tỡm tt c cỏc giỏ tr ca tham s m hm s (1) nghch bin trờn khong (;1) Cõu Cho hm s y Tp xỏc nh: D = R \ {m} y m2 ( x m)2 Hm s nghch bin trờn tng khong xỏc nh y m hm s (1) nghch bin trờn khong (;1) thỡ ta phi cú m m Kt hp (1) v (2) ta c: m (1) (2) KSHS 02: CC TR CA HM S Cho hm s y x 3x mx m (m l tham s) cú th l (Cm) 1) Kho sỏt s bin thiờn v v th hm s m = 2) Xỏc nh m (Cm) cú cỏc im cc i v cc tiu nm v hai phớa i vi trc honh PT honh giao im ca (C) v trc honh: x x3 3x mx m (1) (2) g( x ) x x m (Cm) cú im cc tr nm v phớa i vi trc 0x PT (1) cú nghim phõn bit (2) cú nghim phõn bit khỏc m m3 g(1) m Cõu Cho hm s y x (2m 1) x (m2 3m 2) x (m l tham s) cú th l (Cm) 1) Kho sỏt s bin thiờn v v th hm s m = 2) Xỏc nh m (Cm) cú cỏc im cc i v cc tiu nm v hai phớa ca trc tung Cõu y 3x 2(2m 1) x (m2 3m 2) (Cm) cú cỏc im C v CT nm v hai phớa ca trc tung PT y cú nghim trỏi du 3(m2 3m 2) m Cho hm s y x3 mx (2m 1) x (m l tham s) cú th l (Cm) 1) Kho sỏt s bin thiờn v v th hm s m = 2) Xỏc nh m (Cm) cú cỏc im cc i, cc tiu nm v cựng mt phớa i vi trc tung Cõu TX: D = R ; y x 2mx 2m th (Cm) cú im C, CT nm cựng phớa i vi trc tung y cú nghim phõn m m2 2m bit cựng du 2m m Cõu 10 Cho hm s y x3 3x mx (m l tham s) cú th l (Cm) 1) Kho sỏt s bin thiờn v v th hm s m = 2) Xỏc nh m (Cm) cú cỏc im cc i v cc tiu cỏch u ng thng y x Trang Gia s Thnh c www.daythem.com.vn Ta cú: y ' 3x x m Hm s cú C, CT y ' 3x2 x m cú nghim phõn bit x1 ; x2 ' 3m m (*) Gi hai im cc tr l A x1; y1 ; B x2 ; y2 m 2m Thc hin phộp chia y cho y ta c: y x y ' x 3 m m 2m 2m y1 y x1 x1 ; y2 y x2 x2 3 m 2m Phng trỡnh ng thng i qua im cc tr l : y x Cỏc im cc tr cỏch u ng thng y x xy trng hp: TH1: ng thng i qua im cc tr song song hoc trựng vi ng thng y x 2m m (tha món) TH2: Trung im I ca AB nm trờn ng thng y x y y x x m 2m y I xI x1 x2 x1 x2 2 2m 2m m0 Vy cỏc giỏ tr cn tỡm ca m l: m 0; Cõu 11 Cho hm s y x 3mx 4m3 (m l tham s) cú th l (Cm) 1) Kho sỏt s bin thiờn v v th hm s m = 2) Xỏc nh m (Cm) cú cỏc im cc i v cc tiu i xng qua ng thng y = x Ta cú: y 3x 6mx ; y x hm s cú cc i v cc tiu thỡ m x 2m uur th hm s cú hai im cc tr l: A(0; 4m3), B(2m; 0) AB (2m; 4m3 ) Trung im ca on AB l I(m; 2m3) AB d A, B i xng qua ng thng d: y = x 2m3 4m m I d 2m m Cõu 12 Cho hm s y x 3mx 3m 1) Kho sỏt s bin thiờn v v th ca hm s m = 2) Vi giỏ tr no ca m thỡ th hm s cú im cc i v im cc tiu i xng vi qua ng thng d: x 8y 74 y 3x 6mx ; y x x 2m Hm s cú C, CT PT y cú nghim phõn bit m Khi ú im cc tr l: A(0; 3m 1), B(2m;4m3 3m 1) AB(2m;4m3 ) Trung im I ca AB cú to : I (m;2m3 3m 1) ng thng d: x 8y 74 cú mt VTCP u (8; 1) WWW.ToanCaBa.Net Trang 3 I d m 8(2m 3m 1) 74 A v B i xng vi qua d m2 AB u AB d Cõu 13 Cho hm s y x 3x mx (1) 1) Kho sỏt s bin thiờn v v th ca hm s m = 2) Vi giỏ tr no ca m thỡ th hm s (1) cú cỏc im cc i v im cc tiu i xng vi qua ng thng d: x 2y Ta cú y x3 3x mx y ' 3x x m Hm s cú cc i, cc tiu y cú hai nghim phõn bit 3m m 1 Ta cú: y x y m x m 3 3 Ti cỏc im cc tr thỡ y , ú ta cỏc im cc tr tha phng trỡnh: y m x m 3 Nh vy ng thng i qua cỏc im cc tr cú phng trỡnh y m x m 3 nờn cú h s gúc k1 m d: x 2y y x d cú h s gúc k2 2 hai im cc tr i xng qua d thỡ ta phi cú d 12 k1k2 m m 23 Vi m = thỡ th cú hai im cc tr l (0; 0) v (2; 4), nờn trung im ca chỳng l I(1; 2) Ta thy I d, ú hai im cc tr i xng vi qua d Vy: m = Cõu 14 Cho hm s y x 3(m 1) x x m (1) cú th l (Cm) 1) Kho sỏt s bin thiờn v v th ca hm s m = 2) Vi giỏ tr no ca m thỡ th hm s cú im cc i v im cc tiu i xng vi qua ng thng d: y x y ' 3x 6(m 1) x Hm s cú C, CT ' 9(m 1)2 3.9 m (; 3) (1 3; ) m Ta cú y x y 2(m 2m 2) x 4m 3 Gi s cỏc im cc i v cc tiu l A( x1; y1 ), B( x2 ; y2 ) , I l trung im ca AB y1 2(m2 2m 2) x1 4m ; y2 2(m2 2m 2) x2 4m x x 2(m 1) v: x1.x2 Vy ng thng i qua hai im cc i v cc tiu l y 2(m2 2m 2)x 4m Trang Gia s Thnh c A, B i xng qua (d): y www.daythem.com.vn AB d m x I d Cõu 15 Cho hm s y x 3(m 1) x x m , vi m l tham s thc 1) Kho sỏt s bin thiờn v v th ca hm s ó cho ng vi m 2) Xỏc nh m hm s ó cho t cc tr ti x1 , x2 cho x1 x2 Ta cú y' 3x 6(m 1) x + Hm s t cc i, cc tiu ti x1 , x2 PT y' cú hai nghim phõn bit x1 , x2 PT x 2(m 1) x cú hai nghim phõn bit l x1 , x2 m ' (m 1) (1) m + Theo nh lý Viet ta cú x1 x2 2(m 1); x1 x2 Khi ú: x1 x2 x1 x2 x1 x2 4m 12 12 (m 1)2 m (2) + T (1) v (2) suy giỏ tr ca m cn tỡm l m v m Cõu 16 Cho hm s y x (1 2m) x (2 m) x m , vi m l tham s thc 1) Kho sỏt s bin thiờn v v th ca hm s ó cho ng vi m 2) Xỏc nh m hm s ó cho t cc tr ti x1, x2 cho x1 x2 Ta cú: y ' 3x 2(1 2m)x (2 m) Hm s cú C, CT y ' cú nghim phõn bit x1, x2 (gi s x1 x2 ) m ' (1 2m) 3(2 m) 4m m m 2 (*) 2(1 2m) x1 x2 Hm s t cc tr ti cỏc im x1, x2 Khi ú ta cú: m x x 2 1 x1 x2 x1 x2 x1 x2 x1x2 29 29 4(1 2m)2 4(2 m) 16m2 12m m m 8 Kt hp (*), ta suy m 29 m x (m 1) x 3(m 2) x , vi m l tham s thc 3 1) Kho sỏt s bin thiờn v v th ca hm s ó cho ng vi m 2) Xỏc nh m hm s ó cho t cc tr ti x1, x2 cho x1 x2 Cõu 17 Cho hm s y Ta cú: y x 2(m 1) x 3(m 2) WWW.ToanCaBa.Net Trang Hm s cú cc i v cc tiu y cú hai nghim phõn bit x1, x2 m2 5m (luụn ỳng vi m) x 2m x x 2(m 1) Khi ú ta cú: x1x2 3(m 2) x2 x2 3(m 2) 8m2 16m m 34 Cõu 18 Cho hm s y x mx 3x 1) Kho sỏt s bin thiờn v v th ca hm s m = 2) Tỡm m hm s cú hai im cc tr x1, x2 tha x1 x2 y 12 x 2mx Ta cú: m2 36 0, m hm s luụn cú cc tr x1, x2 x1 x2 m Khi ú: x1 x2 x1 x2 Cõu hi tng t: m a) y x 3x mx ; x1 2x2 S: m 105 Cõu 19 Cho hm s y (m 2)x 3x mx , m l tham s 1) Kho sỏt s bin thiờn v v th (C) ca hm s m = 2) Tỡm cỏc giỏ tr ca m cỏc im cc i, cc tiu ca th hm s ó cho cú honh l cỏc s dng Cỏc im cc i, cc tiu ca th hm s ó cho cú honh l cỏc s dng PT y ' 3(m 2) x x m = cú nghim dng phõn bit a (m 2) ' 3m(m 2) ' m 2m m m P m m m 3(m 2) m m S m2 Cõu 20 Cho hm s y x 3x (1) 1) Kho sỏt s bin thiờn v v th ca hm s (1) 2) Tỡm im M thuc ng thng d: y 3x tng khong cỏch t M ti hai im cc tr nh nht Cỏc im cc tr l: A(0; 2), B(2; 2) Xột biu thc g( x, y) 3x y ta cú: g( x A , yA ) 3x A y A 0; g( xB , yB ) 3xB yB im cc i v cc tiu nm v hai phớa ca ng thng d: y 3x Do ú MA + MB nh nht im A, M, B thng hng M l giao im ca d v AB Phng trỡnh ng thng AB: y x Trang Gia s Thnh c www.daythem.com.vn x y 3x Ta im M l nghim ca h: M ; 5 y x y Cõu 21 Cho hm s y x (12m) x (2 m) x m (m l tham s) (1) 1) Kho sỏt s bin thiờn v v th hm s (1) m = 2) Tỡm cỏc giỏ tr ca m th hm s (1) cú im cc i, im cc tiu, ng thi honh ca im cc tiu nh hn y 3x 2(1 2m) x m g( x) YCBT phng trỡnh y cú hai nghim phõn bit x1, x2 tha món: x1 x2 4m2 m g(1) 5m m S 2m y x3 3mx2 3(m2 1) x m3 m (1) 1) Kho sỏt s bin thiờn v v th ca hm s (1) m = 2) Tỡm m hm s (1) cú cc tr ng thi khong cỏch t im cc i ca th hm s n gc ta O bng ln khong cỏch t im cc tiu ca th hm s n gc ta O Cõu 22 Cho hm s Ta cú y 3x 6mx 3(m2 1) Hm s (1) cú cc tr thỡ PT y cú nghim phõn bit x2 2mx m2 cú nhim phõn bit 0, m Khi ú: im cc i A(m 1;2 2m) v im cc tiu B(m 1; 2m) m 2 Ta cú OA 2OB m2 6m m 2 Cõu 23 Cho hm s y x 3mx 3(1 m2 ) x m3 m2 (1) 1) Kho sỏt s bin thiờn v v th ca hm s (1) m 2) Vit phng trỡnh ng thng qua hai im cc tr ca th hm s (1) y 3x 6mx 3(1 m2 ) PT y cú 0, m th hm s (1) luụn cú im cc tr ( x1; y1 ), ( x2 ; y2 ) Chia y cho y ta c: Khi ú: m y x y x m m 3 y1 x1 m2 m ; y2 x2 m2 m PT ng thng qua hai im cc tr ca th hm s (1) l y x m2 m Cõu 24 Cho hm s y x3 3x mx cú th l (Cm) 1) Kho sỏt s bin thiờn v v th ca hm s m = 2) Tỡm m (Cm) cú cỏc im cc i, cc tiu v ng thng i qua cỏc im cc tr song song vi ng thng d: y x WWW.ToanCaBa.Net Trang Ta cú: y ' 3x x m Hm s cú C, CT y ' 3x2 x m cú nghim phõn bit x1 ; x2 ' 3m m (*) Gi hai im cc tr l A x1; y1 ; B x2 ; y2 m 2m Thc hin phộp chia y cho y ta c: y x y ' x 3 m m 2m 2m y1 y x1 x1 ; y2 y x2 x2 3 m 2m Phng trỡnh ng thng i qua im cc tr l d: y x ng thng i qua cỏc im cc tr song song vi d: y x 2m m (tha món) m Cõu 25 Cho hm s y x3 3x mx cú th l (Cm) 1) Kho sỏt s bin thiờn v v th ca hm s m = 2) Tỡm m (Cm) cú cỏc im cc i, cc tiu v ng thng i qua cỏc im cc tr to vi ng thng d: x 4y mt gúc 450 Ta cú: y ' 3x x m Hm s cú C, CT y ' 3x2 x m cú nghim phõn bit x1 ; x2 ' 3m m (*) Gi hai im cc tr l A x1; y1 ; B x2 ; y2 m 2m Thc hin phộp chia y cho y ta c: y x y ' x 3 m m 2m 2m y1 y x1 x1 ; y2 y x2 x2 3 m 2m Phng trỡnh ng thng i qua im cc tr l : y x 2m t k ng thng d: x 4y cú h s gúc bng 39 1 k m k k k 10 4 Ta cú: tan 45 1 k m k k k 4 Kt hp iu kin (*), suy giỏ tr m cn tỡm l: m Cõu 26 Cho hm s y x 3x m (1) 1) Kho sỏt s bin thiờn v v th ca hm s (1) m ã 2) Xỏc nh m th ca hm s (1) cú hai im cc tr A, B cho AOB 1200 Trang Gia s Thnh c www.daythem.com.vn Ta cú: y 3x x ; y x y m x y m Vy hm s cú hai im cc tr A(0 ; m) v B(2 ; m + 4) uur uur ã OA (0; m), OB (2; m 4) AOB 1200 thỡ cos AOB m m(m 4) m2 (m 4)2 2m(m 4) 2 3m 24m 44 m2 (m 4)2 m 12 12 m m Cõu 27 Cho hm s y x 3mx 3(m2 1) x m3 (Cm) 1) Kho sỏt s bin thiờn v v th ca hm s (1) m 2) Chng minh rng (Cm) luụn cú im cc i v im cc tiu ln lt chy trờn mi ng thng c nh y 3x 6mx 3(m2 1) ; y x m x m x t im cc i M(m 1;2 3m) chy trờn ng thng c nh: y 3t x t im cc tiu N (m 1; m) chy trờn ng thng c nh: y 3t (1) x mx 2 1) Kho sỏt s bin thiờn v v th ca hm s (1) m 2) Xỏc nh m th ca hm s (1) cú cc tiu m khụng cú cc i Cõu 28 Cho hm s y x y x3 2mx x( x m) y x m th ca hm s (1) cú cc tiu m khụng cú cc i PT y cú nghim m Cõu 29 Cho hm s y f ( x) x 2(m 2) x m2 5m (Cm ) 1) Kho sỏt s bin thiờn v v th (C) hm s m = 2) Tỡm cỏc giỏ tr ca m th (Cm ) ca hm s cú cỏc im cc i, cc tiu to thnh tam giỏc vuụng cõn x Ta cú f x x3 4(m 2) x x m Hm s cú C, CT PT f ( x ) cú nghim phõn bit m (*) Khi ú to cỏc im cc tr l: A 0; m2 5m , B m;1 m , C m;1 m uur uuur AB m; m2 4m , AC m; m2 4m Do ABC luụn cõn ti A, nờn bi toỏn tho ABC vuụng ti A AB AC m 23 m (tho (*)) WWW.ToanCaBa.Net Trang Cm Cõu 30 Cho hm s y x 2(m 2) x m 5m 1) Kho sỏt s bin thiờn v v th hm s m = 2) Vi nhng giỏ tr no ca m thỡ th (Cm) cú im cc i v im cc tiu, ng thi cỏc im cc i v im cc tiu lp thnh mt tam giỏc u x Ta cú f x x3 4(m 2) x x m Hm s cú C, CT PT f ( x ) cú nghim phõn bit m (*) Khi ú to cỏc im cc tr l: A 0; m2 5m , B m;1 m , C m;1 m uur uuur AB m; m2 4m , AC m; m2 4m Do ABC luụn cõn ti A, nờn bi toỏn tho A 600 cos A AB AC AB AC m 23 Cõu hi tng t i vi hm s: y x 4(m 1)x 2m Cõu 31 Cho hm s y x 2mx m2 m cú th (Cm) 1) Kho sỏt s bin thiờn v v th hm s m = 2) Vi nhng giỏ tr no ca m thỡ th (Cm) cú ba im cc tr, ng thi ba im cc tr ú lp thnh mt tam giỏc cú mt gúc bng 1200 x Ta cú y x 4mx ; y x( x m) x m (m < 0) Khi ú cỏc im cc tr l: A(0; m2 m), B m; m , C m; m uur uuur AB ( m; m2 ) ; AC ( m; m2 ) ABC cõn ti A nờn gúc 120o chớnh l A uur uuur AB.AC m m m A 120o cos A uur uuur 2 m4 m AB AC m (loaùi) 4 2m 2m m m 3m m m m4 m Vy m 3 m m4 Cõu 32 Cho hm s y x 2mx m cú th (Cm) 1) Kho sỏt s bin thiờn v v th hm s m = 2) Vi nhng giỏ tr no ca m thỡ th (Cm) cú ba im cc tr, ng thi ba im cc tr ú lp thnh mt tam giỏc cú bỏn kớnh ng trũn ngoi tip bng x Ta cú y x 4mx x( x m) x m Hm s ó cho cú ba im cc tr PT y cú ba nghim phõn bit v y i du x i qua cỏc nghim ú m Khi ú ba im cc tr ca th (Cm) l: Trang 10 Gia s Thnh c www.daythem.com.vn a b t3 6t 10t (t 4)(t 2t 2) t (a 1)2 a b Vy im tho YCBT l: A(3;1), B(1; 3) y 3x x (C) 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Tỡm trờn ng thng (d): y x cỏc im m t ú k c ỳng tip tuyn phõn bit vi th (C) Cỏc im cn tỡm l: A(2; 2) v B(2; 2) Cõu 65 Cho hm s Cõu 66 Cho hm s y x 3x (C) 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Tỡm trờn ng thng (d): y = cỏc im m t ú k c tip tuyn phõn bit vi th (C) Gi M(m;2) (d ) PT ng thng i qua im M v cú h s gúc k cú dng : y k( x m) 2 l tip tuyn ca (C) h PT sau cú nghim x 3x k ( x m) (1) (*) (2) 3x x k Thay (2) v (1) ta c: x3 3(m 1) x 6mx ( x 2) x (3m 1) x x2 f ( x ) x (3m 1) x (3) T M k c tip tuyn n th (C) h (*) cú nghim x phõn bit m m (3) cú hai nghim phõn bit khỏc f (2) m m m Vy t cỏc im M(m; 2) (d): y = vi cú th k c tip tuyn m n (C) mx (m 1) x (4 3m) x cú th l (Cm) 1) Kho sỏt s bin thiờn v v th ca hm s m = 2) Tỡm cỏc giỏ tr m cho trờn th (Cm) tn ti mt im nht cú honh õm m tip tuyn ti ú vuụng gúc vi ng thng (d): x 2y Cõu 67 Cho hm s y f ( x ) (d) cú h s gúc tip tuyn cú h s gúc k Gi x l honh tip im thỡ: f '( x) mx 2(m 1)x (4 3m) mx 2(m 1)x 3m YCBT (1) cú ỳng mt nghim õm + Nu m thỡ (1) x x (loi) 3m + Nu m thỡ d thy phng trỡnh (1) cú nghim l x hay x= m WWW.ToanCaBa.Net Trang 23 (1) m 3m Do ú (1) cú mt nghim õm thỡ m m Vy m hay m Cõu 68 Cho hm s 2 y x x 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Cho im A(a;0) Tỡm a t A k c tip tuyn phõn bit vi th (C) Ta cú y x x Phng trỡnh ng thng d i qua A(a;0) v cú h s gúc k : y k ( x a) x x k ( x a) d l tip tuyn ca (C) h phng trỡnh sau cú nghim: (I ) x3 x k k x( x 1) k ( A) Ta cú: (I ) hoc ( B) f ( x ) x ax (1) x + T h (A), ch cho ta mt tip tuyn nht l d1 : y + Vy t A k c tip tuyn phõn bit vi (C) thỡ iu kin cn v l h (B) phi cú nghim phõn bit ( x; k ) vi x , tc l phng trỡnh (1) phi cú nghim phõn 3 bit khỏc 4a a a 2 f (1) Cõu 69 Cho hm s y f ( x ) x x 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Trờn (C) ly hai im phõn bit A v B cú honh ln lt l a v b Tỡm iu kin i vi a v b hai tip tuyn ca (C) ti A v B song song vi Ta cú: f '( x) x3 x H s gúc tip tuyn ca (C) ti A v B l k A f '(a) 4a3 4a, kB f '(b) 4b3 4b Tip tuyn ti A, B ln lt cú phng trỡnh l: y f (a)( x a) f (a) y f (a) x f (a) af (a) y f (b)( x b) f (b) y f (b) x f (b) bf (b) Hai tip tuyn ca (C) ti A v B song song hoc trựng v ch khi: k A kB 4a3 4a = 4b3 4b (a b)(a2 ab b2 1) (1) Vỡ A v B phõn bit nờn a b , ú (1) a2 ab b2 (2) Mt khỏc hai tip tuyn ca (C) ti A v B trựng v ch khi: a2 ab b2 a2 ab b2 ( a b) 4 3a 2a 3b 2b f (a) af (a) f (b) bf (b) Gii h ny ta c nghim l (a; b) (1;1) hoc (a; b) (1; 1) , hai nghim ny tng ng vi cựng mt cp im trờn th l (1; 1) v (1; 1) Vy iu kin cn v hai tip tuyn ca (C) ti A v B song song vi l: a2 ab b2 a 1; a b Trang 24 Gia s Thnh c www.daythem.com.vn 2x (C) x2 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Vit phng trỡnh tip tuyn ca th (C), bit rng khong cỏch t tõm i xng ca th (C) n tip tuyn l ln nht Tip tuyn (d) ca th (C) ti im M cú honh a thuc (C) cú phng trỡnh: 2a y ( x a) x (a 2)2 y 2a2 a (a 2) Cõu 70 Cho hm s y Tõm i xng ca (C) l I 2;2 Ta cú: d (I , d ) a2 16 (a 2) a2 2.4.(a 2) a2 2 a2 2 a d (I , d ) ln nht (a 2)2 a T ú suy cú hai tip tuyn y x v y x x2 (1) 2x 1) Kho sỏt s bin thiờn v v th ca hm s (1) 2) Vit phng trỡnh tip tuyn ca th hm s (1), bit tip tuyn ú ct trc honh, trc tung ln lt ti hai im phõn bit A, B v tam giỏc OAB cõn ti gc ta O Gi ( x0 ; y0 ) l to ca tip im y ( x0 ) (2 x0 3)2 Cõu 71 Cho hm s y OAB cõn ti O nờn tip tuyn song song vi ng thng y x (vỡ tip tuyn cú h s x0 y0 1 gúc õm) Ngha l: y ( x0 ) (2 x0 3)2 x0 y0 + Vi x0 1; y0 : y ( x 1) y x (loi) + Vi x0 2; y0 : y ( x 2) y x (nhn) Vy phng trỡnh tip tuyn cn tỡm l: y x 2x x 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Lp phng trỡnh tip tuyn ca th (C) cho tip tuyn ny ct cỏc trc Ox, Oy ln lt ti cỏc im A v B tho OA = 4OB Gi s tip tuyn d ca (C) ti M ( x0 ; y0 ) (C) ct Ox ti A, Oy ti B cho OA 4OB Cõu 72 Cho hm s y = OB 1 H s gúc ca d bng hoc OA 4 x ( y ) 0 1 H s gúc ca d l y ( x0 ) ( x0 1)2 ( x0 1)2 x (y ) Do OAB vuụng ti O nờn tan A WWW.ToanCaBa.Net Trang 25 y ( x 1) y x Khi ú cú tip tuyn tho l: 13 y ( x 3) y x 4 2x cú th (C) x 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Tỡm trờn (C) nhng im M cho tip tuyn ti M ca (C) ct hai tim cn ca (C) ti A, B cho AB ngn nht 1 Ly im M m; C Ta cú: y (m) m2 (m 2)2 Cõu 73 Cho hm s y Tip tuyn (d) ti M cú phng trỡnh: y ( x m) (m 2) Giao im ca (d) vi tim cn ng l: A 2;2 m2 Giao im ca (d) vi tim cn ngang l: B(2m 2;2) m2 m Ta cú: AB2 (m 2)2 Du = xy m (m 2) Vy im M cn tỡm cú ta l: M(3;3) hoc M(1;1) 2x x 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Cho M l im bt kỡ trờn (C) Tip tuyn ca (C) ti M ct cỏc ng tim cn ca (C) ti A v B Gi I l giao im ca cỏc ng tim cn Tỡm to im M cho ng trũn ngoi tip tam giỏc IAB cú din tớch nh nht Cõu 74 Cho hm s y 2x Gi s M x0 ; , x0 , y '( x0 ) x0 x0 Phng trỡnh tip tuyn () vi ( C) ti M: y x0 ( x x0 ) x0 x0 2x To giao im A, B ca () vi hai tim cn l: A 2; x ; B x0 2;2 y y 2x x x B x0 yM suy M l trung im Ta thy A x0 x M , A B x0 2 ca AB Mt khỏc I(2; 2) v IAB vuụng ti I nờn ng trũn ngoi tip tam giỏc IAB cú din tớch x0 2 ( x0 2)2 S = IM ( x0 2) x0 ( x0 2)2 x ( x0 2) x0 Do ú im M cn tỡm l M(1; 1) hoc M(3; 3) Du = xy ( x0 2)2 Trang 26 Gia s Thnh c www.daythem.com.vn 2x cú th (C) x 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Gi I l giao im ca hai tim cn Tỡm im M thuc (C) cho tip tuyn ca (C) ti M ct tim cn ti A v B vi chu vi tam giỏc IAB t giỏ tr nh nht Cõu 75 Cho hm s y (C) Giao im ca tim cn l I(1;2) Gi M x0 ;2 x0 3 ( x x0 ) + PTTT ti M cú dng: y x0 ( x 1) + To cỏc giao im ca tip tuyn vi tim cn: A 1;2 + Ta cú: SIAB , B (2 x 1;2) x0 1 IA.IB x0 2.3 (vdt) 2 x0 + IAB vuụng cú din tớch khụng i chu vi IAB t giỏ tr nh nht IA= IB x0 x0 x0 x0 Vy cú hai im M tha iu kin M1 3;2 , M2 3;2 Khi ú chu vi AIB = Chỳ ý: Vi s dng a, b tho ab = S (khụng i) thỡ biu thc P = a b a2 b2 nh nht v ch a = b Tht vy: P = a b a2 b2 ab 2ab (2 2) ab (2 2) S Du "=" xy a = b x2 (C) x 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Cho im A(0; a) Tỡm a t A k c tip tuyn ti th (C) cho tip im tng ng nm v phớa ca trc honh Phng trỡnh ng thng d i qua A(0; a) v cú h s gúc k: y kx a Cõu 76 Cho hm s: y x x kx a d l tip tuyn ca (C) H PT cú nghim k ( x 1)2 PT: (1 a) x 2(a 2)x (a 2) (1) cú nghim x qua A cú tip tuyn thỡ (1) phi cú nghim phõn bit x1, x2 a a a 3a Khi ú ta cú: x1 x2 (*) 3 2(a 2) a2 ; x1x2 ; y2 v y1 a a x1 x2 tip im nm v phớa i vi trc honh thỡ y1.y2 WWW.ToanCaBa.Net Trang 27 x1.x2 2( x1 x2 ) 3a a x1.x2 ( x1 x2 ) x1 x2 Kt hp vi iu kin (*) ta c: a a x Cõu 77 Cho hm s y x 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Cho im Mo ( xo ; yo ) thuc th (C) Tip tuyn ca (C) ti M0 ct cỏc tim cn ca (C) ti cỏc im A v B Chng minh Mo l trung im ca on thng AB Mo ( xo ; yo ) (C) y0 x0 Phng trỡnh tip tuyn (d) ti M0 : y y0 ( x0 1)2 ( x x0 ) Giao im ca (d) vi cỏc tim cn l: A(2 x0 1;1), B(1;2 y0 1) x A xB y y x0 ; A B y0 M0 l trung im AB 2 x2 (C) x 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Chng minh rng mi tip tuyn ca th (C) u lp vi hai ng tim cn mt tam giỏc cú din tớch khụng i a2 Gi s M a; (C) a Cõu 78 Cho hm s : y PTTT (d) ca (C) ti M: y y (a).( x a) a2 4a a2 x y a (a 1)2 (a 1) a5 Cỏc giao im ca (d) vi cỏc tim cn l: A 1; , B(2a 1;1) a IA 0; ; IB (2a 2; 0) IB a IA a a Din tớch IAB : S IAB = IA.IB = (vdt) PCM 2x Cõu hi tng t i vi hm s y S: S = 12 x x2 x 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Gi I l giao im ca ng tim cn, l mt tip tuyn bt k ca th (C) d l khong cỏch t I n Tỡm giỏ tr ln nht ca d Cõu 79 Cho hm s y = y x Giao im ca hai ng tim cn l I(1; 1) Gi s M x0 ; (C ) x0 ( x 1)2 Trang 28 Gia s Thnh c www.daythem.com.vn Phng trỡnh tip tuyn vi thi hm s ti M l: x 2 y ( x x0 ) x x0 y x0 x0 x0 x0 x0 Khong cỏch t I n l d = Vy GTLN ca d bng x0 1 x0 = x0 x0 2 x0 hoc x0 2x x 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Vit phng trỡnh tip tuyn ca (C), bit khong cỏch t im I(1; 2) n tip tuyn bng Cõu 80 Cho hm s y Tip tuyn ca (C) ti im M ( x0 ; f ( x0 )) (C) cú phng trỡnh: y f '( x0 )( x x0 ) f ( x0 ) x ( x0 1)2 y x02 x0 (*) Khong cỏch t im I(1; 2) n tip tuyn (*) bng Cỏc tip tuyn cn tỡm : x y v x y x0 x x0 ( x0 1)4 x (C) x 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Tỡm trờn Oy tt c cỏc im t ú k c nht mt tip tuyn ti (C) Gi M (0; yo ) l im cn tỡm PT ng thng qua M cú dng: y kx yo (d) Cõu 81 Cho hm s y x ( y 1) x 2( y 1) x y (1) kx yo o o x o (d) l tip tuyn ca (C) (*) k k x 1; ( x 1) ( x 1)2 YCBT h (*) cú 1nghim (1) cú nghim khỏc yo yo x ; yo k 2 x ' ( yo 1) ( yo 1)( yo 1) x 0; yo k Vy cú im cn tỡm l: M(0; 1) v M(0; 1) 2x x 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Vit phng trỡnh tip tuyn ca th (C), bit rng tip tuyn cỏch u hai im A(2; 4), B(4; 2) Gi x0 l honh tip im ( x0 ) Cõu 82 Cho hm s y WWW.ToanCaBa.Net Trang 29 PTTT (d) l y ( x0 1) ( x x0 ) x0 x0 x ( x0 1)2 y x02 x0 Ta cú: d ( A, d ) d (B, d ) 4( x0 1)2 x02 x0 2( x0 1)2 x02 x0 x0 x0 x0 Vy cú ba phng trỡnh tip tuyn: y x ; y x 1; y x 4 2x x 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Gi I l giao im ca hai ng tim cn, A l im trờn (C) cú honh l a Tip tuyn ti A ca (C) ct hai ng tim cn ti P v Q Chng t rng A l trung im ca PQ v tớnh din tớch tam giỏc IPQ 2a 2a I (1; 2), A a; ( x a) PT tip tuyn d ti A: y (1 a) a a 2a Giao im ca tim cn ng v tip tuyn d: P 1; a Giao im ca tim cn ngang v tip tuyn d: Q(2a 1; 2) Ta cú: xP xQ 2a x A Vy A l trung im ca PQ Cõu 83 Cho hm s y IP = SIPQ = 2a 2 ; IQ = 2(a 1) a a IP.IQ = (vdt) 2x (C) x 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Vit phng trỡnh tip tuyn ti im M thuc (C) bit tip tuyn ú ct tim cn ng v ã tim cn ngang ln lt ti A, B cho cụsin gúc ABI bng , vi I l giao tim cn 17 Cõu 84 Cho hm s y I(2; 2) Gi M x0 ; x0 (C ) , x0 x0 Phng trỡnh tip tuyn ti M: y ( x0 2) ( x x0 ) x0 x0 2x Giao im ca vi cỏc tim cn: A 2; , B(2 x0 2;2) x0 ã ã x IA Do cos ABI nờn tan ABI IB2 16.IA2 ( x0 2)4 16 IB 17 x0 3 Kt lun: Ti M 0; phng trỡnh tip tuyn: y x Ti M 4; phng trỡnh tip tuyn: y x Trang 30 Gia s Thnh c www.daythem.com.vn KSHS 05: BIN LUN S NGHIM CA PHNG TRèNH Cõu 85 Cho hm s y x 3x 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Tỡm m phng trỡnh x3 3x m3 3m2 cú ba nghim phõn bit PT x3 3x m3 3m2 x3 3x m3 3m2 t k m3 3m2 S nghim ca PT bng s giao im ca th (C) vi ng thng d: y k Da vo th (C) ta cú PT cú nghim phõn bit k m (1;3) \ {0;2} Cõu 86 Cho hm s y x 5x cú th (C) 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Tỡm m phng trỡnh | x4 5x | log m cú nghim Da vo th ta cú PT cú nghim log12 m 9 m 12 144 12 Cõu 87 Cho hm s: y x x 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Bin lun theo m s nghim ca phng trỡnh: x x log2 m x x log2 m x x log2 m (m > 0) (*) + S nghim ca (*) l s giao im ca th y x x v y log2 m + T th suy ra: 1 m m m m 0m 2 2 nghim nghim nghim nghim vụ nghim Cõu 88 Cho hm s y f ( x ) 8x x 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Da vo th (C) hóy bin lun theo m s nghim ca phng trỡnh: 8cos4 x 9cos2 x m vi x [0; ] Xột phng trỡnh: 8cos4 x 9cos2 x m vi x [0; ] (1) t t cos x , phng trỡnh (1) tr thnh: 8t 9t m (2) Vỡ x [0; ] nờn t [1;1] , gia x v t cú s tng ng mt i mt, ú s nghim ca phng trỡnh (1) v (2) bng Ta cú: (2) 8t 9t m (3) Gi (C1): y 8t 9t vi t [1;1] v (d): y m Phng trỡnh (3) l phng trỡnh honh giao im ca (C1) v (d) Chỳ ý rng (C1) ging nh th (C) x WWW.ToanCaBa.Net Trang 31 Da vo th ta cú kt lun sau: m0 m0 m vụ nghim nghim nghim 81 32 nghim m 81 32 nghim 81 32 vụ nghim m m 3x (C) x 1) Kho sỏt s bin thiờn v v th (C) ca hm s Cõu 89 Cho hm s y 2) Tỡm cỏc giỏ tr ca m phng trỡnh sau cú nghim trờn on 0; : sin6 x cos6 x m (sin4 x cos4 x) Xột phng trỡnh: sin6 x cos6 x m (sin4 x cos4 x) (*) sin2 x m sin2 x 3sin2 x 2m(2 sin2 x) t t sin2 x Vi x 0; thỡ t 0;1 Khi ú (1) tr thnh: 3t vi t 0;1 2m t sin x t Nhn xột : vi mi t 0;1 ta cú : sin x t sin x t (*) cú nghim thuc on 0; thỡ t ;1 t ;1 7 Da vo th (C) ta cú: y(1) 2m y 2m m 10 x x 1) Kho sỏt s bin thiờn v v th (C) ca hm s x m 2) Bin lun theo m s nghim ca phng trỡnh x Cõu 90 Cho hm s y S nghim ca x m bng s giao im ca th (C): y x Da vo th ta suy c: m 1; m nghim m 1 nghim x x v y m m vụ nghim KSHS 06: IM C BIT CA TH Cõu 91 Cho hm s y x3 3x (C) 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Tỡm im trờn th hm s cho chỳng i xng qua tõm M(1; 3) Trang 32 (1) Gia s Thnh c www.daythem.com.vn Gi A x0 ; y0 , B l im i xng vi A qua im M(1;3) B x0 ;6 y0 y x0 x0 A, B (C ) y0 (2 x0 ) 3(2 x0 ) x03 3x0 x0 x0 x02 12 x0 x0 y0 Vy im cn tỡm l: 1; v 1;6 Cõu 92 Cho hm s y x3 3x (C) 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Tỡm trờn (C) hai im i xng qua ng thng d: x y Gi M x1; y1 ; N x2 ; y2 thuc (C) l hai im i xng qua ng thng d x x y y I l trung im ca AB nờn I ; , ta cú I d 3 y1 y2 x1 3x1 x2 3x2 x x Cú: 2 2 2 x1 x2 x1 x2 3x1 x2 x1 x2 x1 x2 x1 x2 2 x1 x1 x2 x2 Li cú: MN d x2 x1 y2 y1 x2 x1 x2 x1 x12 x1 x2 x22 x12 x1 x2 x22 7 ; x2 2 x12 x1 x2 x22 x1 x22 - Xột vụ nghim x1 x1 x2 x2 x x 7 7 Vy im cn tỡm l: ;2 ; ; 2 2 - Xột x1 x2 x1 x3 11 x 3x Cõu 93 Cho hm s y 3 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Tỡm trờn th (C) hai im phõn bit M, N i xng qua trc tung x x1 Hai im M ( x1; y1 ), N ( x2 ; y2 ) (C) i xng qua Oy y1 y2 x2 x1 x1 x1 x3 hoc x 11 11 x2 x2 x12 3x1 x23 3x 3 3 16 16 Vy hai im thuc th (C) v i xng qua Oy l: M 3; , N 3; WWW.ToanCaBa.Net Trang 33 2x (C) x 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Tỡm im M thuc th (C) tip tuyn ca (C) ti M vi ng thng i qua M v giao im hai ng tim cn cú tớch cỏc h s gúc bng Giao im tim cn l I(1;2) Cõu 94 Cho hm s y y M yI Gi M x0 ;2 (C ) kIM x0 x M xI ( x 1)2 + H s gúc ca tip tuyn ti M: kM y ( x0 ) x0 x + YCBT kM kIM Vy cú im M tha món: M(0; 3) v M(2; 5) x0 2x (C) x 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Tỡm trờn (C) nhng im cú tng khong cỏch n hai tim cn ca (C) nh nht 2x 1 Gi M ( x0 ; y0 ) (C), ( x0 ) thỡ y0 x0 x0 Gi A, B ln lt l hỡnh chiu ca M trờn TC v TCN thỡ: MA x0 , MB y0 x0 Cõu 95 Cho hm s y p dng BT Cụ-si ta cú: MA MB MA.MB x0 x0 x x0 x0 Vy ta cú hai im cn tỡm l (0; 1) v (2; 3) Cõu hi tng t: 2x a) y S: x0 x MA + MB nh nht bng x0 3x (C) x 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Tỡm cỏc im thuc (C) cỏch u tim cn Gi M ( x; y) (C) v cỏch u tim cn x = v y = Cõu 96 Cho hm s y 3x x x x x ( x 2) x x x x Vy cú im tho bi l : M1( 1; 1) v M2(4; 6) Ta cú: x y x 2x x 1) Kho sỏt s bin thiờn v v th (C) ca hm s Cõu 97 Cho hm s y Trang 34 Gia s Thnh c www.daythem.com.vn 2) Tỡm trờn (C) hai im i xng qua ng thng MN bit M(3; 0) v N(1; 1) uuur MN (2; 1) Phng trỡnh MN: x 2y Phng trỡnh ng thng (d) MN cú dng: y x m Phng trỡnh honh giao im ca (C) v (d): 2x (1) x m x mx m ( x 1) x (d) ct (C) ti hai im phõn bit A, B m2 8m 32 (2) Khi ú A( x1;2 x1 m), B( x2 ;2 x2 m) vi x1, x2 l cỏc nghim ca (1) x x m m Trung im ca AB l I ; x1 x2 m I ; (theo nh lý Vi-et) A, B i xng qua MN I MN m x Suy (1) x x A(0; 4), B(2; 0) x Cõu 98 Cho hm s y 2x x 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Tỡm trờn th (C) hai im B, C thuc hai nhỏnh cho tam giỏc ABC vuụng cõn ti nh A vi A(2; 0) Ta cú (C ) : y Gi B b; , C c; vi b c b c x Gi H, K ln lt l hỡnh chiu ca B, C lờn trc Ox ã ã ã ã ã ã ã Ta cú: AB AC; BAC 900 CAK BAH 900 CAK ACK BAH ACK ã ã AH CK v: BHA CKA 900 ABH CAK C HB AK b c b Hay: c c2 b Vy B(1;1), C(3;3) B H A K 2x x 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Tỡm ta im M (C) cho khong cỏch t im I (1; 2) ti tip tuyn ca (C) ti M l ln nht Cõu 99 Cho hm s y (C ) PTTT ca (C) ti M l: Gi s M x0 ; x 3 ( x x0 ) 3( x x0 ) ( x0 1)2 ( y 2) 3( x0 1) x0 ( x0 1) Khong cỏch t I (1;2) ti tip tuyn l: y2 WWW.ToanCaBa.Net Trang 35 d 3(1 x0 ) 3( x0 1) x0 x0 ( x0 1) ( x0 1) 2 ( x0 1) ( x0 1) d ( x0 1) Khong cỏch d ln nht bng ( x0 1)2 x0 x0 ( x0 1) Theo BT Cụsi: Vy cú hai im cn tỡm l: M ;2 hoc M ;2 x2 2x 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Tỡm nhng im trờn th (C) cỏch u hai im A(2; 0) v B(0; 2) PT ng trung trc an AB: y x Nhng im thuc th cỏch u A v B cú honh l nghim ca PT: x x2 x x2 x 2x 1 x Cõu 100 Cho hm s y 5 5 Hai im cn tỡm l: , , ; 2 x x 1) Kho sỏt s bin thiờn v v th (C) ca hm s 2) Tỡm trờn hai nhỏnh ca th (C) hai im A v B cho AB ngn nht Tp xỏc nh D = R \ { 1} Tim cn ng x Cõu 101 Cho hm s y Gi s A a;1 , B b;1 (vi a 0, b ) l im thuc nhỏnh ca (C) a b 1 16 16 64 AB (a b) 16 (a b)2 4ab 4ab 32 ab a b a2 b2 a2 b2 2 a b a b AB nh nht AB ab44 16 4ab a ab Khi ú: A 4;1 64 , B 4;1 64 Trang 36 Gia s Thnh c WWW.ToanCaBa.Net www.daythem.com.vn Trang 37 [...]... thi n v v th ca hm s khi m = 3 2) Tỡm m th (Cm) ct trc honh ti mt im duy nht Phng trỡnh honh giao im ca (Cm) vi trc honh: 2 x3 mx 2 0 m x 2 ( x 0) x Xột hm s: f ( x ) x 2 Ta cú bng bin thi n: 2 2 2 x 3 2 f '( x ) 2 x x x2 x2 x 0 1 + f (x) + 0 3 f (x) th (Cm) ct trc honh ti mt im duy nht m 3 Cõu 47 Cho hm s y 2 x 3 3(m 1) x 2 6mx 2 cú th (Cm) 1) Kho sỏt s bin thi n... (1) cú ỳng mt nghim õm + Nu m 0 thỡ (1) 2 x 2 x 1 (loi) 2 3m + Nu m 0 thỡ d thy phng trỡnh (1) cú 2 nghim l x 1 hay x= m WWW.ToanCaBa.Net Trang 23 (1) m 0 2 3m Do ú (1) cú mt nghim õm thỡ 0 m 2 m 3 2 Vy m 0 hay m 3 Cõu 68 Cho hm s 2 2 y x 1 x 1 1) Kho sỏt s bin thi n v v th (C) ca hm s 2) Cho im A(a;0) Tỡm a t A k c 3 tip tuyn phõn bit vi th (C) Ta cú y x 4 2 x 2 1 Phng... x2 x2 x3 x1 x3 m 1 x x x 2 1 2 3 Vỡ x1 x3 x22 x23 2 x2 3 2 nờn ta cú: m 1 4 3 2.3m m k : Vi m Vy m 5 3 2 1 3 5 , thay vo tớnh nghim thy tha món 33 2 1 5 3 2 1 3 Cõu 43 Cho hm s y x 3 2mx 2 (m 3) x 4 cú th l (Cm) (m l tham s) 1) Kho sỏt s bin thi n v v th (C1) ca hm s trờn khi m = 1 2) Cho ng thng (d): y x 4 v im K(1; 3) Tỡm cỏc giỏ tr ca m (d) ct (Cm) ti ba im phõn bit... 2 m 5 1 4SV ABC 4m m 2 Cõu hi tng t: SV ABC a) y x 4 2mx 2 1 S: m 1, m 1 5 2 Cõu 33 Cho hm s y x 4 2mx 2 2m m4 cú th (Cm) 1) Kho sỏt s bin thi n v v th hm s khi m = 1 2) Vi nhng giỏ tr no ca m thỡ th (Cm) cú ba im cc tr, ng thi ba im cc tr ú lp thnh mt tam giỏc cú din tớch bng 4 x 0 Ta cú y ' 4 x3 4mx 0 2 g ( x) x m 0 Hm s cú 3 cc tr y ' 0 cú 3 nghim phõn bit g m... cú th l (C) 1) Kho sỏt s bin thi n v v th (C) ca hm s 2) nh m ng thng (d ) : y mx 2m 4 ct th (C) ti ba im phõn bit PT honh giao im ca (C) v (d): x3 6 x 2 9x 6 mx 2m 4 x 2 ( x 2)( x 2 4 x 1 m) 0 2 g( x ) x 4 x 1 m 0 (d) ct (C) ti ba im phõn bit PT g( x ) 0 cú 2 nghim phõn bit khỏc 2 m 3 Cõu 49 Cho hm s y x 3 3x 2 1 1) Kho sỏt s bin thi n v v th (C) ca hm s 2) Tỡm... (loi) + y(m) 0 2m3 2m 0 m 0 m 1 Vy: m 1 Cõu 51 Cho hm s y x 4 mx 2 m 1 cú th l Cm 1) Kho sỏt s bin thi n v v th (C) ca hm s khi m 8 2) nh m th Cm ct trc trc honh ti bn im phõn bit m 1 m 2 Cõu 52 Cho hm s y x 4 2 m 1 x 2 2m 1 cú th l Cm 1) Kho sỏt s bin thi n v v th ca hm s ó cho khi m 0 2) nh m th Cm ct trc honh ti 4 im phõn bit cú honh lp thnh cp s cng Xột... giao im ca d v th hm s (1) l A( x1; x1 2), B( x2 ; x2 2) Suy ra AB2 2( x1 x2 )2 2 ( x1 x2 )2 4 x1x2 2(m2 6m 3) m 1 Theo gi thit ta c 2(m2 6m 3) 8 m2 6m 7 0 m 7 Kt hp vi iu kin (**) ta c m 7 l giỏ tr cn tỡm 2x 1 (C) x 1 1) Kho sỏt s bin thi n v v th (C) ca hm s 2) Tỡm m ng thng d: y x m ct (C) ti hai im phõn bit A, B sao cho OAB vuụng ti O Cõu 61 Cho hm s y Phng trỡnh... 1)2 4 a 1 b 3 Vy 2 im tho món YCBT l: A(3;1), B(1; 3) y 3x x 3 (C) 1) Kho sỏt s bin thi n v v th (C) ca hm s 2) Tỡm trờn ng thng (d): y x cỏc im m t ú k c ỳng 2 tip tuyn phõn bit vi th (C) Cỏc im cn tỡm l: A(2; 2) v B(2; 2) Cõu 65 Cho hm s Cõu 66 Cho hm s y x 3 3x 2 2 (C) 1) Kho sỏt s bin thi n v v th (C) ca hm s 2) Tỡm trờn ng thng (d): y = 2 cỏc im m t ú k c 3 tip tuyn phõn bit... tip tuyn ti M v N vuụng gúc vi nhau y ( xM ).y ( xN ) 1 (3xM2 6 xM )(3xN2 6 xN ) 1 9k 2 18k 1 0 k 3 2 2 3 (tho (*)) Cõu 37 Cho hm s y x 3 3x (C) 1) Kho sỏt s bin thi n v v th (C) ca hm s 2) Chng minh rng khi m thay i, ng thng (d): y m( x 1) 2 luụn ct th (C) ti mt im M c nh v xỏc nh cỏc giỏ tr ca m (d) ct (C) ti 3 im phõn bit M, N, P sao cho tip tuyn ca (C) ti N v P vuụng gúc vi nhau... bin thi n v v th (C) ca hm s 2) Cho im Mo ( xo ; yo ) thuc th (C) Tip tuyn ca (C) ti M0 ct cỏc tim cn ca (C) ti cỏc im A v B Chng minh Mo l trung im ca on thng AB 4 Mo ( xo ; yo ) (C) y0 1 x0 1 Phng trỡnh tip tuyn (d) ti M0 : y y0 4 ( x0 1)2 ( x x0 ) Giao im ca (d) vi cỏc tim cn l: A(2 x0 1;1), B(1;2 y0 1) x A xB y y x0 ; A B y0 M0 l trung im AB 2 2 x2 (C) x 1 1) Kho sỏt s bin thi n

Ngày đăng: 26/04/2016, 22:09

TỪ KHÓA LIÊN QUAN

w