Slide tài chính tiền tệ Chương 2: Lãi suấtSlide tài chính tiền tệ Chương 2: Lãi suấtSlide tài chính tiền tệ Chương 2: Lãi suấtSlide tài chính tiền tệ Chương 2: Lãi suấtSlide tài chính tiền tệ Chương 2: Lãi suấtSlide tài chính tiền tệ Chương 2: Lãi suấtSlide tài chính tiền tệ Chương 2: Lãi suấtSlide tài chính tiền tệ Chương 2: Lãi suất
Trang 1GIÁ TRỊ THỜI GIAN CỦA TiỀN TỆ
KHÁI NIỆM LÃI SUẤT
PHƯƠNG PHÁP ĐO LƯỜNG LÃI SUẤT
CÁC NHÂN TỐ ẢNH HƯỞNG ĐẾN LÃI SUẤT
CẤU TRÚC RỦI RO VÀ KỲ HẠN CỦA LÃI SUẤT
CHÍNH SÁCH LÃI SUẤT CỦA VIỆT NAM
3
• I- GIÁ TRỊ THỜI GIAN CỦA TiỀN TỆ
Với cùng một lượng tiền nhận được, giá trị
của nó sẽ không giống nhau nếu vào những
thời điểm khác nhau
3
Cơ sở?
Dr Nguyen Thi Lan
Trang 24
GIÁ TRỊ THỜI GIAN CỦA TiỀN TỆ
4
Giá trị tương lai của tiền tệ
Giá trị hiện tại (hiện giá) của tiền tệ
Các xác định giá trị hiện tại và tương lai của
các dòng tiền đặc biệt
Dr Nguyen Thi Lan
5
1.1 GIÁ TRỊ TƯƠNG LAI CỦA TiỀN TỆ
Giá trị tương lai là giá trị một số tiền sẽ tăng
lên nếu đầu tư với một lãi suất nào đó (r)
trong một thời gian nhất định (n)
GIÁ TRỊ TƯƠNG LAI CỦA TiỀN TỆ
GIÁ TRỊ TƯƠNG LAI CỦA MỘT SỐ TiỀN
FVn = PV (1+ r)n
Trong đó:
FV: giá trị tương lai cho một khoản đầu tư hiện tại
PV : số tiền đầu tư hiện tại
n: số năm đầu tư
r: tỷ suất sinh lợi hàng năm
• (1+ r)n là hệ số giá trị tương lai (The future
Trang 3Ví dụ:
ông ta vào ngày đứa bé chào đời để 18 năm
sau em bé có tiền vào đại hoc Vậy số tiền mà
người con sẽ nhận được khi vào đại học là bao
Số năm cần thiết để một khoản đầu tư tăng
gấp đôi giá trị xấp xỉ bằng 72/r, trong đó r là
lãi suất tính theo năm
Ví dụ: Gửi 100$ vào ngân hàng với lãi suất
10%/năm Sau bao nhiêu năm, số tiền sẽ tăng
gấp đôi?
9
Dr Nguyen Thi Lan
Trang 4n n
CF r CF r
CF r
CF
2 1 1
CF1 CF2 CF3 CFn-1 CF
n
n n-1 3
CF FV
1
) 1 (
Dr Nguyen Thi Lan
2
1
0
CFn-1 n-2
Hay
) 1 ( ) 1 (
) 1 ( )
1
1 1
t r CF FV
1
1
) 1 (
Dr Nguyen Thi Lan
n
1 ) 1
) 1 ( ) 1 (
r r
r CF
FV
Dr Nguyen Thi Lan
Trang 51
0
CF n-2
Hay
) 1 ( ) 1 (
) 1 ( )
1
r CF r CF r
CF r
CF
r
r r CF FV
n
1 ) 1 ( ) 1
) 1 (
) 1 ( 1 ) 1
r r
r CF
FV
Dr Nguyen Thi Lan
Bài tập:
Ông A cần có một khoản tiền là 1.000 tr.đ sau
10 năm để cho con đi du học Ông A muốn
thiết lập một quỹ tiết kiệm bằng cách gửi đều
đặn một số tiền vào ngân hàng, lãi suất tiền
gửi 8%/năm Vậy ông A phải gửi mỗi năm là
bao nhiêu để có 1.000 tr.đ vào cuối năm thứ
10 trong 2 trường hợp:
a) Gửi đều đặn vào cuối mỗi năm
b) Gửi đều đặn vào đầu mỗi năm
r là mức lãi suất chiết khấu (discount rate)
là hệ số giá trị hiện tại (hệ số chiết khấu)
n n n n
r FV r
FV
PV
) 1 (
1 )
Quá trình xác định giá trị hiện tại của tổng số tiền
được gọi là kỹ thuật chiết khấu
Dr Nguyen Thi Lan
Trang 6Ví dụ
Ông A phải gửi 1 số tiền vào NH là bao
nhiêu để sau 5 năm nữa ông A sẽ nhận
được 50.000.000 đ (biết lãi suất NH là
10%/1năm)
16
Dr Nguyen Thi Lan
17
PV càng nhỏ khi thời gian càng dài
PV và r tỷ lệ nghịch với nhau Dr Nguyen Thi Lan
18
1.2.1 GIÁ TRỊ HIỆN TẠI CỦA CHUỖI TiỀN TỆ
Đối với chuỗi tiền tệ FV(t)cuối kỳ:
18
n nr
FV r
FV r
FV
PV
) 1 (
) 1 ( ) 1
21
t tr FV PV
) 1 (
Trang 71
0
FVn-1 n-2
Hay
1 2
3 2 1
) 1 (
) 1 ( ) 1
FV r
FV FV
r FV PV
Dr Nguyen Thi Lan
20
1.2.2 GIÁ TRỊ HiỆN TẠI CỦA MỘT SỐ DÒNG
TiỀN ĐẶC BiỆT
20
viễn
viễn tăng trưởng
Dr Nguyen Thi Lan
r là lãi suất chiết khấu;
C là số tiền phải trả (hoặc nhận được) định kỳ;
n là số kỳ (năm) của dòng niên kim (kỳ hạn của trái phiếu)
* Ứng dụng:
- Tính số tiền phải trả góp cố định theo định kỳ
- Định giá trái phiếu phổ thông
) ) 1 (
1 1 ( ) 1 (
) 1
n n
n
r r
C r
C r
C r
Trang 822
Ứng dụng1.2.2.1: Tiền trả góp được
trả đều nhau vào cuối kỳ
))1(11()1(
)1
n n
n
r r
C r C r
C r
) 1 (
Trong đó:
NG là vốn tài trợ cho mua tài sản mua trả góp
r là lãi suất theo kỳ hạn thanh toán;
C là số tiền phải trả góp định kỳ;
n là số kỳ (năm) thanh toán tiền
C 1 C 2 C 3 C n-1 C n
n n-1 3
1 1 ( ) 1 ( ) 1 (
) 1
n
r r
r C r
C r
C r
1 (
) 1 (
r r NG C
n n-1 3
2
1
0
C n-1 n-2
Ứng dụng1.2.2.1: Tiền trả góp được
trả đều nhau vào đầu kỳ
Dr Nguyen Thi Lan
Dr Nguyen Thi Lan
24
Bài tập 1:
Công ty cho thuê tài chính của NH BIDV đã ký kết một
hợp đồng bán trả góp một dây chuyền thiết bị đông
lạnh với DN Y Với các nội dung như sau:
- Tổng số tiền tài trợ là 500 tr.đ
- Thời hạn 5 năm
- Lãi suất: 10%/năm
Yêu cầu: Hãy tính tiền trả góp phải thanh toán mỗi
năm, trong 2 trường hợp:
a) Tiền trả góp vào cuối mỗi năm
b)Tiền trả góp vào đầu mỗi năm
Trang 9Dr Nguyen Thi Lan
25
Bài tập 2:
Bạn vay 100.000 USD để mua nhà trong 3 năm với
lãi suất 10%/năm Theo hợp đồng vay, bạn phải
trả làm ba lần bằng nhau (cả gốc lẫn lãi) vào
cuối mỗi năm trong ba năm Vậy, mỗi năm bạn
phải trả bao nhiêu?
Ứng dụng: ĐỊNH GIÁ TRÁI PHIẾU COUPON
Người vay phải trả một món lãi (C) cố định theo định kỳ,
hết hạn thì trả nốt gốc (mệnh giá) Giá trái phiếu bằng
tổng hiện giá của tiền coupon hàng năm và giá trị hiện tại
r
F r
C r
C r
C
PV
) 1 ( ) 1 (
) 1 ( )
1
26
Dr Nguyen Thi Lan
ĐỊNH GIÁ TRÁI PHIẾU COUPON- CÔNG THỨC
TỔNG QUÁT
n
F r C r
C r
C
PV
)1()1(
)1()
1
( 2
n n
r
F r
r
C
PV
) 1 (
) ) 1 (
1 1
Trang 10Định giá trái phiếu coupon
năm, mệnh giá là $1000 và trái suất hàng
năm là 6%? Giả định lãi suất yêu cầu đối với
trái phiếu là 5.6%/năm
28
Dr Nguyen Thi Lan
ĐỊNH GIÁ TRÁI PHIẾU CHIẾT KHẤU
(discount bond):
Là trái phiếu được mua, bán với giá thấp hơn mệnh
giá Đến hạn thì người mua được nhận cả mệnh giá
Trong đó:
r là tỷ lệ chiết khấu trên giá mua;
F là mệnh giá;
Pd là giá của trái phiếu
Mối quan hệ giữa r và giá trái phiếu?
n
r
F Pd
) 1 (
30
(2) GIÁ TRỊ HiỆN TẠI CỦA DÒNG NIÊN KIM VĨNH ViỄN
30
Dòng niên kim vĩnh viễn là dòng tiền cố định hàng
năm những kéo dài vô hạn
- PV(c) là giá trị hiện tại của dòng niên kim vĩnh viễn
- C là giá trị của niên kim hàng năm
- r là lãi suất chiết khấu
Ứng dụng: - Định giá trái phiếu không có thời hạn
- Định giá cổ phiếu có dòng cổ tức cố định
)1(11()1(
)1()
Trang 11Ứng dụng 2.1: Định giá trái phiếu
không có thời hạn (perpetual bond)
Ví dụ 1: Giả sử ông A mua một trái phiếu trả lãi
30 USD/năm và trái phiếu này là vô hạn Lợi suất
yêu cầu của ông A là 15% Trái phiếu này có giá
là bao nhiêu?
n n
r
F r
r
C
PV
)1())1(
11(
Công ty ABC vừa trả cổ tức $2/cổ phiếu và
mức cổ tức dự kiến cố định mãi mãi Hỏi cổ
phiếu ABC nên được bán với giá bao nhiêu
nếu biết lãi suất chiết khấu là 10%/năm?
32
Dr Nguyen Thi Lan
33
(3) GIÁ TRỊ HiỆN TẠI CỦA DÒNG NIÊN KIM VĨNH ViỄN
TĂNG TRƯỞNG (perpetual growth)
33
Dòng niên kim vĩnh viễn tăng trưởng bản chất là dòng niên kim
vĩnh viễn, tuy nhiên mỗi năm dòng tiền này lại tăng lên đều đặn
Trong đó:
- PV(c) là giá trị hiện tại của dòng niên kim vĩnh viễn
- C là giá trị của niên kim năm đầu tiên
- i là tỷ lệ chiết khấu; g là tỷ lệ tăng trưởng hàng năm
Ứng dụng: Định giá của cổ phiếu có dòng cổ tức
tăng trưởng đều đặn hàng năm
g i
Dr Nguyen Thi Lan
Trang 12Ứng dụng 3.1: Định giá của cổ phiếu có dòng
cổ tức tăng trưởng đều đặn hàng năm
Ví dụ 1:
Tính giá cổ phiếu:
Công ty IFC vừa trả cổ tức $2/cổ phiếu và
mức tăng trưởng cổ tức kỳ vọng trên thị trường
sẽ mãi là 5%/năm Hỏi cổ phiếu IFC nên được
bán với giá bao nhiêu nếu biết lãi suất chiết
khấu là 10%/năm?
34
Dr Nguyen Thi Lan
Ví dụ 2:
Cổ phiếu Y có mức cổ tức sau 3 năm đầu
không đổi là 2 USD Sau đó trở đi cổ tức tăng
với tốc độ không đổi là 5%/năm Hãy định giá
cổ phiếu Y nếu biết lãi suất chiết khấu là
10%/năm?
Dr Nguyen Thi Lan
35
Ví dụ 3:
Công ty ABC vừa trả cổ tức $2/cổ phiếu và
mức tăng trưởng cổ tức kỳ vọng trên thị trường
là 5%/năm trong 3 năm liên tiếp, sau đó trở đi
tăng với tốc độ không đổi là 4%/năm Hỏi cổ
phiếu ABC nên được bán với giá bao nhiêu
nếu biết lãi suất chiết khấu là 10%/năm?
Dr Nguyen Thi Lan
36
Trang 1337
MỐI QUAN HỆ GiỮA GIÁ TRỊ HiỆN TẠI (PV) VÀ
GIÁ TRỊ TƯƠNG LAI (FV)
Ví dụ: công ty A bán hàng cho đối tác số tiền bán hàng
là 100 tr.đ Công ty A nên lựa chọn nhận tiền hàng
thanh toán theo cách nào dưới đây:
P/án1: nhận ngay 100 tr.đ
P/án 2: nhận 110 tr.đ sau 1 năm, lãi suất của các NHTM
hiện tại đang ở mức 12%/năm
Lựa chọn?
- Quy đổi giá trị về cùng thời điểm hiện tại
- Quy đổi giá trị về cùng thời điểm tương lai (sau 1
năm)
Dr Nguyen Thi Lan
38
MỐI QUAN HỆ GIỮA FV VÀ PV
Giá trị hiện tại của một luồng tiền trong tương
lai thể hiện mức giá trị ngang bằng của luồng
tiền đó nếu nhận được trong thời điểm hiện tại
Khi quyết định đầu tư cho dự án, có thể so
sánh giữa tổng giá trị hiện tại của các luồng
tiền nhận về và tổng giá trị hiện tại của các
luồng tiền chi ra
Dr Nguyen Thi Lan
39
II LÃI SUẤT
KN: LS là tỷ lệ (%) so sánh giữa số tiền lãi (lợi tức) thu được
với số vốn cho vay phát ra, trong một kỳ nhất địnhlãi
suất phản ánh giá cả của tín dụng
Công thức : i = R/Co x 100%
- i: Lãi suất tín dụng trong kỳ
- R: Tổng số lợi tức thu được trong kỳ
- Co: Tổng số vốn cho vay phát ra trong kỳ
Tại sao lãi suất là một loại giá cả đặc biệt?
Trang 14Dr Nguyen Thi Lan
40
Căn cứ vào nghiệp vụ KD của NH, có:
- Lãi suất nội địa sử dụng cho những HĐTD trong nước
- Lãi suất quốc tế: VD: LIBOR, NIBOR, TIBOR, SIBOR
sử dụng cho những HĐTD quốc tế
Theo tiêu thức biến động của giá trị tiền tệ, có:
- LS danh nghĩa (in)
i i
Dr Nguyen Thi Lan
42
Căn cứ vào tiêu thức quản lí, có:
- Lãi suất chỉ đạo do NHTƯ quy định: LS tái chiết khấu, LS
trần và lãi suất sàn, LS cơ bản.v.v
- Lãi suất KD của các TCTD (NHTM)
Lãi suất tái chiết khấu có phụ thuộc vào lãi
suất chiết khấu? vào lãi suất thị trường?
PHÂN LOẠI LÃI SUẤT
Trang 15Dr Nguyen Thi Lan
43
Phân biệt lãi suất và tỷ suất lợi tức
Tỷ suất lợi tức là tỷ lệ phần trăm (%) giữa tổng thu nhập
mà nhà đầu tư nhận được so với giá trị của khoản đầu tư
ban đầu
Thu nhập đầu tư được hình thành từ 2 nguồn:
- lãi
- sự thay đổi giá của công cụ đầu tư
tiền lãi + chênh lệch giá
Tỷ suất lợi tức = -
giá mua
Tỷ suất lợi tức phụ thuộc vào yếu tố nào?
Dr Nguyen Thi Lan
44
Ví dụ:
Một trái phiếu có mệnh giá là 100.000 đ, lãi suất coupon
là 10%/năm Trái phiếu được mua với giá 100.000 đ
Người mua giữ trái phiếu đó được 1 năm, sau đó bán đi
với giá 130.000 đ Tính tỷ suất lợi tức của trái phiếu này
sau 1 năm đầu tư?
Tỷ suất lợi tức= {100.000 x10%x 1 năm + (130.000 -
100.000)}/100.000 =0,4
Tỷ suất lợi tức= 0,4 =40%
Tỷ suất lợi tức > lãi suất coupon của trái phiếu
Có khi nào tỷ suất lợi tức = lãi suất ?
Dr Nguyen Thi Lan
45
III.PHƯƠNG PHÁP ĐO LƯỜNG LÃI SUẤT
1. Lãi suất đơn
Trang 16Dr Nguyen Thi Lan
46
KN: là lãi suất mà khi tính tiền lãi của kỳ sau, người ta
không ghép lãi của kỳ trước vào vốn của để tính lãi
Co: vốn vay ban đầu (vốn gốc)
i : lãi suất trong 1 kỳ ;
Cn: giá trị thu được sau n kỳ vay
n: số kỳ vay
Dr Nguyen Thi Lan
47
3.2 LÃI SUẤT KÉP
KN: là lãi suất có tính đến giá trị đầu tư lại của
lợi tức thu được trong thời hạn sử dụng tiền
vay, trong đó lãi của kỳ trước được nhập vào
vốn gốc để tính cho lãi kỳ sau
C2= Co (1+ i)²
Cn= Co (1+ i)n
Cn : Giá trị thu được (cả vốn và lãi) sau n kỳ
i: là lãi suất trong 1 kỳ
Dr Nguyen Thi Lan
48
So sánh lãi suất đơn và lãi suất kép
Lãi suất đơn được áp dụng cho các khoản tín dụng
ngắn hạn và việc trả nợ được thực hiện một lần khi
đáo hạn
Lãi suất kép được áp dụng cho các khoản tín dụng
có nhiều kỳ hạn thanh toán
lãi
kỳ hạn
Lãi đơn Lãi kép
0
Trang 17Dr Nguyen Thi Lan
49
49
Giá trị thu được sau 5 năm của $100 với
lãi suất 10%/năm
Năm đầu năm Số tiền Lãi đơn Lãi của lãi Tổng lãi gộp cuối năm Số tiền
Lãi suất thường công bố theo năm (i a ), nhưng việc ghép
lãi lại theo kỳ (m)
- nếu ghép lãi theo quý: m= 4
- nếu ghép lãi theo tháng: m= 12
Dr Nguyen Thi Lan
51
3.3 Lãi suất thực trả - lãi suất hiệu quả
thường niên (Effective Annualized Rate-EAR )
Khi tần suất ghép lãi không được quy định theo năm, có thể tìm được
mối liên hệ giữa lãi suất công bố (APR- Annual percentage rate) và lãi
suất hiệu quả thường niên:
EAR = (1+ APR / m ) m -1
Trong đó:
EAR: Lãi suất hiệu quả thường niên
APR: Lãi suất công bố theo năm
m là số lần ghép lãi trong một năm
Ví dụ: Ngân hàng Techcombank công bố lãi suất cho vay là 10%/
năm, kỳ ghép lãi là 3 tháng một lần, lãi suất của Ngân hàng Liên
việt công bố là 10,5%/năm, ghép lãi 1 năm một lần Khi vay vốn
để kinh doanh, bạn nên vay tiền của ngân hàng nào?
Trang 18Dr Nguyen Thi Lan
52
3.4 LÃI SUẤT HOÀN VỐN
(p.p mới đo lường lãi suất)
Lãi suất hoàn vốn (Yield to maturity-YTM) là lãi
suất làm cân bằng giá trị hiện tại của tất cả các
khoản thu nhập trong tương lai từ một khoản đầu tư
tính tới khi đáo hạn với giá trị hiện tại của khoản đầu
3) Trái phiếu coupon
4) Trái phiếu chiết khấu
53
3.3.1 Phương pháp tính lãi suất hoàn vốn
(1)Vay đơn: vốn và lãi trả 1 lần vào cuối kỳ
Một khoản cho vay P, cho vay trong n năm với lãi suất một
năm là i Số tiền cuối cùng nhận được là: F= P(1+ i) n
để có số tiền F nói trên sau n năm, hiện tại phải bỏ ra
số tiền P, với lãi suất hoàn vốn là i*
Định kỳ (hàng tháng, hàng năm) người vay phải hoàn trả
những món tiền như nhau cho đến khi hết thời hạn vay
Món tiền phải trả chính là một phần vốn gốc và lãi được chia
thành những phần bằng nhau
Trong đó:
NG là số tiền cho vay
C là số tiền hoàn trả cố định theo định kỳ (năm)
n là số kỳ hạn của khoản vay
i* là lãi suất hoàn vốn
Dùng hàm Excel để tính i*
)
*)1(
11(
*
*)1(
*)1
C i
Trang 1955
3.3.1 Phương pháp tính lãi suất hoàn vốn
(tiếp)
(3) Trái phiếu coupon (coupon bond):
Người vay phải trả một món lãi cố định theo định kỳ, hết hạn
P(b) là giá hiện thời của trái phiếu coupon
C là tiền coupon hàng năm
F là mệnh giá trái phiếu
n là thời hạn của trái phiếu; i* là lãi suất hoàn vốn
56
3.3.1 Phương pháp tính lãi suất hoàn vốn
(tiếp)
(4) Trái phiếu chiết khấu (discount bond):
Là trái phiếu được mua, bán với giá thấp hơn mệnh giá
Đến hạn thì người mua được nhận cả mệnh giá
Mối quan hệ giữa i* và giá trái phiếu?
Dr Nguyen Thi Lan
57
IV- CÁC NHÂN TỐ ẢNH HƯỞNG ĐẾN LÃI
SUẤT
Do lãi suất là giá cả của tín dụng chịu ảnh
hưởng bởi các nhóm nhân tố:
cho vay)
(2) Ảnh hưởng của cung, cầu tiền tệ
Trang 20Dr Nguyen Thi Lan
- Cầu TD là nhu cầu vay vốn của các chủ thể kinh tế
- Cung TD là khối lượng vốn dùng để cho vay kiếm lời của các
chủ thể khác nhau Nó bao gồm các nguồn sau:
+ Tiền gửi tiết kiệm của các hộ gia đình
+ Nguồn vốn tạm thời nhàn rỗi của các DN
+ Các khoản thu chưa sử dụng đến của NSNN
+ Nguồn vốn của các chủ thể nước ngoài
Trong các nguồn trên, nguồn nào giữ
vị trí quan trong nhất?
Dr Nguyen Thi Lan
59
Ảnh hưởng của cung, cầu TD đến lãi suất
Quỹ cho vay
Trang 21 Sự thay đổi của thu nhập
Tỷ suất lợi tức dự tính của công cụ nợ
Rủi ro của khoản vay
Trang 22Dr Nguyen Thi Lan
64
CÁC NHÂN TỐ ẢNH HƯỞNG ĐẾN CUNG,
CẦU TIỀN
- Mức cầu tiền là lượng tiền mà các doanh nghiệp, các tổ
chức, cá nhân muốn nắm giữ để đáp ứng nhu cầu tiêu
dùng hiện tại và trong tương lai với giá cả và các biến
số kinh tế khác cho trước Lý thuyết về sự ưa thích
tiền mặt của Keynes
- Mức cung tiền bao gồm: tiền mặt đang lưu thông ngoài
hệ thống NH và tiền gửi không kỳ hạn có thể phát hành
séc, tiền gui có kỳ hạn ngắn trong hệ thống NH
Dr Nguyen Thi Lan
MS 3
Ảnh hưởng của lượng cung tiền đến lãi suất
Dr Nguyen Thi Lan
Các nhân tố làm dịch chuyển đường cung tiền:
Chính sách tiền tệ của Ngân hàng trung ương;
+ Chính sách tiền tệ mở rộng
+ Chính sách tiền tệ thắt chặt
Chế độ tỷ giá hối đoái (cố định hay thả nổi)
Độ mở của nền kinh tế (vốn, lãi suất quốc tế…)