QUẢN LÝ CHẤT LƯỢNG MÔI TRƯỜNG TRONG NUÔI TRỒNG THỦY SẢN... Bacteria on mucosal surface 1Host-parasite relationship Host = an organism which harbors parasite microorganisms Parasite = an
Trang 1QUẢN LÝ CHẤT LƯỢNG MÔI TRƯỜNG
TRONG NUÔI TRỒNG THỦY SẢN
Trang 2Chương 3:
Khái niệm về vi sinh vật trong nguồn nước
Trang 3Microbial Interactions with Macroorganisms
Aquatic environment is relatively rich in microorganisms
Up to 10 5 to 10 6 cells / mL Cilliates, other protists, and viruses
Macroorganisms in aquatic environment
Constantly exposed to microorganisms
Trang 4Fish & Shellfish
Increasingly, more focus on normal
microflora and their interactions
with the host organisms
Trang 5Microbiology of bivalve mollusks
Microorganisms as foodNatural microfloraFilter feeders and the ecosystem
Hansen and Olafsen, 1999; Maeda, 2002
Trang 6Microorganisms as food
Filter feeders
(Suspension feeders)
Feed on microorganisms that
they filter out of the
Worms, fiddler crab
Larval forms of animals may require smaller microorganisms
such as bacteria, while an adult may prefer larger
microorganisms such as flagellated protists and algae
Trang 7Oyster anatomy lab- http://www.mdsg.umd.edu/oysters/anatlab/index.htm
Oyster anatomy
Draw water in over its gills through the beating of ciliaSuspended food (plankton) and particles are trapped in the mucus of the gills
Sort by labial palps and transport
to the mouth, eaten, digested, and feces expelled
Pseudofeces = particles which are not sorted as food and are rejected through the mouth
Trang 8Oyster filtering mechanism lab- http://www.mdsg.umd.edu/oysters/oysfilt.htm
Trang 9Natural microflora of mussels and oysters
A majority of isolates are gram-negative (68%) and aerobic
(76%) bacteria
Predominant flora: Vibrio, Pseudomonas, Shewanella,
Aeromonas, Acinetobacter, and Flavobacterium
Gram-positive bacteria: Staphylococcus, Bacillus,
Streptococcus
Predominant Vibrio species includes:
V alginolyticus, V splendidus, and V (Listonella) anguillarum*
Not always reflect external environment
Suggests selective process to sequester and maintain certain species
Kueh and Chan, 1985 ;Hariharan et al., 1995
Trang 10Filter feeders and the ecosystems
An adult oyster can filter as much as 60 gallon per day
Oysters can filter out sediments and nutrients (nitrogen) and
deposit them on the bottom
“Top-down" grazer control on phytoplankton
Reduce turbidity, increasing the amount of light reaching the sediment
surface
Extending the depth to which ecologically important benthic plants
(seagrasses and benthic microalgae) can grow
Newell, 2004 ;Chesapeake Bay Foundation- http://www.cbf.org/
Trang 11Newell, 2004
Filter feeders bivalves removing inorganic and organic particles from water column and
transferring undigested particulate material to the sediment in the form of their biodeposits
Trang 12Microbiology of Fish
Eggs, skin, gills microflora
Intestinal microflora
Trang 13Bacteria on mucosal surface (1)
Host-parasite relationship
Host = an organism which harbors parasite (microorganisms)
Parasite = an organism that lives on or in a second organism
Surfaces such as eggs, skin, gills, and intestinal tract
Mucus layer as an adhesion site and protective layer
Indigenous vs transient (autochthonous vs allochthonous)
Indigenous = able to grow and multiply on the surface of the host animal Transient = not able to grow or multiply on the surface of the host animal; does not persist for a long period of time
Trang 14Bacteria on mucosal surface (2)
Loose association Adhesion Invasion
Trang 15Eggs microflora
Fish embryos secret inorganic and low molecular weight organic
compound, which can diffuse out through the shells
Attract bacteria utilizing these compounds and colonize egg
surface
Normal healthy eggs flora: Cytophaga, Pseudomonas
Dead eggs: fluorescent Pseudomonas
Not the cause of dead, but rather attracting to nutrient leaching
Overgrown of bacteria can hamper eggs development
Cahill, 1990; Hansen and Olafsen, 1999
Leucothrix mucor on cod eggs Flavobacterium ovolyticus on halibut eggs
Trang 16Skin Microflora
Reflect that of surrounding water
May have from 102 to 104 bacteria/ cm2
Unit of measurement per area
Surface sampled by using a sterile swab
Muscle tissue should be sterile
Gram negative: Pseudomonas, Moraxella, Vibrio, Flavobacterium,
Acinetobacter, Aeromonas
Gram positive: Micrococcus, Bacillus
Cahill, 1990
Trang 17Gill Microflora
May contain 102 to 106 bacteria/ g
The number is quite low considering its high surface area and being
continual flushed by water
Extensive colonization of certain types of bacteria (Flavobacterium)
Gram negative: Pseudomonas, Flavobacterium, Vibrio,
Moraxella, Cytophaga
Gram positive: Micrococcus, Bacillus (in warmer water)
Cahill, 1990
Trang 18Intestinal microflora (1)
Established at the larval stage
Developed into a persistent flora at the juvenile stage
Population of microorganisms tends to increase along the length
of the GI tract
Largest number of bacteria in the intestines (up to 108 CFU/g)
Gram negative: Pseudomonas, Vibrio, Achromobacter,
Flavobacterium, Corynebacterium, Aeromonas
Gram positive: Bacillus, Micrococcus
Influenced by stages of life, diets, feeding, water temperature,
habitat
Large number when feeding, very few when not feeding
Organic content of the environment
Vibrio dominates in seawater, Aeromonas dominates in freshwater
Cahill, 1990; Hansen and Olafsen, 1999
Trang 19Intestinal microflora (2)
Ringo et al., 2003
Microvilli of the epithelial cells of common wolffish (A lupus L.)
SEM of the enterocytes in the
midgut of Artic charr
Bacteria
Trang 21Aquaculture of marine larval fish
More difficult to raise compared to freshwater
Smaller egg size Smaller size at hatching Longer larval duration Higher mortality rates
Mass mortality often with unknown cause
Adult
Trang 22Fish Anatomy
Larva
Adult
Trang 23Development of the intestinal
Marine larvae needs to “drink” to osmoregulate
Influence by eggs, live feed, and rearing water
Once feeding begins, microbiology is derived from live feed
ingested rather than water
As the digestive tract becomes more developed, the intestinal
microbiology becomes more stable and more complex
pH change (lower)
O2 tension (more anaerobic)
Receptors for bacteria
Ringo and Birkbeck, 1999; Birkbeck and Verner-Jeffreys, 2002
Trang 24Development of the intestinal microflora
(2)
Criteria for testing whether or not microorganism is indigenous to
the intestinal tract of fish:
• Found in healthy individuals
• Colonize early stages and persist throughout life
• Are found in both free-living and hatchery-cultured fish
• Can grow anaerobically
• Are found associated with the epithelial mucosal in the stomach, small intestine or large intestine
Ringo and Birkbeck, 1999
Trang 25Roles of intestinal microflora
Nutrition
Polyunsaturated fatty acids, amino
acids and vitamins
Extracellular enzymes: chitinase
Preventing infection from fish
pathogens
Competitive attachment
Neutralization of toxins
Bacteriocidal activity
Survival and growth
Bacterial load impact on survival &
digestive organ development
Presence of certain species influence
survival
Stimulation of the immune system
Provide antigens to trigger development
of immune responses in the gut
Ringo and Birkbeck, 1999; Photo by Mark Tagal
Pre-release China rockfish
Trang 26Disease triangle concept
Pathogenesis
Types of pathogens
Trang 27Diseases triangle concept
For a disease to develop:
Trang 28Pathogenesis = the origin and development of a diseasePathogenicity = the ability of a parasite to inflict damage on the host
Entry of the pathogen into the host
Exposure to pathogens Adherence to skin or mucosal surface Invasion through epithelium
Colonization and growth
Localization (boil, ulcer, etc) Systematic infection
Production of virulence factors
Tissue damage via toxins or invasiveness
Trang 29Found in the environment
Do not cause disease unless the host immune response is suppressed (stress, environmental factor, etc)
Listonella anguillarum
Fish, mollusks, shrimp, crabs Vibriosis
Buller, 2004
Trang 30Application of bacteria in aquaculture
Biofilters
The use of bacteria to remove
ammonia and nitrite- toxic at high concentration to fish
Nitrosomonas and Nitrobacter sp.
Aerobic process
Microbial matured water
Probiotics
Trang 31Microbial matured water
Problems with treatment to completely eliminate bacteria such
as antibiotic
Change in the composition of microbial population
Create more resistant strains of bacteria
Types of bacteria more important than numbers
Water that has been treated to select for non-opportunistic
bacteria
Non-opportunists (K-strategists) is competitive at low substrate availability
Filtration with 0.2 µ m membrane to remove most bacteria and particulate
organic nutrients
Selective recolonization of these non-opportunists in biofilters help
controlled microbial community in water
Increase survival, faster growth rate, higher intestinal bacteria
at first feeding
Skjermo and Vadstein, 1999
Trang 32Probiotic = a live microbial feed supplement which beneficially affects the host by improving its intestinal balance
A broader definition might also include:
Other forms of addition (submerged bath, add to the rearing water)
Beneficial effects such as preventing pathogens from proliferating, improving
nutritional values of feed, enhancing the host responses towards disease,
improving rearing environment
Interactions other than in the intestinal tract (skin, gills)
Can be used for fish (all life stages), crustaceans, bivalve mollusks,
live food (rotifers, Artemia, and algae)
Vibrio sp., Streptococcus lactis, Lactobacillus, Carnobacterium,
Pseudomonas fluorescens, Bacillus sp.
Verschuere et al., 2000
Hmm, yogurt!
Trang 33“Carnobacterium inhibes sp nov., isolated from the intestine of Atlantic
salmon (Salmo salar)”- Joborn et al., 1999
“Phylogenetic analysis of intestinal microflora indicates a novel Mycoplasma
phylotype in farmed and wild salman”- Holben et al., 2002
“Vibrio tastmaniensis sp nov., isolated from Atlantic salmon (Salmo salar
L.)”- Thompson et al., 2003
Several types of interactions between microorganisms and fish + shellfish
Trang 34Thank you
Trang 35Birkbeck, T.H., and D.W Verner-Jeffreys 2002 Development of the intestinal microflora
in early life stages of flatfish, p In C S Lee and P O'Bryen (ed.), Microbial
Approaches to Aquatic Nutrition within Environmentally Sound Aquaculture
Production Systems The World Aquaculture Society, Baton Roughe, Louisiana.
Cahill, M.M 1990 Bacterial flora of fishes: A review Microb Ecol 10:21-41
Fuiman, L.A., and R.G Werner 2002 Fishery science: the unique contributions of early life stages Blackwell Science, Oxford UK; Malden MA.
Hansen, G.H., and J.A Olafsen 1999 Bacterial interactions in early life stages of marine cold water fish Microbial Ecology 38:1-26.
Hariharan, H., J.S Giles, H.S B., G Arsenault, N McNair, and D.J Rainnie 1995
Bacteriological studies on mussels and oysters from six river systems in Prince
Edward island, Canada Journal of Shellfish Research 14:527-532.
Holben, W.E., P.Williams, L.K Sarkilahti, and J.H.A Apajalahti 2002 Phylogenetic
analysis of intestinal microflora indicates a novel Mycoplasma phylotype in farmed
and wild salmon Microbial Ecology 44:175-185
Joborn A., M Dorsch, J.C Olsson, A Westerdahl, and S Kjelleberg 1999 Carnobacteria
inhibens sp nov isolated from the intestine of Atlantic salmon (Salmo salar)
International Journal of Systematic Bacteriology 49:1891-1898
Kueh, C.S.W., and K Chan 1985 Bacteria in bivalve shellfish with special reference to the oyster Journal of Applied Bacteriology 59:41-47.
Trang 36Newell, R I 2004 Ecosystem influences of natural and cultivated populations of
suspension feeding bivalve molluscs: a review Journal of Shellfish Research 23: 61
51-Ringo, E., G.J Olsen, T.M Mayhew, and R Myklebust 2003 Electron microscopy of the intestinal microflora of fish Aquaculture 227:395-415.
Ringo, E., and T.H Birkbeck 1999 Intestinal microflora of fish larvae and fry Aquaculture Research 30:73-93.
Skjermo, J., and O Vadstein 1999 Techniques for microbial control in the intensive
rearing of marine larvae Aquaculture 177:333-343.
Trang 37Thompson, F.L., C.C Thompson, and J Swings 2003 Vibrio tasmaniensis sp nov
isolated from Atlantic salmon (Salmo salar L.) Systematic and Applied Microbiology
26: 65-69
Verschuere, L., G Rombaut, P Sorgeloos, and W Verstraete 2000 Probiotic bacteria as biological control agents in aquaculture Microbiology and Molecular Biology Reviews 64:655-671.
Trang 38• Do vậy, một định nghĩa thích hợp hơn cho vi
sinh vật hữu ích trong nuôi thuỷ sản sẽ là:
“ là hổn hợp bổ sung có bản chất vi sinh vật sống có tác động
có lợi đối với vật chủ nhờ sự cải thiện hệ vi sinh liên kết với vật chủ hoặc sống tự do trong môi trường, nhờ cải thiện việc
sử dụng thức ăn hoặc tăng cường giá trị dinh dưỡng của thức
ăn, nhờ vào sự gia tăng khả năng đề kháng của vật chủ đối với mầm bệnh hoặc nhờ vào sự cải thiện chất lượng của môi
trường sống”
Định nghĩa Probiotic (tt)
Trang 39Cơ chế tác dụng của CPSH
Trang 40• Có thể tiết ra trong ruột, trên bề mặt cơ thể hay ra môi
trường nước
H2O2, axit hữu cơ,
ra nên được gọi chung là chất ức chế
1 Tiết ra chất ức chế
Trang 412 Cạnh tranh dinh dưỡng
• Nhiều quần thể vi sinh vật cùng tồn tại trong
cùng một hệ sinh thái => cạnh tranh
• Cạnh tranh vi sinh vật chủ yếu là do nhóm dị
dưỡng: cạnh tranh cơ chất hữu cơ
• Nếu nắm được yếu tố ảnh hưởng đến sự cạnh
tranh này ta có thể điều khiển được thành phần
vi sinh trong môi trường
Trang 42• Rico-Mora (1998), đã đưa một dòng VK được chọn
lọc có khả năng phát triển trên môi trường nghèo hữu cơ
Vibrio alginolyticus : VK Vibrio này không phát triển
át Vibrio trong điều kiện nghèo hữu cơ
2 Cạnh tranh dinh dưỡng
Trang 43• Tất cả các VSV đều cần chất sắt cho sinh
trưởng
• Hiện tượng siderophores: tiết ra chất kết tủa
các ion sắt có trọng lượng phân tử thấp
• Các VSV này sẽ hấp thu các phân tử Fe kết tủa
này và làm mất Fe trong môi trường
• Các VSV gây bệnh cần nhiều sắt
• VSV cạnh tranh Fe => hạn chế mầm bệnh
trong môi trường
2 Cạnh tranh dinh dưỡng
Trang 443 Cạnh tranh chổ cư trú
của ruột động vật thủy sản
lựa chọn đầu tiên của vi khuẩn hữu ích
cạnh tranh tốt hơn các vi khuẩn từ bên ngoài
tranh chổ bám, tiết ra chất ức chế
Trang 454 Cải thiện chất lượng nước
• Được cho là một cơ chế tác động của Probiotics thuỷ sản khi
đưa chúng vào nước giúp cải thiện chất lượng nước mà không
có tác động trực tiếp lên cơ thể vật nuôi.
• Thường liên quan đến các nhóm Bacillus
• Nhóm VK gram (+) thường phân huỷ VCHC thành CO2 tốt
hơn nhóm gram (-)
• Duy trì mật độ vi khuẩn Gram (+) trong ao nuôi sẽ hạn chế
được sự tích luỹ VCHC trong ao trong suốt quá trình nuôi
• Ổn định quần thể tảo nhờ sự sản sinh CO2 từ quá trình phân
huỷ
Trang 46• việc cấy vi khuẩn nitrate hoá có hiệu quả rõ
hơn
• Việc cấy VK Nitrate hoá cho lọc sinh học mới
có thể làm giảm thời gian khởi động lọc xuống 30%
• Việc cung cấp VK Nitrate hoá cho ao nuôi
hoặc bể nuôi có thể được thực hiện khi hàm
lượng amôn tăng đột ngột.
4 Cải thiện chất lượng nước
Trang 475 Tác động tương hổ với TSV
• Các nghiên cứu gần đây cho thấy, một số dòng
VK có khả năng tiêu diệt một số loài tảo, đặc biệt là tảo gây ra hồng triều.
• Các dòng VK này có thể không tốt đối với
ương ấu trùng bằng nước xanh, nhưng sẽ có
lợi khi tảo phát triển quá mức trong ao nuôi
• Nhiều dòng VK khác có khả năng kích thích
sự phát triển của tảo.