1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Phương trình mũ và logarit

42 1,5K 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 42
Dung lượng 0,96 MB

Nội dung

Tài liệu này là tuyển chon hơn 1500 bài tập về phương trình logarit bao gồm nhiều dạng khác nhau giúp bạn đọc có thể tự rèn luyện khả năng cũng như kĩ năng nhận dạng các loại bài tập logarit cũng như phương trìnhmũ và logarit.

Phương trình mũ Logarit PHƯƠNG TRÌNH MŨ VÀ LOGARIT x 1 .8 x x 1.  3. x  2x  5. x4 x 2 .3  7.  9. x 2. 5x  5x1  5x2  3x  3x1  3x2  500  x 2x1 2 .3  3 3x 3 2 x 4. 3x2   x   x  2x   x 6.  7.2x  2x 10. 23x  6.2x   20  2x  81cos  21. 4.3  9.2 x  8 cosx  x2 3.(x 1)  12 1 2x x x   4.   16. 5.32x1  7.3x1   6.3x  9x1  x 1 18. 2log  x2.log2 x  48 20. 125x  50x  23x1  x log2  x2 x 2x       .    17. 4.23x  3.2x   22x2  24x2 19. 2.9  x 1 x 12. 4.33x  3x1   9x 14.   30 15. 5lgx  50  xlg5 x log2 x3 4 8. 8x  18x  2.27x 11. 53x  9.5x  27.(125x  5x )  64 13. 81sin x cosx x  5.6  22.   x12     2   x2 2x 1   2   23. 32x  2x  .3x  9.2x  24. x2   2x .x  2.  2x  25. 9x  2.  x   .3x  2x   26. 3.25x2   3x  10  .5x2   x  27. 4x 3x2  4x 6x 5  42.x 3x7 1 28. 4x 33. x x   32 35. x  xlog2  xlog2 Hoàng Ngọc Phú  21x  2 x 1 1 30. 12.3x  3.15x  5x1  20 29. 8.3x  3.2x  24  6x 31. 2x  3x   6x x 32. 3x  4x  5x x x 34. 32  22  2x  3x1  2x1  x  36. x  xlog2  xlog2  Page Phương trình mũ Logarit 37. 39. x2 6x  38. 0,25.42x1   16  2  2  4 x 2 41.   3 x 1 3sin x 1 x2 1  2x 1 2x 1 40.  2.5 4 x  123   x 2 3x4 4 42.   7  43. 32  x   x  30 45. x  16   92x2 cos2x 3cosx   1 44. x 46. x 2x 49 16 1 x  22  x  x  47. 4x  6.2x1  32  48. 27x  13.9x  39.3x  27  49. cot x  cot x  50. 9x  51.  2 2x 53. 3log3  x    x 1  1  52. 1 x x   36.3x 3 30  36.32x 54. x  x  x  xlog3 x  162 55. x  x  x 56. x  3x  5x  10x 57. 2x   x 58. 3x   2x 59. x  2.(x  2)3x  2x   60. x   x   .2 x  12  4x  61. log2 x2 3logx  x  102 logx 62. x 63. 8.3x + 3.2x = 24 + 6x 65. 2x x  4.2x 2 x   22x   71.    2   x 5   sin x  66. 4x x 4 52 70.  sin x  75. lg  x  2 x   lg16  lg 4 Hoàng Ngọc Phú 3x2  4x 6x 5   42x 3x 7 68. 8x + 18x = 2.27x 73. 6.9x  13.6x  6.4x  x  16x2 64. 12.3x + 3.15x – 5x + = 20 67. 3.8x  4.12x  18x  2.27x  69.  log2  4x      1  2    x 1  72.  x  x  16   x  x 3 74. 8.4x  70.10x  125.25x      76. lg     lg3  lg  x  27      2x    Page Phương trình mũ Logarit    77. log2 4x   x  log2 2x3  log   2x  1 2x  79.   17x2.x2  81. log92 x  log3 x.log3     78. log2 4x1  .log2 4x   log   80. log4 log3 1  log2 1  3log3 x      2x   82. logx3   2x  x      84. log   1 .log   5  85. log  x  1   log  x  log   x  86. log  x  x  1  log  x  x  1  log  x  x  1  log  x  x  1 83. Tìm x biết lg2,lg 2x  ,lg 2x  , theo thứ tự lập thành cấp số cộng. x 1 x 25  89. 87. log27 x2  5x  log x3 5    .log x 3  log9  x  3 x  log3 x2     x  log3 x  log3 x  91. log2  x  log3 x 92. log6 93. log7  x    log5 x 94. log2  log3 x   log3  log2 x      x  x  log4 x  95. log2 x  x2  .log3 x  x   log6 x  x  96. 97. 3log2 48 88. xlog x3log3 x  90.  x    l ogx   l ogx       log2 x2  4x   2.  log2 x2  4x   98. log2  3x  1  100. log x2 log x3   x   log x   log2  x  1 99. log x x2  14.log16x x3  40.log 4x x  x2 1   1 x 101. log6  3.4  2.9 x    log6   x   102. Cho x  0,y  x+y = 1.Tìm giá trị nhỏ của: P  3x  9y 103. log2 (x2  x  1)  log2 (x2  x  1)  log2 (x  x2  1)  log2 (x  x2  1) 104. log2 (x2  3x  2)  log2 (x2  7x  12)   log2 Hoàng Ngọc Phú Page Phương trình mũ Logarit  107. log(x3  8)  log(x  58)  log(x2  4x  4) 109. log2  3x  1  log(x3) 110. log4  x  1   log 117.   x3 0 x 1 x   114.    log 51 x 5  .log(5x  4)  log x    log0,18   116. log2 x2   x  log2 8  x   118. 0 112. log5 x  log25 x  log0,2 log0,04 x   log0,2 x   120.  log2  x  1  logx1 121. 3logx 16  log16 x  log2 x 122. log 16  log2x 64  123. log2 (2x2 ).log2x  124. log 5 x . log x  125. x cos2 x   logx 5x   logx 127. logcosx 4.log  6 1  1  logx  logx 119. logx  log x  x  x  log8   x    9 108. log4  log2 x   log2  log4 x   111. (x  1).log5  log5 3x1   log5 11.3x  115.  log2  1  log   log2 (x  1) 113. log(x2  2x  3)  log  106. log2 4.3x   log2 105. 2(log9 x)2  log3 x.log3 ( 2x   1) 126. logsinx 4.log 1 sin2 x 24 128. log2(x1) 4(x  1)  log x1 (x  1)  2 129. log x2   x   log x 130. log 2  log2  4x   x2 x 131. log x x2  14 log16x x3  40log 4x x  1 132. loga  ax  .logx  ax   log   a a 133. log2 (3x  1).log2 (2.3x  2)  135. l og4  x  1  l og2  x  1  25 Hoàng Ngọc Phú với  a  ; a  1 134. log(logx)  log(logx3  2)  136. log2 (x2  1)  (x2  5).log(x2  1)  5x2  Page Phương trình mũ Logarit 137. 5logx  50  xlog5 138. 139. (log3 x)2  (x  4)log3 x  x   141. log5 x3 x 140. log2 x  2x   1   log2 x 142. log2 x  x  1   log2 x.log2 (x2  x)     x 143. 3x + 5x = 6x + 144. 12.9 x - 35.6 x + 18.4 x = 145. x = x + 146.  2 147.  2    x  2  x 4 148. x x  6x 2x   18  2x  150. x + 33  x = 12. 149. 6x + = 2x + + 4.3x 151.   3  2  3x   3x 152. 2010x  2008x  2.2009x 153. 2x 1  5x1 154. 2x x  2x   2x  x2 2 155. 2x x  22xx  156. x2 .2x  4x   4.x2  x.2x  2x  157. 6x   2x1  4.3x  2 158. 4x x  21x  2(x1)  159. 22. x3x  5.2 x31  2x4  x x 160. 34  43 2 161. 4x  (x2  7).2x  12  4x2  162. 8x  7.4x + 7.2x +  = 163. log3 x  logx      164. log2 2x  .log4 2x1   165. log22 x  3.log2 x   166. log3x  9x   log x  3x   167. x.log5  log5 3x   log5 3x1        168. 4log3 x  xlog3  169. log3 x2  x   log3  2x  5 170. log32 x  (x  12)log3 x  11  x  171.  172. log2 x   log2  x  log2 x  x log3 x   173. log22 x  3.log2 x   log2 x2  174. log2 x.log3 x  x.log3 x   log2 x  3log3 x  x      175. log3 2x   log3 2x   log3 2x2  Hoàng Ngọc Phú  Page Phương trình mũ Logarit 176. log22 x  log2 x.log2  x  1   3.log2 x  2.log x  1 177. 3.log3  x    2.log2  x  1 178. xlog3  x2 .2log3 x  7.xlog3 179. log2  4x   log 180. log3  log27 x   log27  log3 x    2x   log3 x    log3 x 181. 183. 2.log24 x  log2 x.log2   x  1 184. log82 x2    log2 8x2  186. 3log2 x  xlog2  18 187. x.log22 x  2(x  1).log2 x   188. 4x1  2x4  2x2  189. 2x5  4.3 190. 4.3  9.2  27  x 191. 8.3x  3.2x  24  6x 193. x  32 192. x x  5.6 72x x  6. 0.7 7   100x 194. 2x  128  2x 195. 4x  2x   196. 25x  6.5x1  53  197. 9x  5.3x   198. 9x  25.3x  54  199. 32x  32x  30 x1 200.    82.3x   201. 73x  9.52x  52x  9.73x 202. 9x 203. 9x 1 x x  .8 x 205.  3x 1 1  36.3x 3 30 204. xlog2  x2 .3log2 x  xlog2 6  206. 2.xlog2 x  2x3log8 x   6 log2 4 x2  207. x  xlog2  xlog2 208.  x   209. 4lg10x  6lgx  2.3lg100x 210. 125x  50x  23x1 1x 211. 4x  x.3  182. log2 x.log3 x   3.log3 x  log2 x 185. 6.9log2 x  6.x2  13.xlog2 4x8 x  2x .3  2x  x x 1 .8 x x 212.  x  2  500 213. 3x1  3x2  3x3  3x4  750 214. 7.3x1  5x2  3x4  5x3 215. 6.4x  13.6x  6.9x  216. 4x  82x1 217. 52x1  3.52x1  110 218. 3.4x  2.9x  5.6x Hoàng Ngọc Phú Page Phương trình mũ Logarit 219. 32x8  4.3x5  27  221. x 6.9 223. 6. x  13.6 2x 3 x  6.4 4 x2 3x 5   220. 7.3x1  5x2  3x4  5x3 222. 5x1  2x  5x  2x2  0 224.  x 225. x  log2  2x  227. x2  16  10.2 x 2 x  32x1 226. 25x  15x  2.9x x2 228. 22x x  9.2x x  22x2  12 229.  6.2  x1  x  2  230. 231. 52x  32x  2.5x  2.3x 232. 2x 233. 2x.5x1  102x 234.  235. 3.16x  2.81x  2.36x 236. 12.3x  3.15x  5x1  20 3x 1 x x   x  1         2   244.  245. 2x   242.    2   2x  16  2  x  x 3 240. log4  x  3  log4  x  1   log4  x2 2x 1  x 1 238. 3x  5x  6x  241. log5x x2  2x  65  243.   3x  3x  237. 4log2 2x  xlog2  2.3log2 4x 239. 2x1  2x 1  9x  6x1  x2 2x 1 x x   101 10   4 2  lo2x  x 2  log2 x   x2    x2   x   x2   4x  x x x 1 1 1 246.     2x        2x   3 2 6 x 247. 5.32x1  7.3x1   6.3x  9x1  248. lg5  lg  x  10   lg  21x  20   lg  2x  1  1 1  1  249. lgx  lg  x    lg  x    lg  x    2 2  8  Hoàng Ngọc Phú 250. lg2 x  3lgx  lgx2  Page Phương trình mũ Logarit 252. log21  4x   log2 251. log x  log x   253. log    4x   log5 2x   2 x2 8 254. log x x  log 4x x  3log2x x3   256. lg  lgx   lg lg x3      255. log  log32 x  x   257. log3  x  1  log5  2x  1  258. log2 x2   log2  6x  10    259. 260. log 261. logx 4x2 .log22 x  12 262. logx  x  1  lg 4,5  3 3   263. log2  x    log2  x    x x   264. x  lg x2  x    lg  x    x  x 2 x 1    265. log2 x2   log2  6x  10    266. log 267. 2.log29 x  log3 x.log3  2x   1   268. 3. log3 x  log3 3x   269. lg  x  10   lgx   lg 270. log x3   2x  x  271. log x x2  40log4x x  14 log16x x3  272. 3x2  x. logx 3  log 3      log  x2  1  log x 2 log2 x3 1 273. log 274. 2 x   2x   log2 x log2 2x  logx 2x  log2 x  2x    log2 x 275. log2 x.log3 x.log5 x  log2 x.log3 x  log2 x.log5 x  log3 x.log5 x 276.  x  3 log32  x     x   log3  x    16 x3   log2 x 277. log3  3x  .log2 x  log3   278. log2 36  log2 81  log2 3x 4x15 log2 279. logx1 2x2   280. log22 x   x  1 log2 x  2x   281. 4.log9 x  logx  282. log2  x  log2  x  Hoàng Ngọc Phú   Page Phương trình mũ Logarit     283. log2 x2  3x   log2 x2  7x  12   log2 284.      286. 2.log6 287. log2      285. log5 5x  .log25 5x1   x    x  log2 x2  x   x  x  log4 x x2   x   log  2  x2   x  288. log 2  log2  4x   289. log   x  log x3  log3 3x  x 290. logx  log 4x  292. log2  3x  1   0 291. log5 x  log3 x  log5 3.log9 225 logx3    log2  x  1  293. log2 4x   x  log 2x1   294. log2 x  log7 x   log2 x.log7 x      295. log4 x  x2  .log5 x  x2   log20 x  x    297. logx 9x1  4.3x    3x  296. log2 9x  5.3x     298. logx  log3 9x            299. log2 2x   x  log2 2x  12  300. log2  x  1  logx1 16  301.   log2 x  x 2  log2 x 302. log2 x2   log  x  1   x2  303. log2  log3  log2 x              304. x2  lg2 x2   x2  .lg x   305. log32  x  1   x  5 log3  x  1  2x        306. log2 x  x2  .log3 x  x   log6 x  x  307. log4 x  log x  log8 x3    308. log5 5x  .log25 5x1   16 309. log5 x  log3 x  log5 3.log9 225 Hoàng Ngọc Phú 310. log9  x  8  log3  x  26    Page Phương trình mũ Logarit 312. log3  x    log3 x2  4x   311. x2 .logx 27.log9 x  x      313. log12x 6x2  5x   log13x 4x2  4x            315. log  x  1  log  log  x    log  x   314. x2  lg2 x2   x2  lg x   25 316.  x   log32  x  1   x  1 log3  x  1  16  317. 3 log  x     log   x   log  x   4 x3 318. log3 .log2 x  log3   log2 x x     319. log3x7  12x  4x2  log2x5 6x2  23x  21    320. x2 .log6 5x2  2x   x log 5x  2x   x  2x 321. log2 x.log3 x  log3 x3  log2 x  322.  x  3 .log2  x  1  logx1   x  3 .logx1  log2 x  x  323. log22 x  x log7  x  3    log7  x  3  log2 x 2  1 x 1 1 x 324.      3 3      326. lg     lg3  lg  x  27      2x        328. log2 4x1  .log2 4x   log   330. log4 log3 1  log2 1  3log3 x     332. logx3   2x  x  Hoàng Ngọc Phú  x 325. lg 3x  24x   lg16  lg 4  12    327. log2 4x   x  log2 2x3  329. log   2x  1 2x  331. log92 x  log3 x.log3   17x2.x2   2x   Page 10 Phương trình mũ Logarit x2 - x x-1 = (x - 1) x2 + x + 891. log3 = x2 + 3x + 2x + 4x + 890. -2 892. log2 x2 + x + = x2 - 2x2 + x + 893. 2log29 x = log3 x.log3 ( 2x + - - x2 - 2x 2 1 894. x - x = x 896. log5 x3 +2 log5 x2 =x+x log5 898. log3 ( x - 3x + + 2) + (0,2) 899. 901. 2x2 + 2x +     x 1  903. log ( x  1)  - 28.3 x2 + x 3x - x2 - log x 1 905. (2  log3 x)log9 x   log x  2 2x 2x + = 2x2 - 6x + (x - 1)2 902. log (4 x  15.2 x  27)  log 4.2 x  0 904. log3 ( x  1)2  log (2 x  1)  1  log3 x 907. log x  2log x  log 897. log2 900. log x1 (2 x2  x  1)  log x1 (2 x 1)2  +9=0 x  2x - = 3x2 - 8x + (x - 1)2 =2 1  2  895. log3 906. 3.8x  4.12x 18x  2.27 x  908. log x   log (3  x)  log8 ( x  1)3  909. 9x  x 1  10.3x  x2 910. 2x  x  4.2x  x  22 x   1  911. log3  3x  1 log3  3x 1  3  913. x 1 915. x 1 2x x 912.  log x  1 log x  log  2x 18  x 1 1 x x 2 2 2 914. x x1   x  1 ( x  0) CM n0 x 916. log5  5x     x  22  x  x  917. 16log 919. .3  27 x2 918. log  x  3  log  x  18  log  x  x  3log3 x x  x 1 .5 x 2  12 920. log log x  log log x 921. log log log x  log log log x 922. log log x  log log x  log log x 924. lg x  50  x lg5 Hoàng Ngọc Phú 925. log5 ( x 3) 923. x x 926. lg2 x 3 lg x 4,5 log32 x  102 lg x  x log3 x  162 Page 27 Phương trình mũ Logarit x x 2 927.  36.32 x   928. log x  log 52 x  x log x x   log x 929. log 5 x . log x  930. 931. log sin x 4. log sin2 x  932. log cos x 4. log cos x  936. log x 16  log x 64  933. log ( x 1) 4( x  1)  log x 1 ( x  1)     935. log x 16  log 16 x  log x 934. log x log   937. log 2  x  x   x  log 2   x2   x  938. log x  log x  log x  log x log x log x 1    10  sin x 2 cos x 1 939. 940. x 942. 2x 1 x 5 cos x sin x lg  52 sin x 2 cos x 1  x 40 941.   2 x  x   x  20  944.   x   16   x  16 943.  24 945.  1/ x 948. x  x  x 24   10  x 3 2 2    52  tan x  10 949. 6.9  13.6  6.4  10 x x x sin x  sin x  log 7 x 2 sin x cos x 951. log x 3   x  x 953. log 3 x  1   x tan x  61 / x  91 / x 950. log 7 x  12    5    947. 5    x 3   3    3  x 946. x 3 x  1/ log  x 3    2 x x2   log x  1 954. log   x  log x 952. log x 2  x   log x 1 3   955. log x 1   4.3 x   3x  956.  log x  1  log x 1 Hoàng Ngọc Phú Page 28 Phương trình mũ Logarit  967. log x 1   958. log  sin          x x 15    x 1 log    log x  3    x 1  962. log x 7  12x  x 963. x x     sin x   log  sin  cos x   2   3 959. log 27 x  x  960.  2   . log x   log / log 2 x 961.   log 6 x x 3  x x 965.    20 x x x x 966. x 1 3 5 2x  x 1  3 x x 1 5  2,9 x  x  log x 1 x 2x  969. x  x   log ( x  1)2    971. x   x   2 x 1/ x 5 2 967.      2 5 x 2  968. log   23x  21  964.   x  x log2  2.3 log2 x x x 970.  12 x 2 x2 972. 12.3  3.15  x  x  x 1 x 2 2x  20 974. log cot x  log cos x 973. log2x+2log7x=2+log2x.log7x 975. log x x  1  lg 1,5 x2  976. lg x  x   x  x   lgx  3  x 977. x   log ( x  1)  4( x  1) log ( x  1)  16  978. 3.25 x 2  (3x  10)5 x 2   x   979. ln 2 x  3  ln  x 980. x2 x8   ln2 x  3  ln(4  x 13x 4 981. x2 6x  )  16 982. 2x  2x1  2x2  3x  3x1  3x2 983. 2x.3x1.5x2  12 984. (x2  x  1)x 985. ( x  x2 )x2  986. (x2  2x  2) Hoàng Ngọc Phú 1 1 x2 1 Page 29 Phương trình mũ Logarit 987. 34x8  4.32x5  27  988. 22x6  2x7  17  989. (2  3)x  (2  3)x   990. 2.16x  15.4x   991. (3  5)x  16(3  5)x  2x3 992. (7  3)x  3(2  3)x   993. 3.16  2.8  5.36 x x x 994. 8x 3x 3 2 x  12  995. 5x  5x1  5x2  3x  3x1  3x2 996. (x  1) 997. 3x  4x  5x 999. x2  (3  2x )x  2(1  2x )  998. 3x  x   x 3 1 1000. 22x1  32x  52x1  2x  3x1  5x2 1001. log5 x  log5  x    log5  x   1002. log5 x  log25 x  log0,2 1003. logx 2x2  5x   1004. lg(x2  2x  3)  lg  x3 0 x 1 1005. .lg(5x  4)  lg x    lg 0,18 1006.  1  lg x  lg x 1008. 1007. log2 x  10log2 x   1009. 3logx 16  4log16 x  2log2 x log0,04 x   log0,2 x   1010. logx2 16  log2x 64    1012. log3  log9 x   1011. lg(lgx)  lg(lgx3  2)    9x   2x         1013. log2 4.3x   log2 9x   1014. log2 x1  .log2 x   log    1015. lg 6.5x  25.20x  x  lg25  1016.  lg2  1  lg x     lg 51   lg2 x lg x2  x 1 1017. x  lg  5x  x lg2  lg3 1019. x  Hoàng Ngọc Phú x 5  1018. 5lgx  50  xlg5 1020. 3log3 x  xlog3 x  162 Page 30 Phương trình mũ Logarit   1021. x  lg x2  x    lg  x   1022. log3  x  1  log5  2x  1  1023.  x   log32  x  1   x  1 log3  x  1  16   1024. log5  x 3 x  1025. x  lg x  x    lg( x  2) 1026. log x  log ( x  1)  log ( x  2)  log ( x  3) x3 x 1 1027. 2x  2x1  2x2  3x  3x1  3x2 1028. ( 10  3) x1  ( 10  3) x3 1029. 8.3x  3.2x  24  6x 1030. 2x  x  4.2x x  22 x   1031. 9sin x  9cos x  10 1032. x 5  x 1033. x 5  x  2 x 2 1034. x   4 x 2  16  10.2 x3 x  12  1035. 6.9 x  13.6 x  6.4 x  1036. 3.42 x  2.34 x  5.36x 1037. (3  5) x  16.(3  5) x  23 x 1038. 32 x 6 x9  4.15x 3 x5  3.52 x 6 x9 1039. 3.8x  4.12x 18x  2.27 x  1040. 2x x  22 xx  1041. (  1) x  (  1) x  2  1042. 4.3x  9.2x  5.6 1043. 22 x 1  9.2x x  22 x2  1044. 25x  15x  2.9x 1045. 125x  50x  23x1 1046. 4x 3x2  4x 6 x5  42 x 3 x7  1047. (  )cos x  (  )cos x  1048. 23 x  6.2 x  x x 3( x1)  12 1 2x 1050. 3.9x1  (3x  7).3x1   x  1049.   x x 1051. (  2) x  (  2) x  10 1052. 3.25x2  (3x  10).5x2   x  1053. x2  (2x  3) x  2(1  2x )  1054. e x5  e x1  1  2x  x 1 1055. 23x  3x.22 x  (1  3x2 ).2x  x3  x   1056. 22 x1  32 x  52 x1  2x  3x1  5x2 1057. (2  3) x  (2  3) x  x 1058. 2x1  2x x  ( x  1)2 1059. 2x1  4x  x  1060. (  2) x  (  2) x  ( 5) x 1061. 3x  5x  x  1062. 3x    x2 x Hoàng Ngọc Phú 1063. 3x   3x   Page 31 Phương trình mũ Logarit 1064. 2x   2x    x2  x 1065. 8sin x  8cos x  10  cos y 1066. 4sin x  21sin x cos( xy)  y  1067. 3x  x  1068. x  x2  x   3x1  1069. 27 x  (6 x2  x  1).9x 1070. x  x  10 x  1071. log (1  x  1)  3log x  40  1072. log ( x  2)  6log 3x   1073. log x   log (3  x)  log8 ( x  1)3 1074. log ( x  1)  1075. log (4 x  15.2 x  27)  2log 0 4.2 x  log x1   log x  2 1076. log ( x  2).log x  1077. log2 ( x2  3x  2)  log ( x2  x  12)   log 1078. 2log92 x  log3 x.log3 ( x   1) 1079. log2 x  log3 x  log2 x.log3 x 1080. log5 x  log3 x  log5 3.log9 225 1081. log ( x  1)2   log  x  log8 ( x  4)3 1082. log 2 ( x2   x)2  log 2 ( x2   x)  1083. log9 ( x  x  6)2  log x 1  log x  1084. log x  log (8x)   1085.  log2 ( x  1)  log x1 1086. log x (2  x)  log 1087. log3 (3x  1).log3 (3x1  3)  2 x x2 1088. log12 x (6 x2  5x  1)  log13 x (4 x2  x  1)   1089. 4lg(10 x )  6lg x  2.3lg(100 x ) 1090. xlog  x2 .3log x  xlog 1091. log x  log x  1092. log22 ( x  1)  6log x    1093. 4log9 x  log x  1094. lg4 ( x 1)2  log2 ( x 1)3  25 1095. log 2  log x  1096. log5 (5x  1).log25 (5x1  5)  x 1097. 4log 2x  xlog2  2.3log2 x 1098. log2 x1 (2 x2  x 1)  log x1(2 x 1)2  1099. log3 x7 (9  12 x  x2 )  log x3 (6 x2  23x  21)  1100. (2  2)log x  x(2  2)log x   x2 Hoàng Ngọc Phú Page 32 Phương trình mũ Logarit 1101. log ( x  x2  1).log5 ( x  x  1)  log 20 ( x  x  1) 1102. log x  log (8x)   1103.  log2 ( x  1)  log x1 1104. log x (2  x)  log 1105. log3 (3x  1).log3 (3x1  3)  2 x x2 1106. log12 x (6 x2  5x  1)  log13 x (4 x2  x  1)   1107. 4lg(10 x )  6lg x  2.3lg(100 x ) 1108. xlog  x2 .3log x  xlog 1109. log x  log x  1110. log22 ( x  1)  6log x    1111. 4log9 x  log x  1112. lg4 ( x 1)2  log2 ( x 1)3  25 1113. log 2  log x  1114. log5 (5x  1).log25 (5x1  5)  x 1115. 4log 2x  xlog2  2.3log2 x 1116. log2 x1 (2 x2  x 1)  log x1(2 x 1)2  1117. log3 x7 (9  12 x  x2 )  log x3 (6 x2  23x  21)  1118. (2  2)log x  x(2  2)log x   x2 1119. log ( x  x2  1).log5 ( x  x  1)  log 20 ( x  x  1) 1120. x  log5 (5x1  20)  1121. 3log3 (1  x  x )  2log x 1122. 2log3 tan x  log sin x 1123. 2log6 ( x  x )  log x 1124. x  log2 (9  2x )  1125. 2log6 ( x  x )  log x 1126. 2log3 cot x  log cos x 1127. lg( x2  x  12)  x  lg( x  3)  1128. log22 x  ( x  3).log2 x  x   1129. x2  (log3 x  3) x   log3 x  1131. log22 x  ( x  1)log x   x 1130. ln( x2  x  1)  ln(2 x2  1)  x2  x 1132. log3 x2  x   x  3x  2 2x  4x  1134. log ( x  1)  log ( x  1)  x  x  1133. log ( x2  3)  log x2 3   x  x2 1135. log22 x  2( x  1)log x  x2  x   1136. x2 6x   16 1138. (x2  x  1)x Hoàng Ngọc Phú 1 1 1137. 2x  2x1  2x2  3x  3x1  3x2 1139. ( x  x2 )x2  Page 33 Phương trình mũ Logarit x2 1140. (x2  2x  2) 1141. 34x8  4.32x5  27  1 1143. (3  5)x  16(3  5)x  2x3 1142. (2  3)x  (2  3)x   1144. (7  3)x  3(2  3)x   1146. 2.4 x  6x 1145. 3.16x  2.8x  5.36x  9x 1147. 1148. 5x  5x1  5x2  3x  3x1  3x2  1153. log3  x  1  log5  2x  1  1154.  x   log32  x  1   x  1 log3  x  1  16  1157. x3 0 x 1 1156.  1  lg x  lg x   1161. log3  log9 x      x       lg 51 x 5 log32 x  4.2  x   lg2 x lg x2  x 1 0 x 1  log x  1172. log2 x + log3 x + log4 x = log5 x Hoàng Ngọc Phú  1169. log22  x  1  log2 x    1170. log  4x  15.2 x  27   log 2  1164. lg 6.5x  25.20x  x  lg25 1167. x   xlog3 x  162 1171. log x  x  6  log   1166. x  lg  5x  x lg2  lg3 1168. .lg(5x  4)  lg x    lg 0,18 1162. log2 4.3x   log2 9x   1163. log2 x1  .log2 x   log 1165.  lg2  1  lg x 1160. lg(lgx)  lg(lgx3  2)    9x   2x   log5  x 3 1158. log2 x  10log2 x   log0,04 x   log0,2 x   1159.  12  1151. 22x1  32x  52x1  2x  3x1  5x2 1152. x  lg x2  x    lg  x   1155. lg(x2  2x  3)  lg 3x 3 2 x 1149. 3x  4x  5x 1150. x2  (3  2x )x  2(1  2x )   8x 1173. log4(log2 x) + log2(log4 x) = Page 34 Phương trình mũ Logarit x x 1175.   48     48   14 1174. 3.log2x.log4x.log8x.log16x =     1176. 3. log x  log 3x   1178. 16 x3  x  64 x3   x   x3   32    log    log 21 x  x  2 1180. log 42 x  log 21  1181. x 3 x   4x  x 5  42x 3 x  1182. lg x  12  lg x  13  25 1 1183. log2 x.log3 x = 2log2 x + 3log3 x –6 1184. x  1log  log 3 x1  3  log 11.3 x  9 1185. 32 x 1186.  log x 2. log 10  x   1187.  log x  log x  log x  1189. log x  42  log  log x 6 x 3  6x 3 x 1  22x 6 x 3 2 x  1  log  1191. log4 x   log4 x  32  10  log x  32 1190. lg x  x   x  lgx  2    1192. log3 x   log3 2x   log x  1 1193. log 21 5  2x   log 5  2x . log 2x 1 5  2x   log 2x  52  log 2x  1. log 5  2x  1194. x x  21x  x 1  1196. 16 x3  x  64 x3   x  1195. 3x x  2.3x x  32x   1197. 3.25 x2  3x  105 x2   x   x3   32    log    log 21 x  x  2 1198. log 42 x  log 21  1199. lg x  12  lg x  13  25 1200. log2 x.log3 x = 2log2 x + 3log3 x –6 1201. x  1log  log 3 x1  3  log 11.3 x  9 1202. 32 x 6 x 3  6x 3 x 1  22x 6 x 3 1203.  log x 2. log 10  x   log x 1204.  log x  log x  log x  1205. 3x + 4x = 5x 1206. 9x + 2( x –2).3x + 2x –5 = 1207. 25x –2(3 –x ).5x + 2x –7 = 1208. log 32 x  1  x  5log x  1   x  1209. log Hoàng Ngọc Phú   x  x  log 64 x Page 35 Phương trình mũ Logarit 1210. log log x  log log x 1211. log log log x  log log log x 1212. log log x  log log x  log log x 1213. log log x  log log x 1214. xlg x2 3 lg x4,5  102 lg x log x x   log x 1215. 1216. log sin x 4. log sin x  1217. log cos x 4. log cos x  1218. log 2( x1) 4( x  1)  log x1 ( x  1)  1219. log x log 9x  6  1220. log x 16  log16 x  log x 1222. log 2  x 1  x log  x 1  x  2 1223. log x  log x  log x  log x log x log x 1225. log 7 x 1221. log x 16  log x 64  2 x 1228. log 3x  1   tan x   52  sin x  sin x  log 7 x 2 sin x cos x 1227. log x 2  x   log  1224.   tan x  10  1226. log x3   x  x  / x2 log  x3   log x  1 1229. log 4 x  4  x  log 2 x 1  3 1230. log 9x 1  4.3x  2  3x  1231.  log x  1  log x 1 1232. log 4 x1  4. log 4 x  1  log1 / 1233. log  sin  sin x   log  sin  cos x    x   x   x 1   log x  3   1234. log 27 x  x  6  log  1235. log x7 9  12 x  x   log x3 6 x  23x  21  1236. x  lgx  x  6   lg( x  2) 1237. log x  log ( x  1)  log ( x  2)  log ( x  3) 1238. x  2log 32 ( x  1)  4( x  1) log ( x  1)  16  1239. ln 2 x  3  ln 4  x   ln 2 x  3  ln(4  x ) 1240. lgx2  x  6  x2  x   lgx  3  3x 1242. x  3  2x x  21  2x   Hoàng Ngọc Phú 1241. 4log 1   10  1243. 22 sin x2 cos x1   2x  xlog2  2.3log2 x cos xsin xlg  52 sin x2 cos x1  Page 36 Phương trình mũ Logarit 1244. 432cos x  7.41cos x   1245. 16x 1246. 4log9 x   2log9 x  2log3 27  1247. sin x 1248. 9 cos2 x  10  10.3x  x2 1  1253. 1  log3 x 1256. log (4 x  15  x  27)  2log 3  73 x x 3 3 x2 2 x  x 1 2  12     x 25x  9x  15x  1255. 0  2x  1257. log22 ( x  1)  6log x    1258. log2 x1 (2 x2  x 1)  log x1 (2 x 1)2  x 1259.     14.2 x 1261. x2 2 x  x 1254.   log3 x  log9 x    64  4x 1251. 4x  6.2x    x 1 1 1249. 64  1250. 4cos2 x  4cos x  1252. 9x 1260.  2   x  2  2 x x  log x  log 27 x   log x  log81 x 1262. log 2 1263. 42 x x2  x  42   x2  1264. log x  5x   log   1265. log x  3  x  x   1267. log 2 + log 2 x - 3x +  2x  x 4 x-1 = log7 4 (x + 2) (x  ) x 1  log x  3 1266. log x  x  1  log x  x  x x  3x   log 2 x   log 74  x  2 1269. x  lg4  x   x lg  lg    1268. log 52 x  log x 1270. log (3x  1)    1271. log x  x  x .log x  x   log 25 x  x   1 x   log ( x  1) log x 3 1272. log x 7 4 x  12 x  9  log x3 6 x  23x  21  1273. log   x 2  log x  2 x  log x x log x   log  log x  x   1274. ln(2 x)  ln( x  2)  ln( x  3)  ln Hoàng Ngọc Phú 1275. log x  12   log  x  log 4  x  Page 37 Phương trình mũ Logarit 1276. log {2 log [1  log (1  log x)]}  1278. lg( x  8)  lg( x  58)  1277. log cos x 4. log cos2 x  lg( x  x  4) 2 1280. log (2 x ). log x  1279. ( x  2) log3 ( x 2 )  9( x  2) x x 1281. log (3  1).log (2.3  2)  1282. log a (ax). log x (ax)  log a ( ),0  a  a 2 2 1283. lg ( x  1)  ( x  5).lg( x  1)  5x  2 1284. log [ x( x  1) ]  log x. log ( x  x)   x 1285. log x    1287. log ( x  log6 x 1286. 1   log x x )  log x 1288. log ( x  x  1)  log ( x  x  1)  log ( x  x  1)  log ( x  x  1) 1289. log ( x  3x  2)  log ( x  x  12)   log 1291. (2  ) log2 x  x.(2  ) log2 x   x 1290. log (4 x  x )  log x 1292. 2 x log x  log 1293. log x  log x   1294. log ( x  x  1) log ( x  x  1)  log ( x  x  1) 1295. log ( x  x  1) log ( x  x  1)  log 20 ( x  x  1) 1296. log ( x  x  )  log (4 x   x  )  1297. tg xy  cot g xy  log (4 x  x  3) 1298. x log  x .3log x  x log 1299. log ( x  1)  log  log ( x  2)  log ( x  2) 25 1300. ( x  2) log 32 ( x  1)  4( x  1) log ( x  1)  16  x 1301. log log x  log x3   log x 1302. log x (2  x)  log 2 x x2 1303. log (4 x  4)  x  log (2 x 1  3) Hoàng Ngọc Phú Page 38 Phương trình mũ Logarit 1304. log x7 (9  12 x  x )  log x3 (6 x  23x  21)  1305. log (3x  1)  log x 3   log ( x  1) 1307. log (9 x1  4.3 x  2)  3x  1 1309. log 27 ( x  5x  6)  log 1310. log ( x  1)   log 1306. log x log (9 x  6)  1308. log 2 x  x log  2.3log x2 x 1  log ( x  3) 2  x  log (4  x) 1311. log ( x  x  1)  log x  x  x 1312. log2(x2+x+1)+log2(x2-x+1)=log2(x4+x2+1)+log2(x4-x2+1) 1313. ( x  1) log  log (3 x1  3)  log (11.3 x  9) 1314. log ( x  5x  6)  log x 1  log x  1315. log x x  14 log 16x x  40 log x x  x x 1316. log (sin  sin x)  log (sin  cos x)  1318. log a (1   x )  log a (3   x ) 1317. log x x (3  x)  1319. log3(2x+1)+log5(4x+1)+log7(6x+1)=3x 1320. log ( x  8x  14) log x 4 x4 1 1321. lg  x  lg  x  lg  x  1323. log 2 1324. log 7 x 1325. 1326. 1322. log x  ( x   x  ) ( x  x  2)  log 2 ( x  x  3) sin x  sin x  log 7 x 2 sin x cos x 1 x2 1 x2 1  1 11 2x 2x  log ( x   x  )  1 x2 1 x2 1  1 2x 2x 3x  log  (3x  5) Hoàng Ngọc Phú 25 (2  5x  x ) 1327. 2x   (2 x  1) log1 (1 x  x ) Page 39 Phương trình mũ Logarit 1330. x log x  365 x 1332. 2.9 1334. x lg x  x log2  x x  lg x 3  1331. (2  ) log x  x(2  ) log x   x log2 1335. ( ) log 1   x 1 1 x 1 , 25 ( x 5 x 8 )   1336. log x (cos x  sin x)  log (cos x  cos x)  1337.    x  1 x 1340.  x 9 x  x  2x  x 5 x 1  2,5 1 x      x  1 4 x 1339. ( x  x  1)  x2  x   5 6   52 6  x   3    3  x 1432. 1333. log (3.2 x  1)  x  1338. ( x  x  2) log 27 125 log271 ( x 1) )  27 log 243 1329. ( ) log ( x 1) ( 1328. 2log x  21log x  2log x1  x 1341. 1433. x  x  10 x x 10 x x x x x 1 1 1 1435.     x        2 x   3 2 6 1434.   x x x x 4 1436.    2 x  x  5 1440. x x log4 x 1442. 1444. x 3 xx  x 1438. 1439. ( x  4) x log4 x 3 5 x 6 1441. x .2 x1   ( x)x 1437. x log2  x .3log2 x  x log2 x3 2  x .2 x3 4  x1 log (4  x)  1 1443. log (3  x) log (3  x)  x  log( x  1)  2  log ( x  1)  log( x  1) 1446. log x   log x. log 1 x2  log x 1445. log x  x ( x  4)  log x 6 ( x  4) x 1447. log (1  )  log  x 0 1448. log (1  x  5x  )  log ( x  5x  7)  1449. (  )cos x  (  )cos x  1450. log ( x  3x  2)  log ( x  x  12)   log 1451. log(10 x ) 6 log(10 x ) Hoàng Ngọc Phú  2.3 log(100x ) 1453. log x  log ( x  2) Page 40 Phương trình mũ Logarit 1452. log ( x  5x  6)  log x 1  log x  1454. log12 x (6 x  5x  1)  log13x (4 x  x  1)   1455. log ( x  1)   log 1456. log x  log x   1458. log (3x  1)   x  log ( x  4)3 1457. log 2  log x  x   log ( x  1) log x3 1459. log ( x  x  1). log ( x  x  1)  log 20 ( x  x  1)  cos x x 1460. 1461. 1462. 1 1463.    3     x     x1   3x     1466. 9.7   x x  log x     log x   3 log x  40 x x 1  1 log x  log x  10 2 log x Hoàng Ngọc Phú 2x   2 x  1  log1 1 x  2. x   x2  x     x  21x  14 1471. log    2x  4x   .(log x   1) 1474. log x  log x   log x 1478. e x  4e 2 x  1479. 6.4  13.6  6.9  log2 x 3 log x  1476. log log x  log log x  1477. 2 x1 2 x3  64 1483. x 1 x x 1 1473. ln x  1  ln x   lnx  7 1481.  x2 1465. 5x.x1 8x  100 1469. x cos x  27 x 81x 3 1472. x 1.log ( x  1)  1475.  1467. cos x  2  x  x 1468. 1470. log  x 1 x 3 x x 1464.  23 x  1480. x  18 x  2.27 x 1482.  ln x  ln x   ln x 1484. log x  log x   Page 41 Phương trình mũ Logarit 1486.  log x  x  5   log x  x  5 1485. 2 x  x     2x 18 1487. x1   x1   2  x1  1488. log xx  12  log x.log x  x   1489. log 22 x  log x   1490. x  x  1491. 42 x  23 x1  x3 16  1492. 3cos x  2cos x  cos x 1493. 4log x  2log x  x 1494. 3cos x  3sin x  x  22  1497. x2 1 x 2 x2  1  x 1498. x 2 18 x  32 x  12 x  16 x  x x x x 2x 27  36  48  64 2x 1 1500.  x 2 2x 1 1499. x  x   log x  12 1501. 2.2  1496. log x  log x  1  log x  2  log x  3 1495. x2  3x2  32 x1  22 x1 1 x  x  3x  x2 2 x 1 2  log 2 x  1502. 3x  x ln x  3  x  x ln x  4  x  x ln x  5  3x  x ln x  4  x  x ln x  5  x  x ln x  3 Hoàng Ngọc Phú Page 42 [...].. .Phương trình mũ và Logarit     334 log  5  1 log  5  5  1 335 log  x  1  2  log 4  x  log  4  x  336 log  x  x  1  log  x  x  1  log  x  x  1  log  x  x  1 333 Tìm x biết... log3 x.log3 ( 2x  1  1)   3 355 log2 4.3x  6  log2 2 2 9 x  6 1 1 356 log(x3  8)  log(x  58)  log(x2  4x  4) 2 Hoàng Ngọc Phú 357 log4  log2 x   log2  log4 x   2 Page 11 Phương trình mũ và Logarit 358 log2  3x  1  1  2  log2 (x  1) log(x3) 2 359 log4  x  1  2  log 4  x  log8  4  x  2 3 2    360 (x  1).log5 3  log5 3x1  3  log5 11.3x  9  362 log(x2 ...  2)  0 385 log2 (x2  1)  (x2  5).log(x2  1)  5x2  0 log5 x3 386 5logx  50  xlog5 387 2 388 (log3 x)2  (x  4)log3 x  x  3  0 389 log2 x  2x  2  2 Hoàng Ngọc Phú x Page 12 Phương trình mũ và Logarit 390 3 1 2x  1  log2 x 2 391 log2 x  x  1   log2 x.log2 (x2  x)  2  0     392 log 1  2 x3  x2  2   log3  2x  2   0   3   1 393 log4 2log3 1  log2 1  3log2...       410 lg2 x2  1  x2  5 lg x2  1 -5x2  0 412       2 411 log2 x  x-1   log2 x2  x -2  0    3  log2 x2  4x  5  2 5-log2 x2  4x  5  6 Hoàng Ngọc Phú Page 13 Phương trình mũ và Logarit 413 9 lg2x2 3lgx  2 x  414  x-2   102 lgx    x  2 420 x  3 2 421 log2x  2x  2  2 423 2 log2  x1 425  x  1 log2 x 427 3 422 log2 4 x1 log2 3 x log2 x x log2... 4 x log 3 x  16  0 2 2 443 log 3 x  log 3 x  1  4  1  0 444 2 x 445 3.8x + 4.12x - 18x - 2.27x = 0 446 2x Hoàng Ngọc Phú 2 x 2 x  22  x  x  3 2  4.2x 2 x  22 x  4  0 Page 14 Phương trình mũ và Logarit 447 1 log 2 2 x  3  1 log 4 x  18  log 2 4 x  448 16 log 27x x  3 log 3 x x 2  0 3 4 449 log 5 5x  4  1  x 450 4x  451 log 4 log 2 x   log 2 log 4 x   2 452 3...  log 5 11.3x  9 1 2 3 2 2 1 2  2 1  2 2  0 log9 x 2 2 466  7  4 3    1 x2 2 x 1 2 481 x log 2 x3log 2 x3 1 2  x 483 log 2 x  ( x  1) log 2 x  6  2 x 2 2 log 4 x Page 15 Phương trình mũ và Logarit 485 log 1 x 1 log 1 x 2 486 1 log 1 7 2 3 log 1 x 2 4 487 log2 x 2 2 3 1 3 log 1 4 x +log 1 x 4 2 x (1) 2 log4 x 5 6 3 (1) 4 2 log 1 8 0 (1) 2 488 log2 x 2 log2 x 5 log 1 8 0 2 489 log4... 4 log 2 (4 x  4 x  3) 509 x log 9  x 2 3log x  x log 3 2 2 2 2 510 log 2 (1  x )  log 3 x 511 log 5 ( x 2  1)  log 1 5  log 5 ( x  2)  2 log 1 ( x  2) 5 Hoàng Ngọc Phú 25 Page 16 Phương trình mũ và Logarit 2 512 ( x  2) log 3 ( x  1)  4( x  1) log 3 ( x  1)  16  0 1 2 513 log x ( x  1)  lg 1,5 514 log x 3 (3  1  2 x  x 2 )  515 log 2 (9  2 )  3  x 3 x3 1 516 log 3 log 2... log 2 x 540 log 3 x x (3  x)  1 541 log a (1  1  x )  log a (3  1  x ) 542 log3(2x+1)+log5(4x+1)+log7(6x+1)=3x 543 log 3 ( x 2  8x  14) log x 2 Hoàng Ngọc Phú 2 2 4 x4 9 1 Page 17 Phương trình mũ và Logarit 1 4 545 log 1 x  ( x  2  x  2 ) 544 lg 1  x 2  3 lg 1  x  lg 1  x 2  2 2 546 1 1  lg( x  2)  x 8 2 548 log 7 x 549 2 3 ( x 2  2 x  2)  log 2 3 ( x 2  2 x  3) 3 sin... log2(6x+2.32x+2)=2x+2 574 (2 x  1) 2  x Nghiệm x thộc miền xác định của hàm số y= lg(4x-1) 575 (2 x  1) 2  x Nghiệm x thộc miền xác định của hàm số y= ln(x2- x-2) Hoàng Ngọc Phú Page 18 Phương trình mũ và Logarit 576 logaaxlogxax= log a 2 1 a với 0 . Phương trình mũ và Logarit Hoàng Ngọc Phú Page 1 PHƯƠNG TRÌNH MŨ VÀ LOGARIT 1. x1 x x 5 .8 500   2. x x 1 x 2 x x 1 x 2 5 5 5. 1        35. log 3 log 5 22 x x x 36. log 3 log 7 22 x x x 2   Phương trình mũ và Logarit Hoàng Ngọc Phú Page 2 37. 5 2 x 6x 2 2 16 2   38.   x2 2x 1 3 0,25.4 16    . 4 42      76. 1 x 1 2 lg2 1 lg3 lg 3 27 0 2x             Phương trình mũ và Logarit Hoàng Ngọc Phú Page 3 77.     x x 3 22 log 4 1 x log 2 6      78. 

Ngày đăng: 21/09/2015, 12:25

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w