Tài liệu này là tuyển chon hơn 1500 bài tập về phương trình logarit bao gồm nhiều dạng khác nhau giúp bạn đọc có thể tự rèn luyện khả năng cũng như kĩ năng nhận dạng các loại bài tập logarit cũng như phương trìnhmũ và logarit.
Trang 32x 12x 1
2 log x3
3
xx
103 log (x2 2 x 1) log (x2 2 x 1) log (x2 4x2 1) log (x2 4 x21)
104 log (x2 23x 2) log (x2 27x 12) 3 log 32
Trang 4123 log (2x ).log 22 2 2x 1 124 log5 5 x2 log2x 5 1
Trang 5172 log2 x 4 log22 x4 173 log x 3.log x22 2 2 log x2 22
174 log x.log x2 3 x.log x 33 log x 3log x2 3 x
Trang 6Hoàng Ngọc Phú Page 6
177 3.log x3 22.log2x 1 178 xlog 43 x 22 log x3 7.xlog 23
1 3
181 log x3 2 4 log x3 182 log x.log x 32 3 3.log x3 log x2
Trang 7x x 1 2
Trang 8267 2.log x29 log x.log3 3 2x 1 1
Trang 102x 12x 1
Trang 11log x3
3
xx
344 log2log x3 log3log x2 346 32 l o gx 1 l o gx 1
351 Cho x0,y0và x+y = 1.Tìm giá trị nhỏ nhất của: x y
352 log (x2 2 x 1) log (x2 2 x 1) log (x2 4x2 1) log (x2 4 x21)
353 log (x2 23x 2) log (x2 27x 12) 3 log 32
354 2(log x)9 2 log x.log ( 2x 1 1)3 3
Trang 12373 log5 5 x2 log2x 5 1 374 logx 5x log 5x
Trang 13401.log2 x2 x 1 log2 x2 x 1 log2 x4 x2 1 log2 x4 x2 1
402.2 log9 x 2 log3 x log3 2 x 1 1
403 log2 x2 3 x 2 log2 x2 7 x 12 3 log23
404 log2xlog3xlog4xlog10 x 405 logx x 6 3
3 2
8 2
Trang 14417 log x22 log x 12 1 418 2log64 x8 xlog4 x
419 log7 xlog3 x2 420 x2 3log 2x xlog 2 5
Trang 15Hoàng Ngọc Phú Page 15
447 x log x 1 log 4x
4
1 3 log
2
1
2 8 4
2 2
x
x x
1 3
logx3 xx2 468 1log53 log53x1 3 log511 3x 9
1 2
1
2
2
1log4log232
x
x x
22log32log
log
2 ) 10 ( log 2 log
2
Trang 162log10
2log5 5
x x
500 lg2 x3 20 lg x 1 0 501 log2 4 4 log4 2 2
x x
502
1
2 log 10
1 2
505 log2(x x2 1 ) log3(x x2 1 ) log6(x x2 1 )
506 log4(x x2 1 ) log5(x x2 1 ) log20(x x2 1 )
2
1 ) 1 (
log3 x x 3 x x
508
) 3 4 4 ( log
xy g
5 1 2
Trang 171 3 ( logx3 xx2
3 3 2
2
1 3 log log
1 )
1 3
3 2
2
1log
2
1)65(
log x x x x
8 2
2
1 ) 6 5 (
)2log2
(log2 4 2 2 2 4 4 x2
x
x x
x x
2(sinlog)sin2(sin
log
3 1
12
2log
4 1
13
540 log 3xx2 ( 3 x) 1 541 loga(1 1x)loga2(3 1x)
542 log3(2x+1)+log5(4x+1)+log7(6x+1)=3x 543 log3(x2 8x14)logx24x491
Trang 18Hoàng Ngọc Phú Page 18
544 lg 1x2 3lg 1x lg 1x2 2 545 ( 2 2)
4
1log
cos 2 sin
sin 2 2 sin 3
log 7 x2 7 x2
x x
x x
(log12
112
1
12
112
1
2 2
2
2 2
x
x x
x
x
x x
x
551 log23 log25
x x
553
) 5 2 (
2 5 1
) 5 3 ( 5
3
x x
4 1
)12(12
x x
27log)
27
125()
5
3
(
5 5 )
1 ( log )
1 (
2 2 ( )
2
2
9
1 1
1 1
2
3 lg
x x x
565 log5(x2)log 5(x3 2)log0,2(x2)4
566 logx3 log3 x log x3 log3 x 0 , 5
567 2log 21 log5 2log5 1 1 0
2
5x x x
568.2log29 xlog3 xlog3( 2x11)
569 3 logx4 2 log4x4 3 log16x4 0 570 log5x+log3x=log53log9225
Trang 19Hoàng Ngọc Phú Page 19
576 logaaxlogxax=
a a
1 log 2 với 0<a1 577 9x + 6x = 2.4x
5 ( )
3
9x x
)3
4(2
13
4
) 5 ( ) 2 3 ( ) 2
3
2 ) 1 5 ( 7 ) 21 5 ( x x x
2 2
x
x x
2
12 3 3
1 2
6
Trang 20Hoàng Ngọc Phú Page 20
621
)32(10
101)
32()
01,05
4x x x x
2 ) 5 3 ( ) 5
182
2
22
8
1 1
2 x x
656 1 3x2 2x 3x2 2x
2 9 2
4
657 10 5 1 1000 10
1 5
16
9 ) 3
4 (
) 4
3 (
Với -3<a<0
662 log (2 54) log ( 3) log3( 4)
3 1 2
3 x x x 663 42x + 1 54x + 3 = 5 102x
2
+ 3x - 78
Trang 21
- 3 = 0,01.(10x - 1)3
690 log4(x + 1)2 + 2 = log
2 4 - x + log8 (4 + x)
3
694 25x = 9x + 2.5x + 2.3x
Trang 22Hoàng Ngọc Phú Page 22
691 log
2 (3 - x) - log8 (x - 1)3 = 0
692 log2 (x2 + 3x + 2) - log1
4 (x2 + 7x + 12)2 = 2 + log4 3
Trang 23x = 6
Trang 24764 logx 5 + logx 5x - 2,25 = log2x 5 765 3logx 6 - 4log16 x = 2log2 x
766 logx 2.log2x 2 = log4x 2
Trang 252 x = 8
log x + 7
7 = 10log x + 1
816 2log5 (x + 3) = x 817 log3 (x2 - 3x - 13) = log2 x
818 log2 (1 + x) = log3 x 819 2log6 ( x + 4 x) = log4 x
820 log7 (x + 2) = log5 x 821 log3 (x2 + 2x + 1) = log2 (x2 + 2x)
822 log2 (log3 x) = log3 (log2 x) 823 3log3 (x + 2) = 2log2 (x + 1)
824 log3 (76 + 4 x) = log5 x 825 log2 (1 + 3 x) = log7 x
826 log3 (x + 1) + log5 (2x + 1) = 2 827 2x
2 - 2x 3x = 1,5
828 log4 [2log3 (1 + 3log2 x)] = 1
Trang 26863 log(x - 2) = - x2 + 2x + 3 864 x + log(x2 - x - 6) = 4 + log(x + 2)
865 log(x2 - 6x + 5) = log(x - 1) + 6 - x 866 xlog2 9 = x2 3log2 x - xlog2 3
867 (1 + x)(2 + 4x) = 3.4x 868 log2 (1 + cosx) = 2cosx
869 5x + 2x = 3x + 4x 870 xlog7 11 + 3log7 x = 2x 871 log2 2
882 (2 + 2)log2 x + x(2 - 2)log2 x = 1 + x2 883 5logx - 3logx - 1 = 3logx + 1 - 5logx - 1
884 log4 (log2 x) + log2 (log4 x) = 2 885 log2 x + log3 x + log4 x = log20 x
886 log2 (x - x2 - 1).log3 (x + x2 + 1) = log6 (x - x2 - 1)
887 3x2 + 6x + 7 + 5x2 + 10x + 21 = 5 - 2x - x2 888 32x + 2 + 3x4 - 6x2 + 7 = 1 + 2.3x + 1
889 log22 (x - 1) + 3x4 - 54x2 + 247 = log2 (2x2 - 4x + 2)
Trang 27Hoàng Ngọc Phú Page 27
890 2x - 1 - 2x
2
- x = (x - 1)2 891 log3 x
2 + x + 32x2 + 4x + 5 = x
920 log2 log2 x log3 log3 x
921 log2 log3 log4 x log4log3log2 x
922 log2 log3 x log3log2 x log3 log3 x 923 xlg2x23lgx4,5 102lgx
924 5lgx 50 xlg5 925 log5(x 3 ) x
2 926 3log2x log 3x 162
x
Trang 282 1 )
1 (
cos 2
x
940 5 x 51 x 4 0
3 3 2
942
16
5 20 2
2 2
22x 2x x x
943 5 24 x 5 24 x 10
2 5
3 16 5
sin 2 2 sin 3
7
x x
1 1
x
2 1
2 x x
xx
x
956 1 log2 x 1 logx14
Trang 29Hoàng Ngọc Phú Page 29
8
1 log
1 4 log 4 4
log2 x1 2 x 1/ 2
2 sin log sin
2 sin
log
3 1
x
9 3
3 2
2
1 log
2
1 6
log
3 2
962 log3x7 9 12 x 4 x2 log2x3 6 x2 23 x 21 4
963 15x 1 4x 964 2 32 1
x x
2
) 1 (
1 2 log 2
x
xx
x x
x
2
2 2
2
2 1 1
2 16 2
982 2x 2x 1 2x 2 3x 3x 1 3x 2
983 2 3x x 1.5x 2 12 984 (x2 x 1)x21 1
985 ( x x )2 x 2 1 986 (x22x2) 4 x 2 1
Trang 301000 22x 1 32x 52x 1 2x 3x 1 5x 2 1001 log x5 log x5 6 log x5 2
xlog 2x 5x 4 2
Trang 322log xlog x.log ( 2x 1 1) 1079 log2x log3x log2x.log3x
1080 log5x log3x log 3.log 2255 9
Trang 33Hoàng Ngọc Phú Page 33
log (x x 1).log (x x 1) log (x x 1)
1102 3 log2xlog (8 ) 1 02 x 1103 1 log ( 2 x 1) logx14
Trang 341 6 5 log9 x2 x 2 3 x 3 x
1172 log2 x + log3 x + log4 x = log5 x 1173 log4(log2 x) + log2(log4 x) = 2
Trang 353 2 2 1 4
8log
1183 log2 x.log3 x = 2log2 x + 3log3 x –6
1184 1log53 log53x1 3 log511 3x 9
2 6
3 x x x x x x
x
x x
4 4
log
2 10
log 2 log
2
1189 log2x42 log 22x14log23
2
2 4
2
4 x 9 3 2 log x 3 10 log x 3 log
2
1 1 x log 1 x
log3 3 3 3
1193 log 5 x log 5 x log 5 x log x 5 log x 1 log 5 x
2 2
2 2
1 x 2
2
3 2 2 1 4
8log
1200 log2 x.log3 x = 2log2 x + 3log3 x –6
1201 1log53 log53x1 3 log511 3x 9
x
1202 2 2 6 3 2 3 1 2 2 6 3
2 6
x
x x
4 4
log
2 10
log 2 log 2
Trang 36Hoàng Ngọc Phú Page 36
1210.log2log2x log3log3x 1211 log2log3log4x log4log3log2x
1212 log2log3x log3log2x log3log3x 1213 log2logx3 log3logx2
sin 2 2 sin 3 log 7 x2 7 x2
x x
x x
11
x
1229 log 4 4 log 2 1 3
2 1
1230 log39 1 4 3 2 3 1
x x
14log.44
log2 x1 2 x 1/ 2
2 sin log sin
2 sin
log
3 1
x
9 3
3 2
2
1 log
2
1 6 5
cos 2 sin
x
Trang 37165log9 x2 x 2 3 x 3 x
2
1123
3 2
1)13(
2 log 2
2
1)2ln(
)
2
8 2
2
log x x x
Trang 38Hoàng Ngọc Phú Page 38
1276
2
1)]}
log31(log1[log2
log4 3 2 2x 1277 logcosx 4 logcos 2x 2 1
2
1)58lg(
)8lg(x3 x x2 x 1279 ( 2 )log39( 2) 9 ( 2 )3
1287 log2( x 3log6x) log6 x
1288 log2(x2x1)log2(x2x1)log2(x4x21)log2(x4x21)
1289 log2(x2 3x2)log2(x27x12)3log23
1294 log2(x x2 1 ) log3(x x2 1 ) log6(x x2 1 )
1295 log4(x x2 1 ) log5(x x2 1 ) log20(x x2 1 )
2
1)1(
1297
)344(log
xy g xy
5 1 2
2
13loglog
3
1303 log (4 4) log (2 1 3)
2 1
Trang 39Hoàng Ngọc Phú Page 39
1304 log3x7( 9 12x 4x2) log2x3( 6x2 23x 21 ) 4
1305 2 log ( 1 ) 2 log 1 ) 1 3 ( log 2 3 2 x x x 1306 log log3( 9x 6 ) 1 x
1307 log3( 9 1 4 3 2 ) 3 1 x x x 1308 log 2 6 log 2 4 2 22 2.3 log 4 xx x
1309 2 9 3 3 2 27 log ( 3 ) 2 1 log 2 1 ) 6 5 ( log x x x x
1310 3 8 2 2 4( 1) 2 log 4 log (4 ) log x x x
1311 2 3 2 3 ( 1 ) log 2 log x x x xx
1312 log2(x2+x+1)+log2(x2-x+1)=log2(x4+x2+1)+log2(x4-x2+1) 1313 ( 1 ) log53 log5( 3x1 3 ) log5( 11 3x 9 ) x
1314 log 3 2 1 log 2 1 ) 6 5 ( log9 x2 x 2 3 x 3 x
1315 log 2 14log16 3 40log4 0 2 x x x x x x
1316 cos2 ) 0 2 (sin log ) sin 2 (sin log 3 1 3 x x x x
1317 log 3xx2 ( 3 x) 1 1318 loga(1 1x)loga2(3 1x)
1319 log3(2x+1)+log5(4x+1)+log7(6x+1)=3x
1320 log3(x2 8x14)logx24x491
1321 lg 1x2 3lg 1x lg 1x2 2 1322 ( 2 2) 4 1 log 2 1 x x x
1323 log ( 2 2 2) log2 3( 2 2 3) 3 2 2 x x x x
1324 log 2 cos 2 sin sin 2 2 sin 3 log7 x2 7 x2 x x x x
1325 9 11 ) 2 2 ( log 1 2 1 1 2 1 1 2 1 1 2 1 2 2 2 2 2 x x x x x x x x x x
1326 ) 5 2 ( log 2 2 5 1 ) 5 3 ( 5 3 1 x x x x 1327
) 2 7 1 ( log 2 4 1 ) 1 2 ( 1 2 1 x x x x
Trang 40Hoàng Ngọc Phú Page 40
1328 2log5x2 21log5x 2log5x1 0
1329
243log
27log)
27
125()
5
3(
5 5 )
1 ( log )
1 ( log
2 2 ( )
2 2
1 1
1 1
2
3 lg
5
2 ( log0 , 25(x25x8)
x x
2
1
2 1
2
1338 ( 2 2 2 ) 9 2 3 2 2 2
x x
x
x x x
2 5 6
2
2323
6
1 2
1 2
x
x x
1442 x x2 x
1 log 2
)4(log2)3(log
1
2 4 1
) 1 log(
1
2 )
1 ( log
1
) 1 log(
x
1445 logx3x(x24)log4x26(x24)
1446
4log
1log.log2log
2 2 2
3 3
x x
x
42log)21(log
2 1
) 10 log(
)
10
log(
3.26
Trang 41Hoàng Ngọc Phú Page 41
2
1 log
2
1 ) 6 5 (
log9 x2 x 2 3 x 3x
1454 log2x(6x25x1)log3x(4x24x1)20
8 2
log2x 4x 1457 log22log24x3
x
2 log
1 ) 1 3
x
1459 log4(x x2 1 ) log5(x x2 1 ) log20(x x2 1 )
1 2 cos
1212
x x
x x
x x
1472 2x21.log (2 x2 1) 4x1.(log2 x 1 1)
1473 lnx1lnx3lnx7 1474 4 3
log 2 4 log logx x x
40log
11log
1479 6 4 13 6 6 9 0
1 1 1
8
log 2
1 log
4
1
3 3
Trang 422
21
2
8
1 1 2
5x x x x
1491 42x 23x1 2x3 16 0
1492 3cosx 2cosx cosx
1493 4 log 3x 2 log 3x 2x 1494 3cos2x 3sin2x 2x 2 2 2
2 3 3
x
12
12
x x x x
2
564
483627
161232
2
1
1 2 log 2 6
1 2
2 2
2
2 2
3
32
12
x x
x x
x
x
x