*ĐỀ THI THỬ ĐẠI HỌC-ĐỀ SỐ 18 MÔN: TOÁN Thời gian làm bài:180 phút Câu I. (5,0 điểm) Cho hàm số y = x 3 + 3x 2 + mx + 1 (m là tham số) (1) 1. Tìm m để hàm số (1) đạt cực trị tại x 1 , x 2 thỏa mãn x 1 + 2x 2 = 3. 2. Tìm m để đường thẳng y = 1 cắt đồ thị hàm số (1) tại ba điểm phân biệt A(0;1), B, C sao cho các tiếp tuyến của đồ thị hàm số (1) tại B và C vuông góc với nhau. Câu II. (4,0 điểm) 1. Giải hệ phương trình: 8 5. x x y x y y x y − = + − = (x, y ∈ R) 2. Giải phương trình: sin 4 cos4 4 2 sin ( ) 1 4 x x x π + = + − . (x ∈ R) Câu III.(2,0 điểm) Cho phương trình: 2 log( 10 ) 2log(2 1)x x m x+ + = + (với m là tham số) (2) Tìm m để phương trình (2) có hai nghiệm thực phân biệt. Câu IV. (2,0 điểm) Tính tích phân: 4 0 tan 2 cos 1 cos xdx x x π + ∫ . Câu V. (4,0 điểm) 1. Trong hệ tọa độ Oxy, cho điểm A(3; 2), các đường thẳng ∆ 1 : x + y – 3 = 0 và đường thẳng ∆ 2 : x + y – 9 = 0. Tìm tọa độ điểm B thuộc ∆ 1 và điểm C thuộc ∆ 2 sao cho tam giác ABC vuông cân tại A. 2. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(-3; 5; -5), B(5; -3; 7) và mặt phẳng (P): x +y + z - 6 = 0. Tìm tọa độ điểm M trên mặt phẳng (P) sao cho MA 2 + MB 2 đạt giá trị nhỏ nhất. Câu VI. (2,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy. Góc giữa mặt phẳng (SBC) và (SCD) bằng 60 0 . Tính theo a thể tích khối chóp S.ABCD. Câu VII. (1,0 điểm) Cho ba số thực dương a, b, c thỏa mãn ab + bc + ca = 3. Chứng minh rằng: 3 3 3 2 2 2 3 3 3 3 4 a b c b c a + + ≥ + + + . . *ĐỀ THI THỬ ĐẠI HỌC-ĐỀ SỐ 18 MÔN: TOÁN Thời gian làm bài:180 phút Câu I. (5,0 điểm) Cho hàm số y = x 3 + 3x 2