Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 75 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
75
Dung lượng
585,47 KB
Nội dung
1 LỜI CẢM ƠN Tôi xin chân thành bày tỏ lòng kính trọng và biết ơn sâu sắc tới Tiến sĩ Nguyễn Văn Hùng, người thầy đã chỉ ra hướng nghiên cứu, chỉ bảo tận tình, chu đáo, động viên và giúp đỡ tôi trong quá trình thực hiện luận văn. Tôi xin gửi lời cảm ơn chân thành tới Ban giám hiệu, các thầy giáo, cô Phòng Sau Đại học, Khoa Toán Trường Đại học Sư phạm Hà Nội 2, bạn bè và người thân đã tạo điều kiện, động viên, khuyến khích, giúp đỡ tôi hoàn thành luận văn này. Hà Nội, tháng 9 năm 2011 Tác giả Trần Thị Thắm 2 LỜI CAM ĐOAN Luận văn này là kết quả của quá trình học tập, nghiên cứu của bản thân dưới sự chỉ bảo, dìu dắt của các thầy giáo, cô giáo , đặc biệt là sự hướng dẫn nhiệt tình và chu đáo của Tiến sĩ Nguyễn Văn Hùng. Trong khi nghiên cứu, tôi đã kế thừa những thành quả nghiên cứu của các nhà khoa học, nhà nghiên cứu với sự trân trọng và biết ơn. Luận văn với đề tài “Ứng dụng phương trình sai phân trong xử lí tín hiệu và lọc số” không có sự trùng lặp. Người cam đoan Trần Thị Thắm 3 MỤC LỤC Trang Lời cảm ơn 1 Lời cam đoan 2 Mục lục 3 Mở đầu 5 Chương 1. Kiến thức chuẩn bị 1.1. Dãy số 7 1.2. Sai phân 7 1.2.1. Định nghĩa 7 1.2.2. Tính chất 8 1.2.3. Một số ứng dụng 11 Chương 2. Phương trình sai phân tuyến tính 2.1. Phương trình sai phân tuyến tính 16 2.1.1. Định nghĩa 16 2.1.2. Nghiệm 17 2.2. Dạng tổng quát của phương trình sai phân 24 2.3. Phương trình sai phân tuyến tính với hệ số hằng số 26 2.3.1. Phương trình sai phân tuyến tính cấp 1 với hệ số hằng số 26 2.3.2. Phương trình sai phân tuyến tính cấp n với hệ số hằng số 31 Chương 3. Một số ứng dụng của phương trình sai phân trong xử lý tín hiệu và lọc số 3.1. Các hệ thống tuyến tính 35 3.1.1. Định nghĩa 35 3.1.2. Khái niêm hệ thống tuyến tính 35 3.1.3. Đáp ứng xung của hệ thống tuyến tính 36 3.2. Các hệ thống tuyến tính bất biến 37 4 3.3. Hệ thống tuyến tính và nhân quả 3.3.1. Định nghĩa 37 3.3.2. Đáp ứng xung của hệ thống tuyến tính và nhân quả 37 3.4. Hệ thống tuyến tính ổn định 38 3.5. Phương trình sai phân với hệ số hằng và đáp ứng xung của hệ thống 35 3.6. Các hệ thống đệ quy và không đề quy 47 3.6.1. Hệ thống rời rạc đệ quy 47 3.6.2. Hệ thống rời rạc không đệ quy 51 3.7. Biến đổi Z 56 3.7.1. Khái niệm biến đổi Z một phía và hai phía 56 3.7.2. Phương trình sai phân với hệ số hằng và biến đổi Z 59 3.7.3. Hàm truyền đạt 61 3.8. Độ ổn định 61 3.8.1. Sự ổn định của một hệ thống tuyến tính bất biến 61 3.8.2. Sự ổn định của một hệ thống tuyến tính bất biến và nhân quả 62 3.8.2. Tiêu chuẩn Jurry 63 3.9. Phân tích hệ thống LTI trong miềm Z 65 3.9.1. Hàm truyền đạt của hệ thống LIT 65 3.9.2. Đáp ứng quá độ 72 3.9.3. Hệ thống ổn định và nhân quả 74 Kết luận 80 Tài liệu tham khảo 82 5 MỞ ĐẦU 1. Lí do chọn đề tài Trong lĩnh vực toán học ứng dụng thường gặp rất nhiều bài toán liên quan tới phương trình sai phân. Vì vậy việc nghiên cứu phương trình sai phân đóng vai trò quan trọng trong lý thuyết toán học và toán học ứng dụng. Nhiều hiện tượng khoa học và kĩ thuật dẫn đến các bài toán phương trình sai phân, giải các bài toán đó dẫn đến giải các phương trình sai phân. Chúng ta đều biết rằng việc số hóa các thiết bị Điện tử - Viễn thông đã và đang được thực hiện rất mạnh mẽ trên toàn thế giới cũng như ở Việt Nam. Chính vì vậy mà xử lý thông tin và lọc số đã trở thành một ngành khoa học và kĩ thuật. Để tiếp cận với ngành khoa học này chúng ta cần được trang bị những kiến thức cơ bản không thể thiếu được của xử lý tín hiệu và lọc số. Vấn đề này đã được PGS. TS. Nguyễn Quốc Trung đề cập đến trong cuốn sách: “Xử lý tín hiệu và lọc số” nhưng trong luận văn của mình tôi muốn đề cập và đi sâu hơn về ứng dụng của phương trình sai phân trong xử lý tín hiệu và lọc số. Qua luận văn này tôi hy vọng bước đầu làm quen với việc nghiên cứu ứng dụng của toán học vào các ngành khoa học và kĩ thuật mới trong đó có ngành xử lý tín hiệu và lọc số. Rất mong nhận được sự góp ý của các thầy cô! 2. Mục đích nghiên cứu Nghiên cứu phương trình sai phân và ứng dụng của phương trình sai phân trong xử lý tín hiệu và lọc số. 3. Nhiệm vụ nghiên cứu Các cách giải phương trình sai phân. Dựa vào phương trình sai phân để xét tính đệ quy hay không đệ quy của hệ thống, tìm đáp ứng xung và sự ổn định của hệ thống, tìm hàm truyền đạt của hệ thống, xét tính nhân quả của hệ thống, xét sự tương quan của hai hệ thống. 6 4. Đối tượng và phạm vi nghiên cứu Cách giải các dạng phương trình sai phân và các ứng dụng của trong xử lý tín hiệu và lọc số. 5. Phương pháp nghiên cứu Nghiên cứu lý thuyết: Thu thập tài liệu, đọc và phân tích, tổng hợp để được một nghiên cứu tổng quan về phương trình sai phân và ứng dụng của nó trong xử lý tín hiệu và lọc số. 6. Giả thuyết khoa học (hoặc Dự kiến đóng góp mới, nếu đề tài không thuộc chuyên ngành Giáo dục học). 7 Chương 1. KIẾN THỨC CHUẨN BỊ 1.1.Dãy số Gọi M là tập hợp 1 n số tự nhiên đầu tiên: 0,1,2, , M n . Một hàm số x xác định trên tập M được gọi là một dãy số hữu hạn và tập giá trị của dãy số hữu hạn này là: 0 1 (0) , (1) , , ( ) n x x x x x n x Một hàm số x xác định trên tập N được gọi là dãy số vô hạn ( gọi tắt là dãy số) và tập giá trị của dãy số gồm vô số phần tử là: 0 1 (0) , (1) , , ( ) , n x x x x x n x Vậy ta có thể xem dãy số là một hàm số của đối số tự nhiên n , với kí hiệu: ( ) , n x n x n N 1.2. Sai phân 1.2.1. Định nghĩa Hàm số : x Z R . Ta gọi hiệu: 1 n n n x x x là sai phân cấp 1 của hàm số , n x n x n N Ta gọi sai phân của sai phân cấp 1 của hàm số n x là sai phân cấp 2 của hàm n x , kí hiệu 2 1 1 2 1 1 2 1 2x n n n n n n n n n n n n n x x x x x x x x x x x x Định nghĩa theo quy nạp: Sai phân cấp k của hàm n x là sai phân của sai phân cấp 1 k của hàm số đó. 8 1 1 0 ( 1) . . i k i k k k n n n n k i k i x x x x C (1.1) Trong đó ! ! ! i k k i k i C Từ nay về sau, ta gọi tắt sai phân cấp 1 là sai phân. 1.2.2. Tính chất Tính chất 1. Sai phân các cấp đều có thể biểu diễn qua các giá trị của hàm số. Chứng minh: Ta chứng minh công thức (1.1) bằng phương pháp quy nạp toán học. Thật vậy: Với 1 n , ta có 0 1 1 1 1 1 n n n n n x x x C x C x Giả sử (1.1) đúng với n k , có nghĩa là: 0 ( 1) . . k i k i n n k i k i x x C Ta chứng minh (1.1) đúng với 1 n k , tức là chứng minh: 1 1 1 1 0 ( 1) . . k i k i n n k i k i x x C (1.2) Vế phải của (1.2) là: 1 1 k k k n n n x x x = 1 0 0 ( 1) ( 1) k k i i i i k n k i k n k i i i C x C x = 1 1 1 1 1 0 1 ( 1) ( 1) k k i i i i k n k i k n k i i i C x C x = 1 1 1 1 1 0 1 ( 1) ( 1) k k i i i i k n k i k n k i i i C x C x = 1 1 1 1 1 1 1 0 1 ( 1) ( 1) 1 k k k i i i i n k k n k i k n k i n i i x C x C x x 9 = 1 1 1 1 1 ( 1) ( ) 1 k k i i i n k k k n k i n i x C C x x = 0 0 1 1 1 1 0 1 1 1 1 1 1 ( 1) ( 1) ( 1) k i i k k k n k k n k i k n k i i C x C x C x = 1 1 1 0 ( 1) k i i k n k i i C x Đây là vế phải của (1.2). Suy ra (1.2) đúng * k N . Vậy công thức (1.1) đúng với * k N (ĐPCM) . Hệ quả. Nếu thì 0, n n x c x c c c n N Tính chất 2. Sai phân mọi cấp của hàm số là một toán tử tuyến tính, nghĩa là: ax , , , 1,2, k k k n n n n by a x b y a b R k Chứng minh: Với , , 1,2, a b R k ta có: 0 ( ) ( 1) ( ) i k k n n n k i n k i i ax by ax by = 0 0 ( 1) 1 i i k k i k n k i n k i i i C ax by = 0 0 . ( 1) . . 1 . i i k k i k n k i n k i i i a C x b y = k k n n a x b y Đây là điều phải chứng minh. Tính chất 3. Sai phân cấp k của đa thức bậc m là: i) Đa thức bậc m k , nếu k m ii) Hằng số, nếu k m iii) Bằng 0 , nếu k m Chứng minh: Theo tính chất 2 thì sai phân cấp k cũng là toán tử tuyến tính, nên ta chỉ việc chứng minh cho đơn thức ( ) m m P n n là đủ. 10 i) Ta có: 1 m m m n n n 0 1 2 2 . . . m m m m n n m C C n C n C n n 0 1 2 2 1 1 . . . m m m n n m C C n C n C n 1 ( ) m P n Giả sử k s m thì s m m s n P n (1.3) Ta chứng minh 1 k s m thì 1 1 s m m s n P n Thật vậy: 1 1 m s m s s m n n n 1 m s m s P n P n 1m s P n Suy ra , . k m m k n P n k m ii) Theo chứng minh trên khi k m ta có: 0 m m m m n P n P n c (hằng số). iii) Khi k m ta có: 1 ( ) . 0 k m k m m m k m k m n n c c ( Theo hệ quả tính chất 1) Kết thúc chứng minh. Tính chất 4 1 1 * 1 , N k k k n N a n a x x x k N Chứng minh: Ta có N N k k-1 n n n=a n=a Δ x = Δ(Δ x ) 1 1 1 1 ( ) ( ) k k k a a N x x x [...]... f n , y0 cho trước và A , y0 được chỉ ra ở trên Nhận xét: Viết phương trình sai phân dưới dạng chính tắc có thể thuận lợi trong việc giải phương trình sai phân, hệ phương trình sai phân 2.3 Phương trình sai phân tuyến tính với hệ số hằng số 2.3.1 Phương trình sai phân tuyến tính cấp 1 với hệ số hằng số 2.3.1.1 Định nghĩa Phương trình sai phân tuyến tính cấp 1 với hệ số hằng số có dạng như sau : axn1... gọi là bậc của phương trình sai phân; ak , br là các hằng số 2.3.2.2 Nghiệm của phương trình sai phân truyến tính hệ số hằng Tương tự như phương trình vi tích phân tuyến tính hệ số hằng của hệ thống liên tục theo thời gian Trước tiên, ta tìm nghiệm của phương trình sai phân thuần nhất, đó là phương trình (2.6) với vế phải bằng 0 Cuối cùng, nghiệm tổng quát của phương trình sai phân với hệ số hằng (2.6)... Nghiệm riêng của phương trình sai phân Tương tự như cách tìm nghiệm của phương trình thuần nhất, để tìm nghiệm riêng của phương trình sai phân khi tín hiệu vào x n 0 , ta đoán rằng nghiệm của phương trình có một dạng nào đó, và thế vào phương trình sai phân truyến tính hệ số hằng đã cho để tìm một nghiệm riêng, ký hiệu y p n Ta thấy cách làm này có vẽ mò mẫm! Nếu tín hiệu vào x n được... 31 d 1 Vậy số hạng tổng quát của dãy số là: u n n3 n 1; n 0,1,2 hay u n n 3 3n 2 4n 1; n 1,2,3 16 Chương 2 PHƯƠNG TRÌNH SAI PHÂN TUYẾN TÍNH 2.1 Phương trình sai phân tuyến tính 2.1.1 Định nghĩa Định nghĩa 1 Phương trình sai phân tuyến tính là một hệ thức tuyến tính giữa sai phân các cấp F xn , xn , 2 xn , , k xn 0 trong đó xn hiểu là sai phân cấp 0 của hàm xn... này, để xác định các hằng số này, ta phải có một tập các điều kiện đầu tương ứng của hệ thống 36 Chương 3: MỘT SỐ ỨNG DỤNG CỦA PHƯƠNG TRÌNH SAI PHÂN TRONG XỬ LÍ TÍN HIỆU VÀ LỌC SỐ 3.1 Các hệ thống tuyến tính 3.1.1 Các định nghĩa Kí hiệu hệ thống: vào hệ thống ra y(n) x(n Kích thích và đáp ứng: Dãy vào được gọi là dãy kích thích ( hoặc kích thích), dãy ra được gọi là đáp ứng của hệ thống với kích thích... phương trình sai phân tuyến tính thuần nhất Nếu f n 0 thì (2.1) gọi là phương trình sai phân tuyến tính không thuần nhất 17 Nếu f n 0 và a0 , a1 , , ak là các hằng số với a0 0, ak 0 thì (2.1) gọi là phương trình sai phân tuyến tính thuần nhất bậc k với hệ số hằng số: Lh xn a0 xn k a1 xn k 1 ak xn 0 (2.2) 2.1.2 Nghiệm Hàm số xn biến n thỏa mãn (2.1) được gọi là nghiệm của phương trình. .. Cn 3n thay vào phương trình ta được 3n Cn1 Cn 2.3n1 Suy ra DCn 2 2 D 2n Cn 2n Suy ra x*n 2n.3n Vậy xn C 3n 2 n.3n 2n 1 3n 2.3.2 Phương trình sai phân tuyến tính cấp N với hệ số hằng số 2.3.2.1 Định nghĩa Một phương trình sai phân truyến tính hệ số hằng bậc N có dạng sau: N M a k 0 k y ( n k ) br x ( n r ) (2.6) r 0 trong đó, N và M là các số nguyên dương;... của sai phân là bậc của phương trình sai phân tuyến tính Định nghĩa 2 Phương trình sai phân tuyến tính của hàm xn là một biểu thức tuyến tính giữa các giá trị của hàm xn tại các điểm khác nhau Lh xn a0 xn k a1 xn k 1 ak xn f n (2.1) trong đó Lh là kí hiệu toán tử tuyến tính tác dụng lên hàm xn , xác định trên lưới có bước lưới h ; ai i 0,1,2, , k với a0 0, ak 0 là các hằng số. .. hằng số mà ta sẽ tính c) Nghiệm tổng quát của phương trình sai phân Tính chất tuyến tính của phương trình sai phân truyến tính hệ số hằng cho phép ta cộng nghiệm thuần nhất và nghiệm riêng để thu được nghiệm tổng quát Ta có nghiệm tổng quát là: y n yh n y p n (2.10) Vì nghiệm thuần nhất yh n chứa một tập các hằng số bất định Ci , nên nghiệm tổng quát cũng chứa các hằng số bất... hàm số của n , được gọi là các hệ số của phương trình sai phân; f n là hàm số của n được gọi là vế phải; xn là các giá trị cần tìm được gọi ẩn Phương trình (2.1) được gọi là phương trình sai phân tuyến tính bậc k vì để tính được tất cả các giá trị xn , ta phải cho trước k giá trị liên tiếp của xn rồi tính các giá trị còn lại của xn theo công thức truy hồi Định nghĩa 3 Nếu f n 0 thì (2.1) gọi là phương . xử lý tín hiệu và lọc số. Rất mong nhận được sự góp ý của các thầy cô! 2. Mục đích nghiên cứu Nghiên cứu phương trình sai phân và ứng dụng của phương trình sai phân trong xử lý tín hiệu và. quát của phương trình sai phân 24 2.3. Phương trình sai phân tuyến tính với hệ số hằng số 26 2.3.1. Phương trình sai phân tuyến tính cấp 1 với hệ số hằng số 26 2.3.2. Phương trình sai phân tuyến. Phương trình sai phân tuyến tính cấp n với hệ số hằng số 31 Chương 3. Một số ứng dụng của phương trình sai phân trong xử lý tín hiệu và lọc số 3.1. Các hệ thống tuyến tính 35 3.1.1. Định nghĩa