1. Trang chủ
  2. » Luận Văn - Báo Cáo

HƯỚNG DẪN HỌC SINH GIẢI TOÁN CÓ LỜI VĂN Ở LỚP 4, 5 VỚI DẠNG BÀI TOÁN TÌM HAI SỐ KHI BIẾT TỔNG VÀ TỈ SỐ CỦA HAI SỐ ĐÓ

21 2K 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 21
Dung lượng 162 KB

Nội dung

HƯỚNG DẪN HỌC SINH GIẢI TOÁN CÓ LỜI VĂN Ở LỚP 4, 5 VỚI DẠNG BÀI TOÁN: “TÌM HAI SỐ KHI BIẾT TỔNG VÀ TỈ SỐ CỦA HAI SỐ ĐÓ” I. ĐẶT VẤN ĐỀ: Toán học có vị trí rất quan trọng trong cuộc sống thực tiễn đó cũng là công cụ cần thiết cho các môn học khác, giúp học sinh nhận thức thế giới xung quanh, hoạt động có hiệu quả trong thực tiễn. Khả năng giáo dục nhiều mặt của môn toán rất to lớn, như phát triển tư duy lôgic, phát triển trí tuệ, rèn luyện phương pháp suy nghĩ, phương pháp suy luận, phương pháp giải quyết vấn đề một cách có cơ sở, khoa học toàn diện và chính xác. Nhờ đó phát triển trí thông minh, tư duy độc lập sáng tạo, linh hoạt góp phần giáo dục lòng kiên nhẫn, tinh thần vượt khó. Hiện nay toàn ngành giáo dục nói chung và giáo dục tiểu học nói riêng đang thực hiện yêu cầu đổi mới phương pháp dạy học theo định hướng phát huy tính tính cực học tập của học sinh làm cho giờ dạy trên lớp diễn ra "nhẹ nhàng, tự nhiên, hiệu quả". Để đạt được yêu cầu đó giáo viên phải có phương pháp và hình thức dạy học phù hợp với đặc điểm tâm sinh lí của lứa tuổi tiểu học và trình độ nhận thức của học sinh, nâng cao hiệu quả giảng dạy, qua đó đáp ứng với công cuộc đổi mới của đất nước nói chung và của bậc giáo dục tiểu học nói riêng. Trong chương trình môn toán tiểu học, giải toán có lời văn giữ một vai trò quan trọng. Thông qua việc giải toán các em thấy được nhiều khái niệm toán học như: các số, các phép tính, các đại lượng, các yếu tố hình học đều gắn với cuộc sống hiện thực, trong thực tiễn hoạt động của con người, thấy được mối quan hệ biện chứng giữa các sự kiện, giữa cái đã cho và cái cần tìm. Qua việc giải toán rèn luyện cho học sinh năng lực tư duy và những đức tính của con người mới: tinh thần vượt khó, đức tính cẩn thận, làm việc có kế hoạch, thói quen phán đoán có căn cứ, thói quen tự kiểm tra kết quả công việc mình làm, biết độc lập suy nghĩ, sáng tạo, giúp học sinh vận dụng các kiến 1 thức, rèn luyện kỹ năng tính toán, kĩ năng giao tiếp. Đồng thời qua việc giải toán của học sinh mà giáo viên có thể dễ dàng phát hiện những ưu điểm cũng những thiếu sót của các em về kiến thức, kĩ năng để giúp học sinh phát huy những mặt đạt được và khắc phục những mặt còn tồn tại. Chính vì vậy việc đổi mới phương pháp dạy toán “có lời văn” ở Tiểu học nói chung và ở lớp 4, 5 nói riêng là một việc làm rất cần thiết đối với mỗi giáo viên tiểu học. Đó cũng chính là lí do để người viết lựa chọn và nghiên cứu về đề tài này. Giới hạn: Hướng dẫn học sinh giải toán có lời văn ở lớp 4,5 với dạng bài toán: “ Tìm hai số khi biết tổng và tỉ số của hai số đó”. 1. Cơ sở lí luận: Toán có lời văn giữ một vị trí quan trọng trong chương trình toán 4: Góp phần hệ thống hoá, củng cố kiến thức về số tự nhiên, phân số, yếu tố hình học và 4 phép tính (+, - , x, : ) với các số đã học làm cơ sở để học tiếp lớp 5 và đặt nền móng cho quá trình đào tạo tiếp theo ở các cấp học cao hơn. Hình thành kỹ năng tính toán, giúp học sinh nhận biết được mối quan hệ về số lượng, hình dạng không gian. Hình thành phát triển hứng thú học tập và năng lực phẩm chất trí tuệ của học sinh, góp phần phát triển trí thông minh, óc suy nghĩ độc lập, linh hoạt sáng tạo. Kế thừa giải toán ở lớp 1, lớp 2, lớp 3 mở rộng, phát triển nội dung giải toán phù hợp với sự phát triển nhận thức của học sinh lớp 4, 5. Nội dung giải toán được sắp xếp hợp lý đan xen với nội dung hình học (diện tích, chu vi hình vuông, hình chữ nhật ) và các đơn vị đo lường, nhằm đáp ứng với mục tiêu của chương trình toán 4, 5. Ngoài ra nội dung các bài toán ở lớp 4,5 đã chú ý đến tính thực tiễn, gắn liền với đời sống, gần gũi với trẻ, tăng cường tính giáo dục cho học sinh. * Mục tiêu của giải toán có lời văn ở lớp 4, 5 là: 2 a. Học sinh biết giải các bài toán hợp không quá 4 bước tính liên quan đến các dạng toán điển hình. b. Biết trình bày bài giải đầy đủ gồm các câu lời giải (mỗi phép tính đều có lời văn) và đáp số theo đúng yêu cầu của bài toán. c. Đối với học sinh khá giỏi phải tìm được nhiều cách giải một bài toán (nếu có). * Các yêu cầu cơ bản để giải bài toán có lời văn. a. Yêu cầu 1: Học sinh phải tham gia vào các hoạt động học tập một cách tích cực, hứng thú, tự nhiên và tự tin. Trách nhiệm của học sinh là phát hiện, chiếm lĩnh và vận dụng. b. Yêu cầu 2: Giáo viên phải lập kế hoạch, tổ chức hướng dẫn nhẹ nhàng, hợp tác giúp học sinh phát triển năng lực cá nhân của mình. Tạo mối quan hệ tương tác ảnh hưởng nhau, và hỗ trợ nhau. c. Yêu cầu 3: Tạo điều kiện để học sinh hứng thú, tự tin trong học tập. Ở sáng kiến này, người viết không tham vọng có thể nghiên cứu về tất cả các dạng toán có lời văn ở lớp 4, 5, mà chỉ xin trình bày những nghiên cứu của mình về dạng toán "Tìm hai số khi biết tổng và tỉ số của hai số đó". Tuy nhiên các dạng toán có lời văn nói chung, dạng toán "Tìm hai số khi biết tổng và tỉ số của hai số đó" nói riêng không bao giờ tách riêng thành một mạch kiến thức mà luôn đan xen, lồng ghép vào các dạng toán khác, tạo mối quan hệ mật thiết. Vì thế để làm tốt một dạng toán đói hỏi người nghiên cứu, người học phải nắm tốt các dạng khác, ngược lại nếu nắm chắc một dạng toán thì đó cũng là nền tảng để có thể học tốt những dạng toán khác. Dạng toán “Tìm hai số khi biết tổng và tỉ số của hai số đó” thường được giải bằng phương pháp chia tỉ lệ, vì vậy để học sinh giải tốt dạng toán này giáo cần chú ý giúp học sinh nắm chắc kiến thức ở phần phân số. 2. Cơ sở thực tiễn. a. Các bước điều tra cơ bản. 3 * Thuận lợi: Năm học 2013-2014 tôi được nhà trường phân công chủ nhiệm lớp 5C có 35 em học sinh trong đó nữ là 16 em. Các em chủ yếu sống tập trung trên địa bàn thị trấn Mạo Khê – Huyện Đông Triều. - Đa số học sinh thích học môn toán. - Học sinh có đầy đủ phương tiện học tập. - Nhà trường trang bị tương đối đầy đủ đồ dùng cho dạy học toán. * Khó khăn: - Môn toán là môn học khó, học sinh dễ chán. - Trình độ nhận thức học sinh không đồng đều. - Một số học sinh còn chậm, nhút nhát, kĩ năng tóm tắt bài toán còn hạn chế, chưa có thói quen đọc và tìm hiểu kĩ bài toán dẫn tới thường nhầm lẫn giữa các dạng toán, lựa chọn phép tính còn sai, chưa bám sát vào yêu cầu bài toán để tìm lời giải thích hợp với các phép tính. Kĩ năng tính nhẩm với các phép tính (hàng ngang) và kĩ năng thực hành diễn đạt bằng lời chưa tốt. Một số em tiếp thu bài một cách thụ động, ghi nhớ bài còn máy móc. b. Kết quả khảo sát đầu năm. Qua khảo sát chất lượng đầu năm vào thời điểm tháng 10/2013 (năm học 2013 - 2014) riêng về giải bài toán có lời văn: Tổng số là 35 học sinh của lớp 5C do tôi chủ nhiệm là như sau: Tóm tắt bài toán Chọn và thực hiện đúng phép tính Lời giải và đáp số Đạt Chưa đạt Đúng Sai Đúng Sai 8 em = 22,9 % 27 em = 77,1 % 12 em = 34,3 % 23 em = 65.7 % 12 em = 34,3 % 23 em = 65,7 % 4 Qua kết quả khảo sát cho thấy kĩ năng giải các bài toán có lời văn của các em còn rất nhiều hạn chế. Chính vì thực trạng này đặt ra cho mỗi người giáo viên là dạy giải toán có lời văn như thế nào để nâng cao chất lượng môn học. II. NỘI DUNG NGHIÊN CỨU: 1. Biện pháp thực hiện a. Đối với giáo viên: * Tự học tập, nghiên cứu: Đổi mới phương pháp dạy học nói chung và đổi mới phương pháp dạy giải toán nói riêng là nhằm tìm ra được phương pháp dạy phù hợp cho từng nội dung của từng môn, từng bài nhằm đạt được chất lượng cao nhất trong giảng dạy. Vì vậy mỗi giáo viên cần thường xuyên thăm lớp dự giờ của đồng nghiệp, qua đó học tập và xây dựng, thống nhất đổi mới phương pháp giảng dạy phù hợp đối với mỗi môn học để tìm ra con đường chuyển tải kiến thức tới học sinh bằng cách nhanh nhất, ngắn gọn nhất. * Công tác chuẩn bị. Trước khi dạy bất cứ một loại bài nào, tôi đều gặp gỡ trao đổi cùng đồng nghiệp và các giáo viên trong tổ để thống nhất về phương pháp cũng như trao đổi về kinh nghiệm dạy dạng toán đó. Qua đó tôi đi đến nhận định là cần đầu tư thời gian và nghiên cứu kĩ các bài tập của mỗi dạng toán, từ bài giảng đến bài luyện, từ bài trong sách giáo khoa đến bài trong vở bài tập để đưa ra phương pháp giảng dạy phù hợp, ngắn gọn, học sinh dễ tiếp thu, giáo 5 viên nói ít và chọn được thêm bài để nâng cao kiến thức đối với đối tượng học sinh khá, giỏi. Đồng thời cũng lường trước được những tình huống học sinh hay vướng mắc trong khi thực hành giải toán. Tất cả sự chuẩn bị của giáo viên đều được thể hiện cụ thể trên bài soạn với đủ các bước, đủ các yêu cầu và thể hiện được công việc của thầy và trò trong giờ giải toán. * Thực hiện đúng quy trình giải một bài toán có lời văn và Phương pháp giải bài toán "Tìm hai số khi biết tổng và tỉ số của hai số đó": Bước 1: Đọc kỹ đề bài (vì đọc kỹ đề bài học sinh mới tập trung suy nghĩ về ý nghĩa nội dung của bài toán và đặc biệt chú ý đến yêu cầu của bài toán. Bước 2: Phân tích, tóm tắt bài toán ( dùng câu hỏi gợi mở giúp học sinh hiểu: Bài toán cho biết gì? Hỏi gì?) Bước 3: Tìm cách giải bài toán (thiết lập trình tự giải, lựa chọn phép tính thích hợp). Bước 4: Trình bày bài giải (trình bày lời giải (nói - viết) phép tính tương ứng, đáp số, kiểm tra lời giải (giải xong bài toán cần thử lại kết quả đáp số tìm được có trả lời đúng câu hỏi của bài toán, có phù hợp với các điều kiện của bài toán không?), trong một số trường hợp nên thử xem có cách giải khác gọn hơn, hay hơn không * Tổ chức các hoạt động ngoài giờ chính khóa: Ngoài việc thực hiện tốt các giờ dạy trên lớp sao cho các em nắm vững các phương pháp giải toán, người giáo viên cần bồi dưỡng cho các em tình yêu toán học bằng các hoạt động ngoại khóa như: Sân chơi Những người yêu toán; Cuộc thi Tìm hiểu về các nhà Toán học trên thế giới; Cuộc thi Giải toán Tuổi thơ; Thi học sinh giỏi toán; cuộc thi Học sinh giỏi toàn diện…do trường, khối hay do chính lớp phát động. b. Đối với học sinh: 6 Đối với học sinh ngoài việc giúp các em đạt được kết quả giáo dục và bồi dưỡng ý thức thích học toán, hào hứng trong hoạt động học toán, có phương pháp học bộ môn toán, có thao tác về giải toán. Các em còn phải có đầy đủ các dụng cụ học toán và chuẩn bị đầy đủ các đồ dùng học tập cần thiết trong từng tiết học. Chính vì sự liên quan hệ thống giữa kiến thức đã học với kiến thức mới nên học sinh phải làm hết và đầy đủ các bài tập, học thuộc các quy tắc, công thức toán. Để học sinh có thói quen học bài, làm bài đầy đủ tôi đã bố trí mỗi bàn có một bàn trưởng là học sinh khá toán, thường xuyên kiểm tra bài học, bài làm ở nhà của các bạn trong bàn vào giờ ôn bài, soát bài và chỉ ra chỗ đúng sai trong bài tập của bạn giúp bạn cùng tiến bộ (xây dựng đôi bạn cùng tiến ). Ngoài các giờ học chính khóa trên lớp, các em còn được tham gia các hoạt động ngoại khóa, tìm hiểu thêm các bài toán vui, bài toán lạ do giáo viên cung cấp hoặc do các em đọc được trên các tạp chí về toán (như tạp chí Toán tuổi thơ…). 2. Hướng dẫn học sinh nắm chắc các bước giải và phân loại các kiểu bài thuộc dạng toán “Tìm hai số khi biết tống và tỉ số của hai số đó”. a. Hướng dẫn học sinh nắm chắc các bước giải. Bài toán 1: Minh và Khôi có 25 quyển vở. Số vở của Minh bằng 3 2 số vở của Khôi. Hỏi mỗi bạn có bao nhiêu quyển vở? Bước 1: Học sinh đọc đề toán. Bước 2: Phân tích – tóm tắt bài toán. + Bài toán cho biết gì? (Minh và Khôi có 25 quyển vở, số vở của Minh bằng 3 2 số vở của Khôi). + Bài toán hỏi gì? (Bài toán yêu cầu tìm số vở của Minh và số vở của Khôi) 7 + Bài toán thuộc dạng toán gì đã được học? (Bài toán thuộc dạng “Tìm hai số khi biết tổng và tỉ số của hai số đó”) Bước 3: Tìm cách giải bài toán: Trình bày bài giải. Dựa vào kế hoạch giải bài toán ở trên mà học sinh sẽ tiến hành giải như sau: Tóm tắt: ? quyển Minh: 25 quyển Khôi: ? quyển Theo sơ đồ tổng số phần bằng nhau là: 2 + 3 = 5 (phần) Giá trị của một phần là: 25 : 5 = 5 (quyển) Số vở của bạn Minh là: 5 x 2 = 10 (quyển) Số vở của bạn Khôi là: 5 x 3 = 15 (quyển) hoặc: 25 – 10 = 15 (quyển) Đáp số: Minh: 10 quyển vở; Khôi: 15 quyển vở. Hỏi: Có thể tìm số vở của bạn Khôi bằng cách nào khác? Tổng số vở của hai bạn - số vở của bạn Minh = số vở của bạn Khôi. [hay 25 - 10 = 15 (quyển)] 8 Thử lại: Là quá trình kiểm tra việc thực hiện phép tính, độ chính xác của quá trình lập luận. 10 : 15 = 3 2 Bài toán 2: Đặt đề toán và giải bài toán. Vải trắng: Vải hoa: 1. Hướng dẫn học sinh dựa vào sơ đồ để xác định được dạng toán và đặt đề toán. + Bài toán yêu cầu chúng ta làm gì? (Bài toán yêu cầu nêu đề bài toán rồi giải theo sơ đồ). + Quan sát sơ đồ và cho biết bài toán thuộc dạng toán gì? (Bài toán thuộc dạng tìm hai số khi biết tổng và tỉ số của hai số đó). + Tổng của hai số là bao nhiêu? (Tổng của hai số là 28m) + Tỉ số của hai số là bao nhiêu? (Tỉ số của hai số là 3 2 ) - Giáo viên yêu cầu học sinh dựa vào sơ đồ đặt đề toán. 2. Đặt đề toán. Một cửa hàng đã bán 28m vải, trong đó số vải hoa bằng 3 2 số vải trắng. Hỏi cửa hàng đó đã bán được bao nhiêu mét vải mỗi loại? 3. Giải bài toán. 9 28 m ? m ? m * Như vậy, với hai bài toán 1 và bài toán 2, tôi đã giúp học sinh nắm chắc các bước giải bài toán có lời văn dạng “Tìm hai số khi biết tổng và tỉ số của hai số đó”, gồm các bước giải cơ bản sau: + Xác định được tổng và tỉ số đã cho. + Xác định được hai số phải tìm là số nào? Từ đó đi tới phương pháp giải chung là: + Tìm tổng số phần bằng nhau. + Tìm tổng giá trị của một phần bằng cách lấy tổng của hai số chia cho tổng số phần bằng nhau. + Tìm giá trị của mỗi số. Sau khi học sinh đã nắm được quy trình và cách giải đặc trưng của lọai toán này, giáo viên đưa ra các bài toán có tổng hoặc tỉ số ở những dạng khác nhau để học sinh vận dụng cách giải trên vào giải các bài tương tự, qua đó nhằm mở rộng, củng cố, khắc sâu hơn cho học sinh về kiến thức cũng như kĩ năng giải dạng toán này. Từ phương pháp dạy như trên giáo viên có thể áp dụng với tất cả những loại bài như sau: 3. Phân loại các kiểu bài thuộc dạng toán “Tìm hai số khi biết tổng và tỉ số của hai số đó”. a. Bài toán “Tìm hai số khi biết tổng và tỉ số của hai số đó” (trường hợp tỉ số của hai số là một số tự nhiên). Ví dụ: Có 45 tấn thóc chứa trong hai kho. Kho lớn chứa gấp 4 lần kho nhỏ. Hỏi số thóc chứa trong mỗi kho là bao nhiêu tấn? - 2 học sinh đọc thành tiếng đề toán (cả lớp đọc thầm theo bạn và gạch chân = bút chì dưới từ “gấp 4 lần”) + Bài toán cho biết gì? (Tổng số thóc ở hai kho là 45 tấn, kho lớn gấp 4 lần kho nhỏ). 10 [...]... v t s ca hai s ú) - Hc sinh túm tt v gii bi toỏn * Sau khi hc sinh ó nhn din v gii c cỏc kiu bi toỏn thuc dng Tỡm hai s khi bit tng v t s ca hai s ú, giỏo viờn giỳp hc sinh h thng li cỏc kiu bi thuc dng toỏn ny + Bi toỏn Tỡm hai s khi bit tng v t s ca hai s ú (trng hp t s ca hai s l mt s t nhiờn) + Bi toỏn Tỡm hai s khi bit tng v t s ca hai s ú (trng hp t s l mt phõn s) + Bi toỏn Tỡm hai s khi bit tng... c bn * Tỡm hai s khi bit tng v t s ca hai s ú ( trng hp tng ca hai s cha tng minh) Vớ d: Trung bỡnh cng ca hai s bng 15 Tỡm hai s ú, bit s ln bng 3 s bộ 2 - Hc sinh c bi + Bi toỏn cho bit gỡ? (Trung bỡnh cng ca hai s bng 15, s ln bng 3 s bộ) 2 + Trung bỡnh cng ca hai s bng 15 em hiu iu ú nh th no? ( Ngha l tng ca hai s chia cho 2 thỡ bng 15) + Vy mun tỡm tng ca hai s em lm th no? (Ta ly 15 nhõn vi... dn hc sinh tỡm c t s ca hai s - Yờu cu hc sinh c thm toỏn, dựng bỳt chỡ gch chõn di cm t s ln gim i 5 ln thỡ c s bộ + Em hiu s ln gim 5 ln thỡ c s bộ ngha l th no? (Ngha l s ln gp 5 ln s bộ (hay) s bộ bng 1 s ln) 5 + Vy t s ca hai s l bao nhiờu? ( T s ca hai s l 1 ) 5 + Bi toỏn thuc dng toỏn no? (Tỡm hai s khi bit tng v t s ca hai s) Khi ó xỏc nh c tng v t s ca hai s, xỏc nh c dng toỏn, hc sinh t... (Tỡm hai s khi bit tng v t s ca hai s ú - Hc sinh t gii bi toỏn * Tỡm hai s khi bit tng v t s ca hai s ú (trng hp c tng v t s ca hai s cha tng minh) Vớ d: Tng ca hai s bng s ln nht cú 4 ch s.T s gia s ln so vi s bộ bng s nh nht cú hai ch s Tỡm hai s ú - Hc sinh c bi - Hng dn hc sinh phõn tớch bi toỏn: + Bi toỏn cho bit gỡ? (Tng ca hai s l s ln nht cú 4 ch s; T s gia s ln v s bộ l s nh nht cú hai ch... go mi loi? bi ny sau khi ó giỳp hc sinh nm c cỏc d kin ca bi, giỏo viờn hng dn hc hc sinh gii bi toỏn 11 + Khi lng go np bng 2 khi lng go t, em hiu iu ny nh 3 th no? ( Ngha l t s gia khi lng go np so vi khi lng go t l 2 ) 3 - Học sinh tự tóm tắt và giải bài toán ? kg S go t: S go np: 20 kg ? kg - T gii bi toỏn theo cỏc bc c bn * T s gia s ln v s bộ: Vớ d: bng Hai kho cha 1 25 tn thúc, trong ú s thúc... v t s ca hai s ú ( trng hp t s cha tng minh) + Bi toỏn Tỡm hai s khi bit tng v t s ca hai s ú ( trng hp tng ca hai s cha tng minh) + Bi toỏn Tỡm hai s khi bit tng v t s ca hai s ú (trng hp c tng v t s ca hai s cha tng minh) + Bi toỏn "Tỡm hai s khi bit tng v t s ca hai s ú" (cú liờn quan n cỏc yu t hỡnh hc) *Túm li: Vi vic dy hc sinh nh trờn, giỏo viờn ó giỳp hc sinh: + Nm chc cỏc bc gii 15 + Nhn din... thúc kho th hai Hi mi kho cha bao nhiờu tn thúc? 2 Tng t nh vớ d 2, giỏo viờn hng dn hc sinh hiu c t s gia s thúc kho th nht vi s thúc kho th hai (l t s gia s ln v s bộ) c Bi toỏn "Tỡm hai s khi bit tng v t s ca hai s ú"(trng hp tng v t s ca hai s cha tng minh) * Tỡm hai s khi bit tng v t s ca hai s ú ( trng hp t s cha tng minh) Vớ d: Tng ca hai s l 72 Tỡm hai s ú, bit rng nu s ln gim 5 ln thỡ c... t nghiờn cu l: S s im 9-10 im 7- 8 16 im 5- 6 im di 5 35 13 = 37,1% 10 = 28,6% 10 = 28,6% 2 = 5, 7% Kt qu ca hc sinh v gii toỏn dng "Tỡm hai s khi bit tng v T s ca hai s ú" l: Túm tt bi toỏn Chn v thc hin phộp tớnh ỳng Li gii v ỏp s t Cha t úng Sai úng Sai 28 7 26 9 26 9 = 80 % = 20% = 74,3 % = 25, 7% = 74,3 % = 25, 7% Đây là một kết quả thành công ngoài mong đợi của tôi Nh vy rốn cho cỏc em cú phng phỏp... (núi chung) lp 4 ,5 Tụi xin chõn thnh cm n! Mo Khờ, ngy 20 thỏng 11 nm 2013 Ngi vit: V Th Qunh V TI LIU THAM KHO 19 Tỏc gi Ti liu tham kho NGUYN VN BI DNG HC NG SINH LP 4 ỡnh Hoan ỡnh Hoan Trn Diờn Hiển Trn Ngc Lan V Dng Thụy Vở bài tập toán 4 Nh xut Nm xut bn bn NH XUT BN GIO DC Nh xut bn Giáo dục Nh xut bn Toán 4 Giáo dục 10 chuyên đề bồi dỡng Nh xut bn học sinh giỏi toán 4 - 5 Giáo dục Giáo trình... kho nh hoc ngc li) - Hc sinh túm tt v gii bi toỏn: Túm tt: ? tn Kho nh: 45 tn Kho ln: ? tn Tng s phn bng nhau l: 1 + 4 = 5 (phn) S thúc kho nh l: 45 : 5 = 9 (tn) S thúc kho ln l: 9 x 4 = 36 (tn) ỏp s: Kho nh: 9 tn; Kho ln: 36 tn b Bi toỏn Tỡm hai s khi bit tng v t s ca hai s ú (trng hp t s l mt phõn s) * T s gia s bộ v s ln: Vớ d: M mua 20 kg go trong ú khi lng go np bng 2 khi 3 lng go t Tớnh s kg . (Ta lấy 15 nhân với 2) 13 + Bài toán thuộc dạng toán gì? (Tìm hai số khi biết tổng và tỉ số của hai số đó. - Học sinh tự giải bài toán. * Tìm hai số khi biết tổng và tỉ số của hai số đó (trường. một số tự nhiên). + Bài toán Tìm hai số khi biết tổng và tỉ số của hai số đó (trường hợp tỉ số là một phân số) . + Bài toán Tìm hai số khi biết tổng và tỉ số của hai số đó ( trường hợp tỉ số. minh) + Bài toán Tìm hai số khi biết tổng và tỉ số của hai số đó ( trường hợp tổng của hai số chưa tường minh) + Bài toán Tìm hai số khi biết tổng và tỉ số của hai số đó (trường hợp cả tổng và

Ngày đăng: 06/07/2015, 10:08

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w