Lê Trung Kiên THPT Nguyễn Du-Thanh Oai-Hà Nội https://www.facebook.com/letrungkienmath https://sites.google.com/site/letrungkienmath Ôn Tập Kiến Thức Chương 1 1.Các hằng đẳng thức lượng giác cơ bản 2 2 2 2 2 2 sin x cos x 1 1 1 1 tan x ,1 cot x cos x sin x sin x cosx t anx ,cot x ,tan x cot x 1 cosx sinx 2.Công thức cộng lượng giác sin a b sin acosb cosasin b cos a b cosacos b sinasin b t ana tanb tan a b 1 tan a tan b 3.Công thức cung nhân đôi 2 2 2 sin 2a 2sina cosa cos2a cos a sin a 2cos a 1 2 1 2sin a 2 2tana tan 2a 1 tan a Chú ý: Nếu đặt x tan t 2 thì ta có: 2 2 2 2 2 2t 1 t sinx ; cosx 1 t 1 t 2t 1 t t anx ; cot x 1 t 2t 4.Công thức hạ bậc 2 2 1 cos2a 1 cos2a cos a ; sin a 2 2 5. Công thức cung nhân ba 3 3 sin3a 3sina 4sin a; cos3a 4cos a 3cosa 6.Công thức biến đổi tổng thành tích a b a b cosa cosb 2cos cos 2 2 a b a b cosa-cosb 2sin sin 2 2 a b a b sina sin b 2sin cos 2 2 a b a b sina sin b 2cos sin 2 2 7.Công thức biến đổi tích thành tổng. 1 cosa cosb cos a b cos a b 2 1 sinasinb cos a b cos a b 2 1 sina cosb sin a b sin a b 2 8.Giá trị lượng giác của các góc liên quan. Góc GTLG 2 sin sin sin cos sin cos cos cos sin cos tan tan tan cot tan cot cot cot tan cot 9.Phương trình sinx=a a 1 phương trình vô nghiệm a 1 có góc sin a : 2 2 Được gọi là arcsin a sinf x sing x f x g x k2 ,k f x g x k2 Các trường hợp đặc biệt sinx 1 x k2 ,k 2 sinx 0 x k ,k sinx 1 x k2 ,k 2 Bảng sin các góc đặc biệt Lê Trung Kiên THPT Nguyễn Du-Thanh Oai-Hà Nội https://www.facebook.com/letrungkienmath https://sites.google.com/site/letrungkienmath Góc 2 3 4 6 0 90 0 60 0 45 0 30 sin -1 3 2 2 2 1 2 Góc 0 6 4 3 2 0 0 0 30 0 45 0 60 0 90 sin 0 1 2 2 2 3 2 1 10.Phương trình cosx=a a 1 phương trình vô nghiệm a 1 có góc cos a : 0 Được gọi là arccosa cosf x cosg x f x g x k2 ,k f x g x k2 Các trường hợp đặc biệt cosx 1 x k2 ,k cosx 0 x k ,k 2 cosx 1 x k2 ,k Bảng cos các góc đặc biệt Góc 0 6 4 3 2 0 0 0 30 0 45 0 60 0 90 cos 1 3 2 2 2 1 2 0 Góc 2 3 3 4 5 6 0 120 0 135 0 150 0 180 cos 1 2 2 2 3 2 1 11.Phương trình tanx=a Đk: x k ,k 2 Luôn có góc tan a : 2 2 được gọi là arctana tanf x tang x f x g x k ,k Bảng tan các góc đặc biệt Góc 3 4 6 0 0 60 0 45 0 30 0 0 tan 3 1 3 3 0 Góc 6 4 3 0 30 0 45 0 60 tan 3 3 1 3 12.Phương trình cotx=a Đk: x k ,k Luôn có góc cot a : 0 được gọi là arccota cot f x cotg x f x g x k ,k Bảng cot các góc đặc biệt Góc 6 4 3 2 0 30 0 45 0 60 0 90 cot 3 1 3 3 0 Góc 3 4 6 0 60 0 45 0 30 cot 3 3 1 - 3 . Ôn Tập Kiến Thức Chương 1 1. Các hằng đẳng thức lượng giác cơ bản 2 2 2 2 2 2 sin x cos x 1 1 1 1 tan x ,1 cot x cos x sin x sin x cosx t anx ,cot x ,tan x cot x 1 cosx sinx . 0 30 0 45 0 60 0 90 cos 1 3 2 2 2 1 2 0 Góc 2 3 3 4 5 6 0 12 0 0 13 5 0 15 0 0 18 0 cos 1 2 2 2 3 2 1 11 . Phương trình tanx=a Đk: x. a sin a 2cos a 1 2 1 2sin a 2 2tana tan 2a 1 tan a Chú ý: Nếu đặt x tan t 2 thì ta có: 2 2 2 2 2 2t 1 t sinx ; cosx 1 t 1 t 2t 1 t t anx ; cot x 1 t 2t