Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 20 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
20
Dung lượng
287,98 KB
Nội dung
BÀI GIẢNG ÔN THI VÀO ĐẠI HỌC CÁC BÀI TOÁN VỀ TAM GIÁC THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐH XÂY DỰNG DĐ: 0983070744 website: violet.vn/phphong84 1 Các bài toán về tam giác A. Giới thiệu Trong bài giảng này, chúng tôi đề cập đến các bài toán liên quan đến việc xác định tọa độ các đỉnh và viết phương trình các cạnh của tam giác (giải tam giác). Để làm tốt các bài toán này, ta cần biết khai thác các tính chất của đường cao, đường trung tuyến, đường phân giác và đường trung trực của tam giác. Bài giảng này đề cập đến năm dạng toán sau: Dạng 1. Đường cao Dạng 2. Trung tuyến Dạng 3. Phân giác Dạng 4. Trung trực Dạng 5. Các bài toán tổng hợp B. Các dạng toán hay gặp Dạng 1. Đường cao Nội dung phương pháp Cho tam giác ABC . Giả sử d là đường cao qua A và H là trực tâm tam giác. Ta có vài nhận xét sau đây: d đi qua A và vuông góc với BC . AH , BH , CH là các véc-tơ pháp tuyến của các đường thẳng BC , CA , AB . Một số ví dụ Ví dụ 1. Cho tam giác ABC có đường cao qua A là đường thẳng : 2 7 0 d x y , cạnh BC đi qua điểm 2;1 M . Hãy lập phương trình cạnh BC của tam giác. Giải Ta thấy đường thẳng BC vuông góc với d nên nhận véc-tơ pháp tuyến 1; 2 n làm véc-tơ chỉ phương. BC còn đi qua M nên 2 1 : 1 2 x y BC :2 3 0 BC x y . d A B C M BÀI GIẢNG ÔN THI VÀO ĐẠI HỌC CÁC BÀI TOÁN VỀ TAM GIÁC THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐH XÂY DỰNG DĐ: 0983070744 website: violet.vn/phphong84 2 Ví dụ 2. Cho tam giác ABC có 1; 2 A . Đường cao kẻ B , C có phương trình lần lượt là 1 :3 5 11 0 d x y , 2 : 3 7 0 d x y . Lập phương trình các cạnh của tam giác. Giải Đường thẳng AB vuông góc với đường cao 2 : 3 7 0 d x y nên đường thẳng này nhận véc-tơ pháp tuyến 2 1;3 n của 2 d làm véc-tơ chỉ phương. Đường thẳng AB còn đi qua điểm A nên 1 2 : 1 3 x y AB :3 5 0 AB x y . d 2 d 1 A B C Tương tự, AC là đường thẳng qua A và nhận 1 3; 5 n làm véc-tơ chỉ phương nên 1 2 : 3 5 x y AC :5 3 1 0 AC x y . B là giao điểm của AB và 1 d nên tọa độ cuả B là nghiệm của hệ 3 5 0 3 5 11 0 x y x y 3;4 B . C là giao điểm của C và 2 d nên tọa độ C là nghiệm của hệ 5 3 1 0 3 7 0 x y x y 2;3 C . Suy ra 3 4 : 5 1 x y BC : 5 17 0 BC x y . Vậy :3 5 0 AB x y , :5 3 1 0 AC x y , : 5 17 0 BC x y . Ví dụ 3. Cho tam giác ABC có đường cao qua A , B lần lượt là các đường thẳng 1 :4 5 0 d x y , 2 : 2 9 0 d x y và trọng tâm 2;2 G . Hãy xác định tọa độ các đỉnh của tam giác. Giải BÀI GIẢNG ÔN THI VÀO ĐẠI HỌC CÁC BÀI TOÁN VỀ TAM GIÁC THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐH XÂY DỰNG DĐ: 0983070744 website: violet.vn/phphong84 3 Các điểm A , B lần lượt thuộc các đường thẳng 1 d , 2 d nên tọa độ của chúng có dạng ; 4 5 A a a , ;2 9 B b b . G là trọng tâm tam giác ABC nên 3 3 C G A B C G A B x x x x y y y y 6;4 2 2 C a b a b 2 6;4 4 7 BC a b a b , 2 6;8 2 7 AC a b a b . d 2 d 1 G C A B Đường thẳng BC vuông góc với 1 d nên BC là một véc-tơ pháp tuyến của 1 d . Tương tự, AC là một véc-tơ pháp tuyến của 2 d . Do đó 2 6 4 4 7 4 1 2 6 8 2 7 2 1 a b a b a b a b 17 14 22 14 5 8 a b a b 2 4 a b . Suy ra 2;3 A , 4;1 B . Ví dụ 4. Cho tam giác ABC có :5 3 2 0 AB x y và các đường cao đi qua A , B có phương trình lần lượt là 1 :4 3 1 0 d x y và 2 :7 2 22 0 d x y . Lập phương trình của hai cạnh còn lại và đường cao còn lại của tam giác. Giải A là giao điểm của AB và 1 d nên tọa độ A là nghiệm của hệ 5 3 2 0 4 3 1 0 x y x y 1; 1 A . d 2 d 1 C A B B là giao điểm của AB và 2 d nên tọa độ B là nghiệm của hệ 5 3 2 0 7 2 22 0 x y x y 2;4 B . Đường thẳng AC qua A và nhận véc-tơ pháp tuyến 2 7;2 n của đường thẳng 2 d làm véc-tơ chỉ phương nên 1 1 : 7 2 x y AC :2 7 5 0 AC x y . BÀI GIẢNG ÔN THI VÀO ĐẠI HỌC CÁC BÀI TOÁN VỀ TAM GIÁC THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐH XÂY DỰNG DĐ: 0983070744 website: violet.vn/phphong84 4 Tương tự, BC qua B và nhận 1 4; 3 n làm véc-tơ chỉ phương nên 2 4 : 4 3 x y BC :3 4 22 0 BC x y . C là giao điểm của AC và BC nên tọa độ C là nghiệm của hệ 2 7 5 0 3 4 22 0 x y x y 6;1 C . Đường cao qua C nhận véc-tơ pháp tuyến 3 5; 3 n làm véc-tơ pháp tuyến nên có phương trình là 6 1 5 3 x y 3 5 23 0 x y . Vậy :2 7 5 0 AC x y , :3 4 22 0 BC x y , đường cao còn lại có phương trình 3 5 23 0 x y . Ví dụ 5. Cho tam giác ABC có phương trình hai cạnh là 5 2 6 0 x y và 4 7 21 0 x y . Viết phương trình cạnh còn lại của tam giác biết gốc tọa độ chính là trực tâm của tam giác. Giải Giả sử 5 2 6 0 x y , 4 7 21 0 x y lần lượt là phương trình của các cạnh AB , BC . B là giao điểm của AB và BC nên tọa độ B là nghiệm của hệ 5 2 6 0 4 7 21 0 x y x y 0;3 B . O A B C Đường thẳng CO nhận véc-tơ pháp tuyến 5; 2 n của AB làm véc-tơ chỉ phương nên : 5 2 x y CO :2 5 0 CO x y . C là giao điểm của của BC và CO nên tọa độ của C là nghiệm của hệ 4 7 21 0 2 5 0 x y x y 35 ; 7 2 C . Đường thẳng CA đi qua 35 ; 7 2 C và nhận 0;3 OB làm véc-tơ pháp tuyến nên :3 7 0 CA y : 7 0 CA y . Bài tập BÀI GIẢNG ÔN THI VÀO ĐẠI HỌC CÁC BÀI TOÁN VỀ TAM GIÁC THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐH XÂY DỰNG DĐ: 0983070744 website: violet.vn/phphong84 5 Bài 1. Cho tam giác ABC có chân đường vuông góc hạ từ A xuống BC là 1;1 H , các đường cao qua B , C lần lượt là 1 :5 3 4 0 d x y , 2 : 4 11 0 d x y . Hãy tìm tọa độ các đỉnh của tam giác. Đáp số: 3; 7 A , 5;2 B , 7; 1 C . Bài 2. Viết phương trình các cạnh của tam giác ABC biết 4; 5 B và phương trình hai đường cao là 1 :5 3 4 0 d x y và 2 :3 8 13 0 d x y . Hướng dẫn: Trước hết ta nhận xét rằng B không thuộc cả 1 d và 2 d . Giả sử 1 d là đường cao đi qua A và 2 d là đường cao đi qua C . Phương trình các cạnh của tam giác là :8 3 17 0 AB x y , :3 5 13 0 BC x y , :5 2 1 0 CA x y . Bài 3. Cho tam giác ABC có trung điểm cạnh AB là 1 1 ; 2 2 M và các đường cao qua A , B lần lượt là 1 :6 21 0 d x y , 2 : 4 9 0 d x y . Hãy lập phương trình các cạnh của tam giác. Đáp số: : 0 AB x y , : 6 10 0 BC x y , :4 15 0 CA x y . Bài 4. Cho tam giác ABC có trung điểm các cạnh AB , BC lần lượt là 9 3 ; 2 2 M , 1 1 ; 2 2 N và đường cao hạ từ A là 3 7 0 x y . Hãy xác định tọa độ các đỉnh của tam giác. Đáp số: 4; 5 A , 5;2 B , 4; 1 C . Bài 5. Tìm tọa độ đỉnh A của tam giác ABC biết 5;2 B , 1;1 C và trực tâm là 2;4 H . Đáp số: 9 26 ; 5 5 A . BÀI GIẢNG ÔN THI VÀO ĐẠI HỌC CÁC BÀI TOÁN VỀ TAM GIÁC THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐH XÂY DỰNG DĐ: 0983070744 website: violet.vn/phphong84 6 Dạng 2. Trung tuyến Nội dung phương pháp Cho tam giác ABC . Trung tuyến của tam giác là đường thẳng đi qua đỉnh và trung điểm cạnh đối diện. Giả sử biết : 0 d ax by c là trung tuyến đi qua đỉnh A của tam giác, ta suy ra hai sự kiện quan trọng sau đây: Điểm A thuộc đường thẳng d , tức là 0 A A ax by c . Trung điểm của đoạn thẳng BC thuộc đường thẳng d , tức là 0 2 2 B C B C x x y y a b c . Cho tam giác ABC . Một số ví dụ Ví dụ 1. Cho tam giác ABC có tọa độ ba đỉnh là 1; 2 A , 4; 3 B và 0;8 C . Hãy viết phương trình các đường trung tuyến của tam giác. Giải Nếu gọi G là trọng tâm của tam giác thì 1;1 G . Gọi cac trung tuyến qua A , B , C lần lượt là A d , B d , C d . Ta thấy A d đi qua A và G nên 1 2 : 2 3 A x y d , hay :3 2 1 0 A d x y . Tương tự ta có 4 3 : 3 4 B x y d , hay : 4 3 7 0 B d x y ; 8 : 1 7 C x y d , hay :7 8 0 C d x y . Ví dụ 2. Cho tam giác ABC có đỉnh 3;4 B , đỉnh C thuộc đường thẳng 1 :2 1 0 d x y và trung tuyến đi qua A là 2 :7 5 21 0 d x y . Tìm tọa độ đỉnh C . Giải BÀI GIẢNG ÔN THI VÀO ĐẠI HỌC CÁC BÀI TOÁN VỀ TAM GIÁC THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐH XÂY DỰNG DĐ: 0983070744 website: violet.vn/phphong84 7 Đỉnh C của thuộc đường thẳng 1 :2 1 0 d x y nên tọa độ có dạng ;2 1 C c c . Trung điểm của đoạn thẳng BC thuộc trung tuyến qua A nên 3 2 3 7 5 21 0 2 2 c c . Giải phương trình này ta được 2 c . Vậy 2;3 C . Ví dụ 3. Cho tam giác ABC có :4 3 7 0 AB x y , trung tuyến qua A là : 4 5 0 d x y . Tìm tọa độ các đỉnh của tam giác, biết AC cắt trục hoành tại điểm I có hoành độ bằng 3 2 và I là trung điểm của AC . Giải Ta thấy A là giao điểm của đường thẳng AB và trung tuyến d nên tọa độ A là nghiệm của hệ 4 3 7 0 4 5 0 x y x y 1;1 A . I là điểm có hoành độ bằng 3 2 thuộc trục hoành nên 3 ;0 2 I . Từ I là trung điểm AC có 2 4 2 1 C I A C I A x x x y y y 4; 1 C . Điểm B thuộc đường thẳng AB nên tọa độ B có dạng 4 7 ; 3 b B b . Gọi J là trung điểm BC , ta có 2 2 B C J B C J y y x x x y 4 2 2 ; 2 3 b b J . Điểm J lại thuộc trung tuyến d nên 4 2 2 4. 5 0 2 3 b b . Giải phương trình này ta được 2 b , suy ra 2;5 B . Vậy 1;1 A , 2;5 B , 4; 1 C . Ví dụ 4. Viết phương trình các cạnh của tam giác ABC biết 1;3 A và hai trung tuyến có phương trình là 1 : 2 1 0 d x y và 2 : 1 0 d y . Giải BÀI GIẢNG ÔN THI VÀO ĐẠI HỌC CÁC BÀI TOÁN VỀ TAM GIÁC THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐH XÂY DỰNG DĐ: 0983070744 website: violet.vn/phphong84 8 Dễ thấy cả hai trung tuyến đã cho đều không đi qua A . Giả sử 1 d là trung tuyến qua B , 2 d là trung tuyến qua C . Điểm B thuộc trung tuyến 1 d nên có tọa độ dạng 2 1; B b b . Tương tự, điểm C có tọa độ dạng ;1 C c . Trung điểm của cạnh AB thuộc trung tuyến 2 d và trung điểm của AC thuộc trung tuyến 1 d nên 3 1 0 2 1 2 2 1 0 2 b c . Giải hệ trên ta được 1 b , 5 c . Suy ra 3; 1 B , 5;1 C . Phương trình các cạnh tam giác là 1 3 : 4 4 x y AB , hay : 2 0 AB x y ; 3 1 : 8 2 x y BC , hay : 4 1 0 BC x y ; 5 1 : 4 2 x y CA , hay : 2 7 0 CA x y . Ví dụ 5. Hai cạnh của một tam giác có phương trình lần lượt là 2 0 x y và 5 0 x y . Một trong các đường trung tuyến của tam giác có phương trình 3 0 x y . Cạnh thứ ba của tam giác đó đi qua điểm 3;9 M . Tìm tọa độ các đỉnh và viết phương trình cạnh thứ ba của tam giác. Giải Giả sử ABC là tam giác đang xét và :2 0 AB x y , :5 0 AC x y . Điểm A là giao điểm của hai đường thẳng AB và AC nên tọa độ A là nghiệm của hệ 2 0 5 0 x y x y 0;0 A . Ta thấy :3 0 d x y là trung tuyến đi qua A . Hai điểm B và C lần lượt thuộc các cạnh AB và AC nên tọa độ của hai điểm này có dạng ;2 B b b và ;5 C c c . Trung điểm của BC thuộc trung tuyến d nên 2 5 3 0 2 2 b c b c 2 b c . BÀI GIẢNG ÔN THI VÀO ĐẠI HỌC CÁC BÀI TOÁN VỀ TAM GIÁC THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐH XÂY DỰNG DĐ: 0983070744 website: violet.vn/phphong84 9 Thế 2 b c vào tọa độ điểm B ta có 2 ;4 B c c , suy ra ; BC c c . Véc-tơ BC lại cùng phương với véc-tơ 1; 1 a . Đường thẳng BC đi qua điểm M nên véc-tơ MB và véc-tơ a cùng phương, tức là 2 3 4 9 1 1 c c 2 c 4;8 B , 2;10 C . Phương trình cạnh BC là 4 8 2 2 x y hay 12 0 x y . Bài tập Bài 1. Cho tam giác ABC , các đường thẳng AB và AC lần lượt có phương trình 3 2 1 0 x y và 1 0 x y . Đường trung tuyến ứng với cạnh AB có phương trình 2 1 0 x y . Viết phương trình đường thẳng BC . Đáp số: Phương trình đường thẳng BC là 5 3 1 0 x y . Bài 2. Cho tam giác ABC có 4; 1 A , phương trình hai trung tuyến đi qua B và C lần lượt là 8 3 0 x y và 14 13 9 0 x y . Tìm tọa độ các đỉnh B , C . Đáp số: 1;5 B , 4; 5 C . Bài 3. Một cạnh của tam giác có phương trình là 2 7 0 x y , hai đường trung tuyến ứng với hai cạnh còn lại có phương trình lần lượt là 5 0 x y và 2 11 0 x y . Viết phương trình hai cạnh còn lại. Đáp số: Phương trình hai cạnh còn lại là 3 2 6 0 x y và 3 8 12 0 x y . Bài 4. Cho tam giác ABC có các trung tuyến từ A , B lần lượt là 1 : 5 0 d x y , 2 : 17 31 0 d x y và trực tâm 4; 1 H . Đáp số: 6; 5 A , 3; 2 B , 5;2 C . BÀI GIẢNG ÔN THI VÀO ĐẠI HỌC CÁC BÀI TOÁN VỀ TAM GIÁC THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐH XÂY DỰNG DĐ: 0983070744 website: violet.vn/phphong84 10 Dạng 3. Phân giác Nội dung phương pháp Cho tam giác ABC . Mỗi góc của tam giác hai đường phân giác là phân giác trong và phân giác ngoài. Điểm đồng quy của ba đường phân giác trong là tâm đường tròn nội tiếp tam giác. Điểm đồng quy của một đường phân giác trong và hai đường phân giác ngoài của góc còn lại là tâm đường tròn bàng tiếp của góc ứng góc với phân giác trong, chẳng hạn: điểm đồng quy của đường phân giác trong góc A và hai đường phân giác ngoài của hai đỉnh còn lại là tâm đường tròn bàng tiếp góc A . Xét phân giác (phân giác trong, phân giác ngoài) góc A . Ta cần nắm được hai tính chất sau đây của phân giác góc A : Phân giác góc A là đường thẳng đi qua A . Hai đường thẳng AB và AC đối xứng nhau qua phân giác góc A . Cụ thể, nếu lấy M là một điểm thuộc đường thẳng và ' M là điểm đối xứng với M qua phân giác góc A thì ' M thuộc đường thẳng AC . Một số ví dụ Ví dụ 1. Cho tam giác ABC biết rằng các đường thẳng thẳng AB , AC lần lượt đi qua các điểm 4; 6 M , 7;1 N và phân giác góc A là đường thẳng : 4 14 0 d x y . Lập phương trình các cạnh AB , AC của tam giác. Giải Gọi ' M là điểm đối xứng với điểm M qua phân giác d . Vì M thuộc đường thẳng AB nên ' M thuộc đường thẳng AC . Giả sử ' ; M a b , ta thấy trung điểm 4 6 ; 2 2 a b I thuộc đường thẳng d và véc-tơ ' 4; 6 MM a b cùng phương với véc-tơ pháp tuyến 1;4 n của đường thẳng d , tức là 4 6 4 14 0 2 2 4 6 1 4 a b a b 4 48 4 22 a b a b 8 10 a b ' 8;10 M . Ta thấy đường thẳng AC đi qua các điểm 7;1 N và ' 8;10 M nên [...]... hai phía d Do đó tọa độ các điểm tìm được thỏa mãn yêu cầu bài toán Ví dụ 3 Cho tam giác ABC với A 2; 1 và hai phân giác trong của các góc B và C lần lượt là d1 : x 2 y 1 0 và d 2 : x y 3 0 Lập phương trình các cạnh của tam giác Giải Gọi A1 , A2 là các điểm đối xứng với điểm A qua các phân giác d1 , d 2 Từ tính chất của đường phân giác suy ra A1 , A2 là các điểm thuộc đường thẳng... 5 1 Bài tập THS PHẠM HỒNG PHONG – GV TRƯỜNG ĐH XÂY DỰNG DĐ: 0983070744 website: violet.vn/phphong84 15 BÀI GIẢNG ÔN THI VÀO ĐẠI HỌC CÁC BÀI TOÁN VỀ TAM GIÁC Dạng 5 Một số bài toán tổng hợp Một số ví dụ Ví dụ 1 Cho tam giác ABC có A 3; 4 , đường cao qua B và trung tuyến qua C lần lượt là d1 : 2 x 5 y 13 0 , d 2 : x 1 Tìm tọa độ các đỉnh B , C của tam giác Giải Đường thẳng... 0983070744 website: violet.vn/phphong84 19 BÀI GIẢNG ÔN THI VÀO ĐẠI HỌC CÁC BÀI TOÁN VỀ TAM GIÁC Bài 2 [CĐ09Chuẩn] Cho tam giác ABC có C 1; 2 , đường trung tuyến kẻ từ A và đường cao kẻ từ B lần lượt có phương trình 5 x y 9 0 và x 3 y 5 0 Tìm toạ độ các đỉnh A và B Đáp số: A 1; 4 , B 5; 0 Bài 3 [ĐHD09] Cho tam giác ABC có M 2; 0 là trung điểm cạnh AB Đường trung tuyến và đường...BÀI GIẢNG ÔN THI VÀO ĐẠI HỌC AC : CÁC BÀI TOÁN VỀ TAM GIÁC x 7 y 1 AC : 3 x 5 y 26 0 15 9 A là giao điểm của AC và phân giác d của góc A nên tọa độ A là nghiệm của hệ 3 x 5 y 26 0 x 2 A 2; 4 x 4 y 14 0 y 4 Đường thẳng AB đi qua các điểm A và M nên AB : x2 y4 AB : 5 x 3 y 2 0 6 10 Vậy phương trình các cạnh AB , AC của tam giác là... phương trình các cạnh của tam giác là BC : 4 x y 3 0 , AB : 8 x 19 y 3 0 , AC : x 4 y 6 0 Bài tập Bài 1 Cho tam giác ABC có A 4; 1 và các đường phân giác các góc B , C lần lượt là d1 : x 1 0 , d 2 : x y 1 0 Tìm tọa độ các đỉnh B , C Đáp số: B 1;5 , C 4; 5 THS PHẠM HỒNG PHONG – GV TRƯỜNG ĐH XÂY DỰNG DĐ: 0983070744 website: violet.vn/phphong84 13 BÀI GIẢNG ÔN... thứ hai của hệ điều kiện trở thành y B yC 0 Ba đường trung trực của tam giác đồng quy tại tâm đường tròn ngoại tiếp của tam giác đó Một số ví dụ Ví dụ 1 Cho tam giác ABC có A 2; 1 và các đường trung trực của các cạnh AB , CA lần lượt là d1 : 6 x 4 y 5 0 , d 2 : 2 x y 6 0 Tìm tọa độ các đỉnh của tam giác Giải Giả sử B a; b Ta có trung điểm của AB thuộc d1 và AB là... 7 nên m 3 suy ra C 2 65;3 Ví dụ 5 [ĐHA02] Cho tam giác ABC vuông tại A , BC : 3x y 3 0 , A và B thuộc trục hoành , bán kính đường tròn nội tiếp bằng 2 Tìm tọa độ trọng tâm G của tam giác ABC Giải THS PHẠM HỒNG PHONG – GV TRƯỜNG ĐH XÂY DỰNG DĐ: 0983070744 website: violet.vn/phphong84 18 BÀI GIẢNG ÔN THI VÀO ĐẠI HỌC CÁC BÀI TOÁN VỀ TAM GIÁC B là giao điểm của BC với Ox nên tọa độ B là C... C 3; 5 c 1 d 3 c 2 d 7 d 5 2 1 Ví dụ 2 Cho tam giác ABC có đường trung trực của cạnh BC là d : x 2 y 7 0 và B 1; 1 Tìm tọa độ đỉnh C của tam giác THS PHẠM HỒNG PHONG – GV TRƯỜNG ĐH XÂY DỰNG DĐ: 0983070744 website: violet.vn/phphong84 14 BÀI GIẢNG ÔN THI VÀO ĐẠI HỌC CÁC BÀI TOÁN VỀ TAM GIÁC Giải Giả sử C a; b Ta có trung điểm của BC thuộc d và BC là... 6; 6 , đường thẳng đi qua trung điểm của các cạnh AB và AC có phương trình x y 4 0 Tìm tọa độ các đỉnh B và C , E 1; 3 nằm trên đường cao đi qua đỉnh C của tam giác đã cho Giải Giả sử d là đường thẳng đi qua trung điểm các cạnh AB và AC Lấy A ' là điểm đối xứng với A qua d Vì d là đường trung bình của tam giác nên A ' thuộc cạnh BC Tam giác ABC cân tại A nên A ' còn là trung điểm của... THI VÀO ĐẠI HỌC CÁC BÀI TOÁN VỀ TAM GIÁC Dạng 4 Trung trực Nội dung phương pháp Cho tam giác ABC Giả sử d : ax by c 0 là trung trực của BC Khi đó, trung điểm I của đoạn thẳng BC thuộc d và BC cũng là một véc-tơ pháp tuyến của d , tức là yB yC xB xC a 2 b 2 c 0 xB xC yB yC a b Chú ý Hệ điều kiện nói trên áp dụng cho trường hợp cả a và b đều khác 0 Trong . thiệu Trong bài giảng này, chúng tôi đề cập đến các bài toán liên quan đến việc xác định tọa độ các đỉnh và viết phương trình các cạnh của tam giác (giải tam giác) . Để làm tốt các bài toán này,. BÀI GIẢNG ÔN THI VÀO ĐẠI HỌC CÁC BÀI TOÁN VỀ TAM GIÁC THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐH XÂY DỰNG DĐ: 0983070744 website: violet.vn/phphong84 1 Các bài toán về tam giác A. Giới. . Bài tập BÀI GIẢNG ÔN THI VÀO ĐẠI HỌC CÁC BÀI TOÁN VỀ TAM GIÁC THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐH XÂY DỰNG DĐ: 0983070744 website: violet.vn/phphong84 5 Bài 1. Cho tam giác ABC