Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 24 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
24
Dung lượng
480,96 KB
Nội dung
1 MỞ ĐẦU Tính cấp thiết của đề tài luận án Các ứng dụng hiện nay của điều khiển dự báo thường yêu cầu các quá trình vận hành trong một dải làm việc lớn và gần với các điều kiện biên, đồng thời phải thỏa mãn các ràng buộc cũng như phải đạt được chất lượng gần tối ưu. Đây là những lí do mà điều khiển dự báo phi tuyến được quan tâm đặc biệt trong những năm gần đ ây với rất nhiều bước tiến ở cả lĩnh vực lý thuyết và ứng dụng. Ngoài ra, năng lực ngày càng tăng của các máy tính hiện có cũng như sự phát triển không ngừng của các phương pháp giải số dành riêng cho điều khiển dự báo phi tuyến đã mang đến khả năng ứng dụng của nó cả cho các hệ động học biến đổi nhanh. Điều này dẫn đến mộ t loạt các sự phát triển mới đầy hấp dẫn, bên cạnh các thách thức mới trong lĩnh vực điều khiển dự báo hệ phi tuyến trong đó phải tính tới cả việc đưa ra được lời chứng minh tính thỏa mãn nguyên lý tách của hệ kín phản hồi đầu ra khi ghép chung bộ điều khiển dự báo phản hồi trạng thái phi tuyến với bộ quan sát trạng thái, cũng như phải xây d ựng được thuật toán để giải bài toán tối ưu khi có ràng buộc về tín hiệu điều khiển, …. Các thách thức này cũng chính là động cơ thúc đẩy đề tài nghiên cứu của luận án. Mục tiêu và nhiệm vụ của luận án Mục tiêu của luận án là giải quyết bài toán "Điều khiển dự báo phản hồi đầu ra theo nguyên lý tách cho hệ phi tuyến", với hai nhiệm vụ chính, bao gồm: − Sử dụng hàm mục tiêu có cấu trúc biến đổi trong việc xây dựng bộ điều khiển dự báo phản hồi trạng thái nhằm mở rộng tính linh hoạt của bộ điều khiển và hơn nữa là có thể chuyển được bài toán điều khiển có điều kiện ràng buộc cho tín hiệu điều khiển cũng như trạng thái về thành bài toán không ràng buộc. − Xây dựng bộ điều khiển dự báo phản hồi đầu ra cho hệ phi tuyến trên cơ sở sử dụng bộ quan sát trạng thái và khảo sát tính ổn định của hệ thu được. Phạm vi và đối tượng nghiên cứu của luận án Phạm vi của luận án là nghiên cứu và đưa ra các kết quả cho điều khiển dự báo hệ phi tuyến nói chung và hệ song tuyến (lớp hệ phi tuyến đặc biệt và phổ biến trong công nghiệp) nói riêng. Các bài toán rất phổ biến hiện nay trong điều khiển dự báo, chẳng hạn như bài toán ước lượng trạng thái hay bài toán ổn định hóa và bám ổn định quỹ đạo đặt cũng sẽ được giải quyế t. Tính ổn định của hệ điều khiển dự báo phản hồi trạng thái và phản hồi đầu ra được luận án chứng minh dựa trên lý thuyết ổn định Lyapunov và ổn định ISS (Input-to-State Stability). Đặc biệt, với hệ song tuyến, khi được coi là vô số các hệ tuyến tính tham số hằng, thì lời giải của bài toán tối ưu trong điều khiển dự báo có xét đến điều kiện ràng buộ c của tín hiệu điều khiển lại có thể được phát triển từ các kết quả quen thuộc của bài toán LQR (Linear Quadratic Regulator) hay phương pháp quy hoạch động của Bellman nhờ việc sử dụng hàm mục tiêu có tham số biến đổi. Cấu trúc và những đóng góp của luận án Luận án được bố cục với 4 chương chính: phần mở đầu, 4 chương trình bày các nội dung và kết quả nghiên cứu, phần cuối là kết luận và kiến nghị. Luận án đã có các đóng góp cụ thể như sau: − Phát biểu được một tiêu chuẩn ổn định cho hệ điều khiển dự báo phản hồi trạng thái hệ phi tuyến mà ở đó hàm mục tiêu có cấu trúc biến đổi trong cửa sổ dự báo cũng như theo sự dịch chuyển của cửa sổ dự báo trên trục thời gian. − Xây dựng được bộ điều khiển dự báo phản hồi trạng thái cho hệ song tuyến và chứng minh được tính ổn định tiệm cận của hệ kín thu được. − Xây dựng được thuật toán quan sát trạng thái tối ưu cho hệ phi tuyến và điều kiện đủ để bộ quan sát đó trở thành bộ quan sát có khoảng thời gian quan sát hữu hạn FTO (Finite Time Observer). 2 − Phát biểu được điều kiện cần và đủ để hệ song tuyến là quan sát đều và xây dựng thuật toán quan sát trạng thái tối ưu cho hệ song tuyến. − Đưa ra điều kiện đủ để bộ điều khiển dự báo phản hồi đầu ra, xây dựng trên nền nguyên lý tách, làm hệ phi tuyến nói chung và hệ song tuyến nói riêng là ổn định tiệm cận (với bộ quan sát FTO) và ổn định ISS (khi luôn tồ n tại sai lệch quan sát). CHƯƠNG 1: GIỚI THIỆU CHUNG 1.1 Động cơ thúc đẩy đề tài 1.1.1 Hệ điều khiển dự báo Điều khiển dự báo dựa theo mô hình (Model Predictive Control - MPC), hay gọi tắt là điều khiển dự báo, đề cập đến một họ các phương pháp điều khiển sử dụng một mô hình toán học để dự báo tín hiệu ra của đối tượng (quá trình) trong tương lai. Tại mỗi thời điểm trích mẫu, thuật toán điều khiển dự báo sẽ tối ưu đáp ứng của h ệ bằng cách tính toán ra dãy tín hiệu điều khiển tương lai. Chỉ có thành phần đầu tiên của dãy tín hiệu điều khiển tối ưu này được đưa tới đối tượng và toàn bộ chu trình tính toán sẽ được lặp lại tại các thời điểm trích mẫu tiếp theo [12,33,48]. Như vậy bộ điều khiển dự báo gồm có ba khâu chính: − Khâu mô hình dự báo. Khâu này có nhiệm vụ xác định được dãy các giá trị đầu ra tương lai thuộc cửa sổ dự báo hiện tại, tức là cửa sổ dự báo [ ) ,kk N + tính từ thời điểm hiện tại k . Kết quả đầu ra của khâu dự báo này là giá trị đầu ra tương lai , 0,1, , 1 ki iN + =−…y dưới dạng các hàm phụ thuộc tín hiệu đầu vào tương lai trong cùng cửa sổ dự báo − Khâu hàm mục tiêu. Đây là khâu xây dựng hàm mục tiêu: ()J U với () 11 ,, , kk kN col ++− =U …uu u để với nghiệm tối ưu của: * arg min ( ) N U J ∈ = U U U (1.2) ta sẽ có được chất lượng điều khiển mong muốn, trong đó N U là tập các giá trị tín hiệu điều khiển thích hợp. − Khâu tối ưu hóa là khâu thực thi bài toán tối ưu (1.2) nhờ một phương pháp tối ưu hóa cụ thể. Trong số các giá trị tín hiệu điều khiển tối ưu tìm được trong cửa sổ dự báo hiện tại: () *** * 11 ,, , kk kN col ++− =U …uu u thì chỉ có phần tử đầu tiên của nó: () ** ,, , k I= ΘΘ U …u được sử dụng, trong đó I là ký hiệu của ma trận đơn vị và Θ là ma trận có tất cả các phần tử bằng 0. Tại thời điểm 1k + tiếp theo, chu trình trên được thực hiện lặp lại. Với ưu điểm nổi trội là điều khiển được những hệ thống (quá trình) có các ràng buộc về tín hiệu điều khiển (và còn có thể cả về trạng thái) nên điều khiển dự báo đã được nghiên cứu, phát triển rất nhanh. Một tổng quan tương đối đầy đủ về các phương pháp điều khiể n dự báo tuyến tính này đã được nghiên cứu sinh trình bày trong tài liệu [3]. Tuy nhiên, có thể thấy các phương pháp điều khiển dự báo nêu trên đều tập trung chủ yếu cho bài toán điều khiển dự báo tuyến tính, trong khi các đối tượng trong thực tế đều ít nhiều mang tính phi tuyến và hàm mục tiêu thường không ở dạng toàn phương cũng như các ràng buộc thường gặp là phi tuyến. Bởi vậy, điều khiển dự báo hệ phi tuyế n đã được đặc biệt quan tâm và nghiên cứu nhiều trong những năm gần đây. Đó cũng chính là một trong những động cơ thúc đẩy nghiên cứu đề tài " Điều khiển dự báo phản hồi đầu ra theo nguyên lý tách cho hệ phi tuyến" của luận án. 3 1.1.2 Các hướng nghiên cứu của luận án Luận án đã đặt ra hai hướng nghiên cứu chính, gồm: − Xây dựng bộ điều khiển dự báo phản hồi đầu ra cho hệ phi tuyến trên cơ sở sử dụng bộ quan sát trạng thái và khảo sát tính ổn định của hệ thu được. − Sử dụng hàm mục tiêu có cấu trúc biến đổi trong việc xây dựng bộ điều khiển dự báo phản hồi trạng thái để chuyển bài toán điều khiển có điều kiện ràng buộc cho tín hiệu điều khiển cũng như trạng thái về thành bài toán không ràng buộc. A) Về phản hồi đầu ra Thứ nhất là về hướng điều khiển phản hồi đầu ra. Mặc dù phát triển nhanh, song phần lớn các đóng góp mang tính lý thuyết của điều khiển dự báo hệ phi tuyến đều dựa trên giả thiết phải có đầy đủ thông tin về trạng thái bên trong của hệ. Giả thiết này thường không được thỏa mãn trong thực tế, do không thể đo được tất cả các biến trạng thái củ a đối tượng [17,36]. Một giải pháp cho vấn đề này là sử dụng một bộ quan sát trạng thái để ước lượng các biến trạng thái của đối tượng từ các tín hiệu vào/ra đo được rồi sau đó áp dụng các phương pháp điều khiển dự báo phản hồi trạng thái đã có, hay nói cách khác là chuyển bài toán phản hồi trạng thái thành bài toán phản hồi đầu ra [5]. Với những lý do trên, luận án sẽ tập trung giải quy ết bài toán quan sát trạng thái và bài toán điều khiển dự báo phản hồi đầu ra dựa trên quan sát trạng thái cho hệ phi tuyến . Hơn thế nữa, các phương pháp điều khiển phản hồi đầu ra dựa trên quan sát trạng thái cho các hệ phi tuyến nói chung và các hệ điều khiển dự báo nói riêng đều phải chỉ ra tính ổn định của hệ kín dựa trên nguyên lý tách. Thậm chí, các phương pháp điều khiển dự báo hệ tuyến tính cũng không đương nhiên thỏa mãn nguyên lý tách do sự có mặt của các điều kiện ràng buộc [18]. Theo các tài liệu [17,46] thì tính thỏa mãn nguyên lý tách có thể được chứng minh dựa trên ba xu hướng thiết kế sau: 1. Tách ( separation) 2. Bộ điều khiển tách ( controller separation) 3. Bộ quan sát tách ( observer separation) Việc lựa chọn một trong ba xu hướng thiết kế nêu trên nhằm tạo ra tính ổn định cho hệ thống điều khiển dự báo phản hồi đầu ra theo nguyên lý tách cũng chính là một trong những động cơ thúc đẩy đề tài. B) Về hàm mục tiêu có cấu trúc biến đổi Thứ hai là về khả năng chuyển bài toán điều khiển có ràng buộc thành bài toán điều khiển không ràng buộc thành bài toán điều khiển dự báo không ràng buộc nhờ sử dụng hàm mục tiêu có cấu trúc biến đổi. Xét lại hàm mục tiêu (1.3), nay được viết lại thành: () TT J =+UEEUUQR (1.4) với ( ) 11 (), (), , , , . kk N diag Q diag R col +− ===EQR …ee e Khi đó có thể nhận thấy với mô hình dự báo phi tuyến, do E là hàm phi tuyến của U , nên hàm mục tiêu (1.4) này không còn ở dạng toàn phương theo U , thậm chí không phải là hàm lồi, do đó chưa thể khẳng định được nghiệm * U của bài toán tối ưu (1.2) tìm được nhờ các phương pháp tối ưu hóa sẽ là nghiệm toàn cục. Để tìm nghiệm toàn cục của (1.2), ta cần tới phương pháp điều khiển tối ưu, chẳng hạn như phương pháp biến phân, hoặc quy hoạch động của Bellman [2], song các công thức tường minh xác định * U theo phương pháp điều khiển tối ưu này lại mới chỉ dừng lại cho trường hợp không ràng buộc, do đó không thể áp dụng được khi bài toán điều khiển dự báo có thêm các điều kiện ràng buộc cho tín hiệu điều khiển k u hoặc trạng thái k x . Tuy nhiên, nếu nhìn lại cấu trúc hàm mục tiêu (1.4) ta sẽ thấy: − Càng tăng R , điều kiện ràng buộc: 4 maxk u≤u (1.5) càng dễ được thỏa mãn. − Nhưng càng tăng R chất lượng bám tín hiệu mẫu k w đặt ở đầu vào càng xấu. Bởi vậy một ý tưởng dung hòa xuất hiện ở đây là ngay ban đầu (khi k nhỏ) ta chọn R đủ lớn để có U đủ nhỏ sao cho với nó có được điều kiện ràng buộc (1.5). Khi điều kiện ràng buộc (1.5) đã được thỏa mãn, ta sẽ giảm R để thông qua đó làm tăng thêm sự tham gia của thành phần sai lệch bám T EEQ trong ()J U nhằm làm giảm sai lệch bám sau này. Tương tự ta cũng có thể chọn Q đủ nhỏ ban đầu, sau đó tăng dần Q theo k . Với hai trường hợp thay đổi hai ma trận R hay Q theo thời gian k như trên, hàm mục tiêu gốc ban đầu (1.4) trở thành: () TT kk J =+UE EU UQR (1.6) và ta sẽ gọi hàm mục tiêu "linh hoạt" này là hàm mục tiêu có tham số biến đổi. Mở rộng hơn nữa, ta có thể thay (1.6) bởi hàm mục tiêu có cấu trúc biến đổi như sau: 1 0 () ( , ). N ki ki ki i Jg − ++ + = ∑ =U eu (1.7) Với hàm mục tiêu (1.7) có cấu trúc hàm (, ) ki ki ki g + ++ eu dưới dấu tổng thay đổi theo k một cách thích hợp, nghiệm bài toán tối ưu không ràng buộc: * arg min ( )J= U U được tìm nhờ các phương pháp điều khiển tối ưu (chẳng hạn nhờ các công thức nghiệm tường minh của biến phân hay quy hoạch động) cũng sẽ vẫn thỏa mãn điều kiện (1.5) của bài toán điều khiển dự báo. 1.2 Cơ sở lý thuyết 1.2.1 Tính ổn định Lyapunov Định nghĩa 1.1: Xét hệ phi tuyến tự trị (không bị kích thích), không dừng, cân bằng tại gốc tọa độ và có mô hình không bị kích thích : 1 (,) kk k + =xfx với (, ) ,k =00 f 0k∀≥. (1.9) Khi đó hệ sẽ được gọi là: a) Ổn định tại 0 k , nếu với mọi 0 ε > bao giờ cũng tồn tại ( ) 0 ,k δε sao cho quỹ đạo trạng thái tự do ( ) 0 , k k=Φ f xx của nó, tức là nghiệm của (1.9), với điều kiện đầu 0 ∈Ox , trong đó O là một miền hở nào đó chứa gốc tọa độ, thỏa mãn: ( ) 00 ,k δε <x ⇒ k ε <x , 0 kk∀≥ . b) Ổn định tiệm cận tại 0 k , nếu nó ổn định và còn có lim k k →∞ = 0x . 1.2.2 Tính ổn định ISS Khái niệm ổn định ISS liên quan tới hệ bất định, có mô hình không bị kích thích: 1 (,,) kkk k + =xfxd (1.10) trong đó k d là tín hiệu bất định, tác động không mong muốn vào hệ. Khái niệm này được hiểu như sau: Định nghĩa 1.3: Xét hệ phi tuyến không dừng (1.10) cân bằng tại gốc, tức là: (,,) , 0kk=∀≥00 0 f . 5 Hệ sẽ được gọi là ổn định ISS nếu tồn tại một hàm ( ) ,zk β thuộc lớp KL và một hàm ( ) z γ thuộc lớp K sao cho với mọi tín hiệu bất định k d thỏa mãn k ∞ < ∞d và mọi trạng thái đầu 0 x tùy ý, được hiểu là giá trị trạng thái của hệ khi 0 kk = , luôn có: ( ) ( ) ( ) 000 ,, , kk k kkk βγ ∞ ≤−+xxd x d . 1.2.3 Quy hoạch động của Bellman Định lý 1.3 [23]: Xét bài toán quy hoạch động dạng chuẩn: () 01 1 1 , , 0 (, ) ,(,,) min N kkk N Nkk k Jf N g k − + − = ∑ = ⎧ ⎪ ⎨ =+ → ⎪ ⎩ …uu xfxu xxu trong đó 0 x là trạng thái đầu cho trước, thì với ký hiệu: () 10 00 , , inf N BJ − = …uu x ta có với mọi N ∈N và 1, KN= … : () ()() 0 00 , , 0 inf , , , K K kk NK K k BgkBK − = ∑ ⎡ ⎤ =+ ⎢ ⎥ ⎣ ⎦ …uu xxux. (1.12) Ngoài ra nếu tồn tại dãy giá trị tín hiệu điều khiển tối ưu 01 , , N ∗ ∗ − …uu , và ứng với nó là dãy quỹ đạo trạng thái tối ưu 01 , , N ∗∗ − …xx, trong đó 0 ∗ = x 0 x , thì ta có: () () ( ) 00 0 ,, , K kk NK K k BgkBK ∗∗ − = ∑ =+xxu x. Hệ quả sau đây của định lý 1.3 khẳng định rằng đoạn cuối của dãy giá trị tín hiệu điều khiển tối ưu cũng là tối ưu với trạng thái đầu và cửa sổ dự báo thích hợp. Hệ quả 1.1 [23]: Nếu 01 , , N ∗∗ − …uu là dãy giá trị tín hiệu điều khiển tối ưu ứng với trạng thái đầu 0 x và cửa sổ dự báo 2N ≥ , thì ứng với mỗi 1, KN = … , dãy 1 , , KN ∗∗ − …uu cũng là dãy giá trị tín hiệu điều khiển tối ưu với trạng thái đầu K ∗ x và cửa sổ dự báo NK− . Áp dụng phương pháp quy hoạch động vào bài toán điều khiển dự báo phản hồi trạng thái với cửa sổ dự báo vô hạn, tức là xét bài toán điều khiển tối ưu: 1 1 ,, 0 (, ) (,, ) min kk ki ki ki kkiki k Jg ki + ++ + + ∞ ++ = ∑ = ⎧ ⎪ ⎨ =+→ ⎪ ⎩ …uu xfxu xu (1.13) ta có định lý về tính ổn định của hệ kín như sau. Định lý 1.4 [23]: Xét bài toán điều khiển tối ưu (1.13) cho hệ thống được mô tả bởi: () 1 ,, kkk+ =xfxu (,)=00 0 f . Giả sử tồn tại các hàm 123 , , α αα ∞ ∈ K sao cho: () () () 12 , kk k Vk αα ≤≤xx x và ( ) 3 (,,) kk k gk α ≥xu x trong đó () () 0,min , kkk VkB J==xx . Hơn nữa, giả sử tồn tại luật điều khiển () kk ∗ ux với k ∗ u là phần tử đầu tiên của dãy giá trị tín hiệu điều khiển tối ưu, thì luật điều khiển này sẽ làm cho hệ kín: () () 1 , kkkk ∗ + =xfxux ổn định tiệm cận theo nghĩa ở định nghĩa 1.1. 6 CHƯƠNG 2: TỔNG QUAN VỀ ĐIỀU KHIỂN DỰ BÁO PHẢN HỒI ĐẦU RA DỰA TRÊN QUAN SÁT TRẠNG THÁI 2.1 Điều khiển dự báo phản hồi đầu ra dựa trên quan sát trạng thái cho hệ tuyến tính 2.1.1 Điều khiển dự báo bền vững hệ tuyến tính sử dụng bộ quan sát tựa Luenberger Thuật toán này được đưa ra bởi Wan và Kothare [50] để làm ổn định các đối tượng (quá trình) được mô tả bởi mô hình tuyến tính bất định có các tham số nằm trong một siêu diện hoặc mô hình tuyến tính bất định có cấu trúc. 2.1.2 Điều khiển dự báo bền vững hệ tuyến tính sử dụng bộ quan sát Moving Horizon Khác với xu hướng thiết kế độc lập bộ điều khiển phản hồi trạng thái và bộ quan sát trạng thái như ở [50] thì các kết quả được công bố trong [36,49] lại đại diện cho nhóm phương pháp thiết kế bộ quan sát trạng thái trước rồi đưa sai lệch quan sát vào bài toán thiết kế bộ điều khiển dự báo. 2.2 Điều khiển dự báo phản hồi đầu ra dựa trên quan sát trạng thái cho hệ phi tuyến 2.2.1 Điều khiển dự báo hệ phi tuyến sử dụng bộ quan sát High Gain Tư tưởng cơ bản của phương pháp thiết kế bộ điều khiển dự báo phản hồi đầu ra cho hệ nêu trong [19] là thiết kế bộ điều khiển phản hồi trạng thái không liên tục có tính bền vững với nhiễu, sau đó thiết kế bộ quan sát trạng thái với sai lệch quan sát đủ nhỏ để có thể coi nó là nhiễu tác động lên hệ kín. 2.2.2 Điều khiển dự báo hệ phi tuyến sử dụng bộ quan sát mở rộng Trong tất cả các phương pháp kể trên, khái niệm ổn định của hệ thống điều khiển dự báo phản hồi trạng thái cũng như phản hồi đầu ra đều được hiểu theo nghĩa ổn định Lyapunov. Tài liệu [47] đã đề xuất một phương pháp thiết kế bộ điều khiển dự báo phản hồi đầu ra cho hệ phi tuyến có nhiễu và sử dụ ng khái niệm ổn định ISS để chứng minh tính ổn định tại (lân cận) gốc tọa độ của hệ kín phản hồi đầu ra 2.3 Đánh giá chung 2.3.1 Đánh giá các phương pháp điều khiển hiện có Chất lượng của hệ kín khi áp dụng các phương pháp thiết kế bộ điều khiển dự báo tuyến tính bền vững đã nêu ở các mục 2.1.1 và 2.1.2 sang cho hệ phi tuyến sẽ ít nhiều bị giảm đi do sai số của việc tuyến tính hóa là không tránh khỏi. Bên cạnh đó, nếu có thể tìm được một phép đổi trục để biểu diễn các hệ phi tuyến sang dạng chuẩn thì ta có thể sử d ụng các phương pháp ở mục 2.2.1 hoặc mục 2.2.2. Trong khi mục 2.2.1 đề xuất sử dụng bộ quan sát High Gain với ưu điểm của bộ quan sát này là khả năng loại bỏ nhiễu [28] thì mục 2.2.2 lại đưa ra bộ quan sát mở rộng để tận dụng được thông tin của tín hiệu điều khiển trong tương lai vốn chỉ có được ở điều khiển dự báo. Tuy nhiên ở cả hai phươ ng pháp trên, khả năng tồn tại phép đổi trục cũng như cách xác định phép đổi trục như thế nào để có thể chuyển một hệ phi tuyến bất kỳ về dạng mô hình chuẩn vẫn còn là bài toán còn bỏ ngỏ. 2.3.2 Định hướng của luận án Luận án này sẽ đưa ra một phương pháp điều khiển dự báo phản hồi đầu ra theo nguyên lý tách cho hệ phi tuyến. Dựa trên nền tảng của điều khiển dự báo là tối ưu hóa và giả thiết hệ là quan sát đều, luận án đề xuất một bộ quan sát trạng thái tối ưu để kết hợp với bộ điều khiển phản hồi trạng thái nhằm tạ o ra một hệ thống phản hồi đầu ra ổn định. 7 Trước hết, tính ổn định tiệm cận của một lớp các bộ điều khiển dự báo phản hồi trạng thái sử dụng hàm mục tiêu có cấu trúc biến đổi sẽ được khảo sát. Tiếp theo, một điều kiện đủ cho tính ổn định của hệ ghép bộ điều khiển dự báo phản hồi trạng thái này với bộ quan sát trạng thái tối ưu theo nguyên lý tách s ẽ được chứng minh. Hơn nữa, luận án cũng sẽ chỉ ra các điều kiện đủ để bộ quan sát tối ưu trở thành bộ quan sát FTO, là bộ quan sát rất ít được đề cập đến trong điều khiển dự báo. Tất cả các kết quả trên sẽ được áp dụng cho riêng hệ song tuyến. CHƯƠNG 3: ĐIỀU KHIỂN DỰ BÁO PHẢN HỒI ĐẦU RA VỚI BỘ QUAN SÁT TRẠNG THÁI TỐI ƯU CHO HỆ PHI TUYẾN 3.1 Điều khiển dự báo phản hồi trạng thái hệ phi tuyến 3.1.1 Phản hồi trạng thái với hàm mục tiêu có cấu trúc biến đổi Xét các đối tượng (quá trình) phi tuyến được mô tả bởi mô hình trạng thái không liên tục: 1 (, ) kkk+ =xfxu (3.1) trong đó (,)⋅⋅ f là vector hàm phi tuyến khả vi hai lần và (,) . = 00 0 f Xét hệ (3.1) ở thời điểm k hiện tại. Độ rộng của cửa sổ dự báo N là cố định và cho trước. Ký hiệu 001 {} { , , } l ∞ = …www là dãy quỹ đạo mẫu mong muốn cho trước mà trạng thái của hệ cần phải bám theo. Do 1 , +kk ww và ref k u là biết trước nên mô hình (3.1) hoàn toàn viết lại được theo sai lệch kkk =−exw và ref kk k =−vuu : / 11 (, ) (,). ref kkkk k kk k ++ =+ + −=efewvuwfev (3.3) Mô hình mô tả sai lệch bám (3.3) này cũng sẽ được sử dụng để dự báo các giá trị sai lệch bám ki+ e trong khoảng cửa sổ dự báo [ ) ,kk N + . Như vậy với mô hình (3.3), bài toán điều khiển bám ổn định đã được chuyển về bài toán điều khiển ổn định. Để tránh việc sử dụng quá nhiều ký hiệu, từ nay về sau, ta vẫn sử dụng ký hiệu k u thay vì k v cho tín hiệu vào ở bài toán điều khiển bám. Khi đó, tương ứng với bài toán điều khiển bám, hàm mục tiêu cho việc xây dựng bộ điều khiển dự báo phản hồi trạng thái cũng có cấu trúc phụ thuộc theo sai lệch k e tức là: () 1 0 (, ) N kkN kikiki i Jf g − ++++ = ∑ =+eeu (3.4) trong đó () , ki g + ⋅⋅ và () f ⋅ là các hàm xác định dương với ( ) f ⋅ là điều kiện ràng buộc cho điểm cuối. Đặc biệt trong hàm mục tiêu (3.4) thì ( ) , ki g + ⋅ ⋅ có cấu trúc thay đổi theo i chứ không cố định như được giả thiết ở các công trình trước [23,47]. Chính vì lý do đó nên ta gọi k J là hàm mục tiêu có cấu trúc biến đổi. Ghép chung mô hình sai lệch (3.3) trên với hàm đo tổng các giá trị sai lệch thuộc khoảng dự báo [, )+kk N vừa có, ta sẽ được bài toán tối ưu động có cấu trúc giống với bài toán quy hoạch động dạng chuẩn, phục vụ việc xác định tín hiệu điều khiển tối ưu * k u tại thời điểm k , như sau: () 1 / 1 1 , , 0 (, ) (, ) min. kkN ki ki ki N kkN kikiki i Jf g +− ++ + + − ++++ = ∑ ⎧ = ⎪ ⎨ =+ → ⎪ ⎩ …uu efeu eeu (3.7) Thậm chí vì nhiều lý do mà trong điều khiển dự báo người ta cần đến cả các bài toán tối ưu có hàm mục tiêu k J không bắt buộc ở dạng (3.4) mà tổng quát hơn sẽ là hàm nhiều biến: 8 () 11 1 1 (, , , , , , ) kkN kkkk kNkN Jf F ++++−+− =+ …eeueueu (3.8) mà ở đó khi sử dụng ký hiệu: 11 (, , , , ), 0,, 1 i i ki ki kN kN FF i N + + +− +− ==−……eu e u (3.9) là thành phần hàm con trong 0 FF= , thì i F có thể tách được thành dạng tổng: 1 (, ) ikikiki i Fg F ++ + + =+eu (3.10) hoặc dạng tích: 1 (, ) . ikikikii Fg F ++ + + =⋅eu (3.11) Những hàm mục tiêu dạng (3.8) sẽ được gọi là hàm mục tiêu có cấu trúc biến đổi nếu như nó thỏa mãn nguyên lý tối ưu đối với hàm mục tiêu k J có cấu trúc biến đổi. Cụ thể hơn, khi ký hiệu hàm Bellman tại i là: 1 , , () min kNki iki i BF ++− + = …uu e (3.12) thì vẫn phải có được: [] 11 ()min (, ) ( ) ki iki kiki ki i ki Bg B + +++++++ =+ u eeue (3.13) nếu dạng tách được là (3.10), hoặc: [] 11 ()min (, ) ( ) ki iki kiki ki i ki Bg B + +++++++ =⋅ u eeue (3.14) nếu dạng tách được là (3.11). Kết luận trên sẽ được trình bày dưới dạng hệ quả 3.1 của định lý 1.3 như sau. Hệ quả 3.1: Xét hàm k J dạng tổng quát (3.8) được định nghĩa trong toàn bộ khoảng dự báo [, )kk N+ . Ký hiệu i F là thành phần của k J xác định trong khoảng con [, )kikN++ cho bởi (3.9). Nếu hàm i F đó tách được theo một trong hai dạng (3.10) hoặc (3.11) và (, )0 ki ki ki g ++ + ≥eu thì hàm Bellman (3.12) tại i sẽ tương ứng thỏa mãn (3.13) hoặc (3.14). 3.1.2 Phân tích tính ổn định Với cửa sổ dự báo là vô hạn, tức ,N = ∞ thì khả năng ổn định của hệ kín là rất lớn [17], do đó ta có thể biến đổi bài toán quy hoạch động (3.7) với cửa sổ dự báo hữu hạn thành bài toán có cửa sổ dự báo vô hạn như sau: 1 / 1 1 , , 0 (, ) (, ) ( ) min kkN ki ki ki N kkikikiNkN i Jg B +− ++ + + − ++ + + = ∑ ⎧ = ⎪ ⎨ =+→ ⎪ ⎩ …uu efeu eu e (3.15) trong đó () NkN B + e được giả định là hàm Bellman tại bước N trong cửa sổ dự báo vô hạn [, ]k ∞ : , ()min (,). kN NkN kikiki iN Bg + ∞ ++++ = ∑ = …u eeu Bộ điều khiển dự báo làm việc theo vòng lặp. Tại mỗi vòng lặp nó thực hiện tìm nghiệm bài toán tối ưu (3.15). Để tiện cho việc trình bày sau này, ta sẽ sử dụng ký hiệu (,) k Vke để chỉ giá trị ,mink J của bài toán tối ưu (3.15) ở từng vòng lặp k đó. Như vậy, ở mỗi vòng lặp k thì (,) k Vke chính là hàm Bellman của bài toán tối ưu động (3.15) ứng với 0i = : 0,min (,) () . kkk VkB J==ee 9 Hệ quả 3.2: Nếu hàm Bellman giả định () NkN B + e trong (3.15) được chọn tương ứng với khoảng thời gian còn lại [] ,N ∞ sao cho ở tất cả các vòng lặp k luôn có: () () 12 (,) kk k Vk αα ≤≤ee e (3.16) và hàm (, ) kk k g eu trong dấu tổng của k J thỏa mãn: () * 3 (, ()) kk kk k g α ≥eue e (3.17) trong đó 123 , , α αα ∈K , thì * () kk ue của bộ điều khiển dự báo sẽ làm hệ sai lệch (3.3) ổn định tiệm cận. 3.2 Quan sát trạng thái hệ phi tuyến Để sử dụng được bộ điều khiển dự báo phản hồi trạng thái ở mục 3.1 thì rõ ràng phải có điều kiện là tất cả các biến trạng thái nằm bên trong hệ là đo được. Tuy nhiên trong nhiều ứng dụng thực tế, thông tin về trạng thái của hệ không thể đo được đầy đủ mà chỉ có tín hiệu ra của hệ là đo được: (, ). kkk =yhxu (3.19) Do đó để áp dụng được các phương pháp điều khiển dự báo phản hồi trạng thái đã có, vector trạng thái k x của hệ phải được ước lượng từ vector tín hiệu ra k y đo được và vector tín hiệu vào k u đã biết nhờ sử dụng một bộ quan sát trạng thái thích hợp. 3.2.1 Các vấn đề chung của quan sát trạng thái Gộp các phương trình (3.1) và (3.19), ta có đối tượng (quá trình) phi tuyến không liên tục: 1 (, ), (, ). kkk kkk + = = xfxu yhxu (3.20) Định nghĩa 3.1 [9,25,4]: Hệ (3.20) được gọi là quan sát được, nếu mọi giá trị trạng thái 0 x của nó là xác định được từ M giá trị đo được k u , k y , 0,1, , 1kM = −… của hệ. Để làm rõ hơn nữa định nghĩa trên, ta ký hiệu: 0 (,), 0,1, , 1 k kk M=Φ = − U … f xx (3.21) là nghiệm phương trình sai phân trong mô hình (3.22) của hệ (phương trình thứ nhất), ứng với dãy giá trị tín hiệu vào: 01 1 {,, , } M − = …uu uU (3.22) và 0 x là trạng thái đầu. Với ký hiệu (3.21) này và do k u đã có trong U nên tín hiệu đầu ra của hệ (3.20) sẽ chỉ còn phụ thuộc vào trạng thái đầu 0 x và dãy tín hiệu đầu vào U cho ở công thức (3.22), tức là: () ( ) / 00 (, ) (,), (,). kkk k kk==Φ Φ ff yhxu h x u h x UU (3.23) Tiêu chuẩn kiểm tra tính quan sát được Với các định nghĩa nêu trên, thì khi viết chung (3.23) cho 0,1, , 1kM = −… cũng như thay 0 x bởi x thành: 10 () () () / / / (,0) (,1) () (, 1) T M ⎛⎞ Φ ⎜⎟ ⎜⎟ Φ ⎜⎟ = ⎜⎟ ⎜⎟ ⎜⎟ Φ− ⎝⎠ f f f hx hx xx hx U U U U (3.25) trong đó U được xem là tham số của ánh xạ ()T x U , thì hệ sẽ là quan sát được nếu tồn tại ít nhất một số nguyên dương M và một dãy tín hiệu điều khiển U theo (3.22) để ánh xạ ()T x U cho bởi (3.25) là nội xạ (injective). Nếu ()T x U còn có thêm tính chất là ánh xạ trơn, thì nó sẽ là nội xạ khi và chỉ khi (theo [29]): rank , T n. ∂ =∀ ∂ x x U (3.26) Bởi vậy ta suy ra được các tiêu chuẩn sau: 1) Hệ (3.20) với các vector hàm trơn (,), (,) ⋅ ⋅⋅⋅ f h sẽ quan sát được khi và chỉ khi tồn tại tham số U để có (3.26). 2) Hệ (3.20) với các vector hàm trơn (,), (,) ⋅ ⋅⋅⋅ f h sẽ là quan sát đều khi và chỉ khi (3.26) đúng với mọi tham số U . 3.2.2 Xây dựng bộ quan sát trạng thái tối ưu Luận án đã xây dựng bộ quan sát trạng thái tối ưu làm việc theo nguyên tắc như sau. Tại thời điểm hiện tại 1kM+− bộ quan sát có nhiệm vụ xác định trạng thái k x ở thời điểm k trước đó của hệ (3.20) từ M các giá trị tín hiệu vào ra ki + u , ki + y , 0,1, , 1iM = −… vừa đo được trong cửa sổ quan sát [, )kk M+ . Có thể thấy khi đã có k x thì dựa vào mô hình (3.20) của hệ ta cũng có kM+ x . Sau khi đã có k x ở thời điểm k và hệ chuyển sang thời điểm tiếp theo 1k + , chu trình quan sát trên sẽ được lặp lại để có 1k + x với cửa sổ quan sát [1, )kkM + + . Như vậy, bộ quan sát này sẽ dịch chuyển tương ứng từng bước từ [, )kk M + tới [1, 1)kkM + ++ , 0,1, k = … . Rõ ràng để có thể quan sát được theo nguyên tắc làm việc như vậy, hệ phải là quan sát đều và độ rộng M của cửa sổ quan sát phải đủ lớn để ánh xạ ()T x U ở công thức (3.25) là nội xạ. Gọi k x là giá trị trạng thái quan sát được ở thời điểm k . Sử dụng ngay mô hình (3.20) của hệ làm mô hình quan sát: 11 (, ) ki ki ki++−+− = xfxu ta sẽ có: ( ( )) ) 11 11 11 (, ) (, ), , , (,, , , ) (,) ki ki ki kk k ki ii kkk ki ki ++−+− ++− ++− = = == … xfxu ff fxu u u f xuu u fxU (3.27) trong đó i U là ký hiệu dãy hữu hạn của i các phần tử: 11 {, , , }. ikk ki++− = …uu uU Từ những giá trị trạng thái quan sát này ta có được sai lệch quan sát i ε tại thời điểm ki + : [...]... (4.44) KẾT LUẬN VÀ KIẾN NGHỊ Những vấn đề đã được giải quyết Các kết quả nghiên cứu mở rộng của luận án về điều khiển dự báo phản hồi đầu ra cho hệ phi tuyến có thể được tóm tắt như dưới đây: − Tiêu chuẩn ổn định cho hệ điều khiển dự báo phản hồi trạng thái hệ phi tuyến mà ở đó hàm mục tiêu có cấu trúc biến đổi trong cửa sổ dự báo cũng như theo sự dịch chuyển của cửa sổ dự báo trên trục thời gian (hệ quả... phép gán sau lần lượt với i = 0,1,…, M − 2 : u[i ] := u[i + 1], y[i ] := y[i + 1] d) Gán k := k + 1 rồi quay lại bước a) 3.3 Tính ổn định của hệ điều khiển dự báo phản hồi đầu ra theo nguyên lý tách với hàm mục tiêu có cấu trúc biến đổi Hình 3.7 dưới đây mô tả nguyên lý làm việc của bộ điều khiển dự báo phản hồi trạng thái kết hợp với bộ quan sát tối ưu để trở thành bộ điều khiển dự báo phản hồi đầu ra. .. bộ điều khiển dự báo phản hồi đầu ra, xây dựng trên nền nguyên lý tách, làm hệ phi tuyến nói chung và hệ song tuyến nói riêng là ổn định tiệm cận với bộ quan sát FTO (hệ quả 3.3, định lý 3.3 và 4.4) và ổn định ISS (định lý 3.4) Kiến nghị Như đã được đề cập ở chương 4, luận án đã nêu lên một bài toán mở cần được nghiên cứu tiếp theo là xác định tham số hàm mục tiêu cho bộ điều khiển dự báo phản hồi. .. (4.2) Dựa trên các kết quả đóng góp của luận án ở chương 3, chương này sẽ phát triển thêm một số kết quả về điều khiển dự báo phản hồi đầu ra dựa trên bộ quan sát tối ưu cho riêng lớp hệ song tuyến mô tả bởi cả hai dạng (4.1) và (4.2), trong đó hàm mục tiêu xây dựng cho bộ điều khiển dự báo là những hàm có tham số biến đổi 14 4.1 4.1.1 Điều khiển dự báo phản hồi trạng thái hệ song tuyến Thiết kế bộ điều. .. làm cho hệ ổn định như ở mục 4.1.1 Sử dụng mô hình (4.34) thì ta đã xây dựng được bộ quan sát trạng thái tối ưu như ở mục 4.2.2 Thuật toán điều khiển phản hồi đầu ra khi kết hợp bộ điều khiển dự báo phản hồi trạng thái với cửa sổ dự báo vô hạn và bộ quan sát trạng thái tối ưu có cấu trúc như sau và Thuật toán 4.4: (Điều khiển phản hồi đầu ra theo nguyên lý tách) 1) Chọn cửa sổ quan sát M và khai báo. .. tuyến phản hồi đầu ra theo nguyên lý tách Để khẳng định được tính ổn định của hệ điều khiển dự báo phản hồi đầu ra cho hệ song tuyến bằng lý thuyết và thực nghiệm, ta xét hệ song tuyến mô tả được dưới cả hai dạng sau: ⎧xk +1 = A(xk )xk + B (xk )uk , (4.33) ⎨ yk = C (uk )xk , ⎩ ⎧xk +1 = A/ (uk )xk , (4.34) ⎪ ⎨ ⎪ yk = C (uk )xk ⎩ Với mô hình (4.33) thì ta đã xây dựng được bộ điều khiển dự báo phản hồi trạng... 4.10: Tín hiệu điều khiển u cho ví dụ 4.3 4.4 4.4.1 Tóm tắt chương và các mở rộng Tóm tắt chương Trong chương này, một phương pháp điều khiển dự báo sử dụng phản hồi đầu ra theo nguyên lý tách cho hệ song tuyến đã được trình bày 4.4.2 Các mở rộng Ràng buộc theo từng thành phần của tín hiệu điều khiển Việc thay đổi Rk để đảm bảo điều kiện ràng buộc cho độ lớn của vector tín hiệu điều khiển uk = (u1... Thực thi uk = K 0xk cho đối tượng rồi gán k := k + 1 và quay lại bước 2 15 4.1.2 Tính ổn định của hệ điều khiển dự báo phản hồi trạng thái Để đảm bảo bộ điều khiển thiết kế theo thuật toán 4.1 làm ổn định hệ song tuyến, luận án đưa ra định lý sau: Định lý 4.2: Trong bài toán điều khiển dự báo hệ song tuyến (4.1) với Qk , Rk của hàm mục tiêu (4.5) tương ứng là các ma trận đối xứng bán xác định dương và... Bộ điều khiển dự báo phản hồi trạng thái hệ song tuyến làm cho hệ kín thu được là ổn định tiệm cận (định lý 4.1 và 4.2) − Thuật toán quan sát trạng thái tối ưu cho hệ phi tuyến và điều kiện đủ để bộ quan sát đó trở thành bộ quan sát FTO (định lý 3.1 và 3.2) − Điều kiện cần và đủ để hệ song tuyến là quan sát đều và xây dựng thuật toán quan sát trạng thái tối ưu cho hệ song tuyến (định lý 4.3) − Điều. .. sổ điều khiển tiếp theo cửa sổ điều khiển hiện tại thời điểm hiện tại k k +1 k + M −1 k + M + N −1 uk , … , uk +M −1 * * * * uk , … , uk +M −1 , uk +M , … , uk +M +N −1 Hình 3.7: Nguyên tắc làm việc của bộ điều khiển dự báo phản hồi đầu ra theo nguyên lý tách Bộ điều khiển phản hồi đầu ra ở hình 3.7 làm việc dọc theo trục thời gian k = 0,1, … , cùng với cửa sổ điều khiển [k , k + M + N ) Cửa sổ điều . thành bộ điều khiển dự báo phản hồi đầu ra. Hình 3.7: Nguyên tắc làm việc của bộ điều khiển dự báo phản hồi đầu ra theo nguyên lý tách. Bộ điều khiển phản hồi đầu ra ở hình. riêng hệ song tuyến. CHƯƠNG 3: ĐIỀU KHIỂN DỰ BÁO PHẢN HỒI ĐẦU RA VỚI BỘ QUAN SÁT TRẠNG THÁI TỐI ƯU CHO HỆ PHI TUYẾN 3.1 Điều khiển dự báo phản hồi trạng thái hệ phi tuyến 3.1.1 Phản hồi trạng. vực điều khiển dự báo hệ phi tuyến trong đó phải tính tới cả việc đưa ra được lời chứng minh tính thỏa mãn nguyên lý tách của hệ kín phản hồi đầu ra khi ghép chung bộ điều khiển dự báo phản hồi