1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Thi thử Toán Chuyên ĐH Vinh NA 2011 lần 1, 2, 3

16 274 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 9,38 MB

Nội dung

c DAI Hec vINH Dt o sAr cnAr tUqrrlc t 6p tz LAN r, NAwI zorr T c THPT CrrurEX UOX: TOAX; Thdi gian I m bii: 180 phrtt r. prrn c c cHo rAr cA rff suvn e,o a$m') 7CiuI.(2,04i6m1 Chohdms6 v= !*'-(2**l)x2+(m+2)t ,'+ cOd6th! (C^), m ldthams6. '3 I . Khio s6t sy bi6n thi€n vi vE dd thi cua ham s5 d[ cho l<hi m = 2 . 2. Gpi A ld grao tti6m crla (C,) vdi trUc tung. T\m m sao cho ti6p tuy6n cua (C.) t1i A tAo vdi hai FUc tga itQ mQt tam gi6c c6 diQn tfch Ui"g 1. 3 yCAu trI" (2,S trfrenre) 1. Giei phuong trinh (x+ 4)' -6 = 13. 2. Gifliphuong tinh (2cosx- l)cotx = -l * srn.r, Ciu Itr. (1,0 Ci6m) Tfnh tfch phin / = dx. Cf,u IV. (f,O ai6m) Cho hinh hQp ABCD.A'B'C'D'c6 ttQ Oai dt ci cdc cenh <tdu Uang a>0 vi ZBAD=ZDAA'=LA'AB=600. Ggi M,N 6n luqt ld trung ttidm ctra AA',CD. Chfmg minh MN ll(A'C'D) vi tffi cosin cta g6c t4o bdi hai tludng rhing MN vd B'C. Clu V. (f,0 tli6m) Cho c6c s5 ttrgc E a, h, c. Tlm grd fri l6n nh6t cua bi6u th{rc r FCA P_ a2 + bz + c2 +l (a'+ lxb + 1)(c + l) n. G Tht sinh cht ituqc tdm mQt trong hai phdn $hin a, ho{c b) agn Cf,u VIa. (2,0 rf6n) 1. Trong mflt g vdi hQ W Ory, cho tti6m MQ;I) vi hai ttudng thing dr:3x-y-5=0,d2:x+y-4=0. Vi6tphuongtinht6ngqu6tcfia<firdng thing d ttiqua M vdctt dt, d2lin t4t A, B saocho 2IuIA-3MB =0. 2. Trong kh6ng gian vdi hg fiUc tga tlQ Oxyz, cho c6c di6m A(2;0i;0), H(l; l; l). Vi6t phuong tinh mflt ph[ng (P) di qt;n A,.F/sao cho (P) "ii( q, Oa lhn hqt Cr B, C th6a mfln diQn tich cta tam gi6c ABC Uing +G. Clu VIIa. (1,0 di6m) Cho t$p A=10,1,2,3,4,5,,6,7). H6i tU t$p ,qWp tlugc bao nhi€u s5 tp nhiOn chin gdm 4 cht s5 khdc nhau sao cho m5i s6 iffi ttAu l6n hon 2011. b. Theo chuolg trlnh Nf,ng cao Ctu VIb. (2,0 di6n) l. Trong m[t phlng vdi hQ W Ory, cho c6c Adm ;0; 2), B(4;3). Ilm tAa d0 didm \ M soeho ZM4B= 1350 vdkhodnecdchtir M dhnttu0nethEne AB hAns JiO . gian vdi hQ truc tqa d0 Oryz, cho c6c tti6m C(0; 0; 2), K(6;-3; 0). Vi6t phuong tinh di qua C, K sao cho (a) cfit Ox, q 4i A, B thlaman th6 tlch cria tf diQn OABC [3t*'+3' = lo 'lt. 1., l;logr x' -logr y = g lz I. Brc sd trd bdi vdo alc ngdy 26, 27/03201I. Dd nhdn thrqc bdi thi, tht sinh phdi nQp lqi phiiiu dtt thi cho BTC. 2. Kj lrhdo sdt chiit ttrong t,in 2 sd duqc t6 chftc vdo chiiu ngdy 16 vd ngdy 17/04/2011. Ddng ki du thi tqi Vdn phdng Tr THPT ChuyAn t* nSdy 26/03/201 I. www.MATHVN.com www.mathvn.com - Page1/16 DAp AN of IsAo sAr cn,ir LUqNG nfip pLAN 1, NAM zorr *fON: TOAN; Thiri gian lirm bhiz 180 phrit Ddn dn L; (1,0 itiam) -5x2+ +*+!. a J 0x+4. f x <ll2 <0<+ll2<x<2 vd'Y'>0€l - l*>2 khodng (a;lll) vil (2;+o), hAm nghich bi6n t€n (rtz;2). i C* 1,!: Hilm sd dpt clrc tl4i tpi x = | I 2, y"u = 5 I 4 vi tl4t cgc ti6u t?i x = 2, ltr = -t . c. Ed thi: Ed thi cit tryc tung tei A(0;rl3) I. (2'0 I \ olem, 2. fl,O ttidm Ta c6 A(0;1/3) vdy'= 4x2 -2(2m+ l)x * m +2. Suy ra y'(0) - m +2. Ti6p tuy6n cria tt6 thi tai A l d : y = (m + z)x + 1. Euhng th[ng d cht Oxtai atfr ; ol' l. (1,0 ili, DiAu kiQn: x3 +3x 2 0 e x > 0. Kl 1 *:Te :* li :9:::11* i:l:l f-:ff I ? : www.MATHVN.com www.mathvn.com - Page2/16 Nhfln thdy .r = 0 kh6ng thda min n€n (l) tucmg duong v&r x +t *i-6trf,J = 0 Dil f+1, =t,.t2ffi t^dugc t2 -6t+8=0<+t=2 holc t=4 (tntlk) 0,5' +)Vdi t=2 tac6 x=l,r-3. +)VOi t=4 tac6 r 8+ Jdi,tr=8 fiT. DiEu kiQn: sin.r * O,cosr*l hay x *kn . vci ailu kign d6 phuang trlnh da cho tuong rhrongot 2cos2r-cos'r-3 smr o (2cosr-lXcosx+l) - 2sinx- <+ (2cosx-3)sin2x= -2sin2 x sinr cosr - I 0'5 AzcOsI-3= -Zecos x=l O!= t! +k\t. 23 0'5 Tac6 I n & (2' I I 0 z', Vdi r= 0:+ t =lrvdi r=l=+ t =2. &=dt hay fo-gi2, -".*? 3ln2' 3 0'5 =2'g,d, : I '( t _ I t Khi d6!=rnzlt''-zs 5rnzl\r-5 t+sl #(,"F - sr - hr, . rrl',,=#rn* . 0'5 +) Gqi 'f l*ffing di€m DC'. Vl NI// CC' vil NI * I Cc'n€n NI - rhil'vil NI /l IV/4.'. ,2' : : +) vt AI,B',C //A',D nEn flC)*./(A'I, A'D) (r) ," -t\ ," ,r' Dry a 0'5 0'5 t2 A' D2 + A'.C',2 DC',z 5a2 oJi Suyra AI'=T- , =7+A't=7. Trong LA'"DI ta c6 cos '/.DA'I , A' D2-+.A'12 r DI, = -3,: -<-i- 2A'D.A'I 2J5 *";:33.,5 Tt (l) ve (2)suy ra cps(IAf, B'C) = | cos /.DA'l I = -:: = - _iN.__\___, _, r__ , ZJS l0 (2) V. (1'0 1 orem ,f e Ap uung;nrycosita c6 az +b' +cr +r>|to+el'* jtr+l)'> Ir"*b+c+l)2, (a +lXb + l[c * g < [' *lftl']' . : , : i ] fr www.MATHVN.com www.mathvn.com - Page3/16 Ps 2 - 54 Suy ra a+b+c+l (a+b+c+3)3 DAt t - a + b + c +l,t > I . Khi d6 ta c6 P <? 54 = t (r+ 2)t 0'5 Xdt him f (t) =i @ hen (L + co). Ta c6 f, (t) = -3.# = 0 <+ st = (t +2)2 el"='., f, (t) >0 <+ I < t < 4 Suy ra BBT DWa vdo BBT suy ra P <l . n6u ding thfc xiy ra khi vd chl khi 4 Vfly gi6 tri ltu nh6t cta P le 1, Uut dugc khi a - fi =c = I . 4' r ' ' i t'=4Qa=fi=c=l _f'(t) VIa. (2,0 tti6m) l, (1,0 itifimr -xr)' r- lzttu=3ffi I lzffi=-3ffi 3-xr)' (1) (2) 0'5 +) (1)e 2(xr-1; 3xr-6) -3(*r-l;3- xr)O{* =} lx, -z ( suy ra ^lit ;), BQ;z) .Suy ra phucrns nlnh d : x - y- 0 . *) (2)<+ 2(x, - 1; 3*r- 6) = -3(x , -li3 - xr)* fi; =1 Suy ra A(l;-Z), B(L;3). Suy ra phuongfitnh d:x-l = 0. 0'5 2. (1,0 ilidrn) Gid su Suy ra B(0; b; 0), C(0; 0; c) trong d6 bc * 0 (vt n6u bc: 0 thi tam (P)'*+ 4*' =l . vi H e(P) non 1*1= 1 \ / 2 b c -\-, - b c 2 s,u" =+lrzl,frll=; (bc)z +(2c)t + (2b)' - 4J6 e b'c' +4b gi6c ABC suy bi6n) (l) +4c2 =384 (2) 0'5 ii OFI b + c = u, bc =y . Khi d6 tU (1), (2) ta c6 ll ;i -Zu) = 384 b-c=4 [r=8, y=16 <+l . L, - -6,p = -12' suY ra fi = -c 3 + Jn S=-c 3- Jzl Vpy c6 3 m+t phing (P) thda mdn li (4)'*+ 1*1=t hay 2x+ y 244 +z-4-0, www.MATHVN.com www.mathvn.com - Page4/16 c 1tS,|*-+.:h=t hay 6x+(3 +Jn)y+(3- ^r7-t2=0" e)';.#.;E=l hay 6x+(3 -Jily+(3+ JnJ,-rZ=o. VfIa. (1'0 tli6m) Gii srl s6 thda mfln bdi todn li ab;A . Theo bdi ra ta c6 o. {2,3, 4, 5, e,l\; d e {0,2,4,61 . Xdt hai tudrng hqrp: TH I: d = 0 . Khi cl6 a c6 6 cdch chgn, b c6 6 c6ch chgn, c c6 5 c6ch chgn. $qv rq q6i 6x 6r | = t!9 tq6l 0'5 TIt 2: d . Q,4, 61. Khi d6 d c6 3 c6ch chgn, a c6 5 cdch chgn, D c6 6 c6ch chgn, c c6 5 c6ch chgn. Suy ra c6: 3 x 5 x 6 x 5 = 450 (s5). Vfy s5 c6c s6 thda mdn h 180 + 450 = 630. 0'5 vIb. (2,0 tli6m) l. (I,o itidm) Gii su M(x; y). Ke MH L AB . TU giethi6t suy ra MH=g ve LIyAH vu6ng c6n. 2 Suy ra AA,I = MHJ, =.,6. l3 50 0'5 D[t u - x-1, v - ! -2. Khi d6 ta c6 ( -1, v=-z -zrv-1 0'5 2. (1,0 iti6m) (1) fab=) <+ sb -9<*l Lob = -i Gi[ su A(a;O; 0), 8(0; b;0). Vl Vonu" > 0 n€n ab *0. Suyla @):I+ 4*1=r.vi Ke (a) n6n 9-l=r 'iiobzab il Oe,ACle fii diqn vudng t4i On€n Vouur= * OA.OB.OC = * I ol.t b I -3 (2) (3) 0'5 hw thi tn> 0,25 didm. 2x*2y+32-6=0 x+ 4y'-32+6=0 0r5 VIIb. (1'0 I \ otem) EidukiQn: x*0,y>0. iu"o |rcCr*' -log, y= 0 <+ log, lx I = logr y elxl= y e l:=:, * Vdi x = y, thay vio phuong hinh tht ntr6t ta dugc 32*' +3' = 10 c+ x = 0 (ktm). 0'5 * v6i vay n = 10 0'5 www.MATHVN.com www.mathvn.com - Page5/16 TRƯỜNG ĐẠI HỌC VINH ĐỀ KHẢO SÁT CHẤT LƯỢNG LỚP 12 LẦN 2, NĂM 2011 TRƯỜNG THPT CHUYÊN MÔN : TOÁN; Thới gian làm bài :180 phút I.PHẦN CHUNH CHO TẤT CẢ THÍ SINH(7 điểm) Câu I. (2,0 điểm) 1. Khảo sát sự biến thiên và vẽ đồ thị (H) hàm số x1 y x2     . 2. Tìm trên (H) các điểm A,B sao cho độ dài AB = 4 và đường thẳng AB vuông góc với đường thẳng y = x. Câu II(2,0 điểm) 1. Giải phương trình   sin 2x cos x 3 cos 2x sin x 0 2sin2x 3     . 2. Giải hệ phương trình 422 22 x4xy4y2 xy 2x 6y 23        . Câu III.(1,0 điểm).Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số   2 xln x 2 y 4x    và trục hoành. Câu IV.(1,0 điểm). Cho hình chóp S.ABCD có đáy là hình chử nhật với AB = a, AD = a2, góc giữa hai mặt phẳng (SAC) và (ABCD) bằng 60 0 . Gọi H là trung điểm của AB.Biết mặt bên SAB là tam giác cân tại đỉnh S và thuộc mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích khối chóp S.ABCD và bán kính mặt cầu ngoại tiếp hình chóp S.AHC Câu V.(1,0 điểm) Cho các số thực dương x, y, z thoả mãn 222 xyz2xy3(xyz)    . Tìm giá trị nhỏ nhất của biểu thức 20 20 Pxyz xz y2    . II. PHẦN RIÊNG (3,0 điểm) a. Theo chương trình chuẩn Câu VIa. (2,0 điểm) 1. Trong mặt phẳng toạ độ Oxy cho tam giác ABC có phương trình chứa đường cao và đường trung tuyến kẻ từ đỉnh A lần lượt có phương trình x – 2y – 13 = 0 và 13x – 6y – 9 = 0. Tìm toạ độ B,C biết tâm đường tròn ngoại tiếp tam giác ABC là I(-5;1). 2. Trong không gian toạ độ Oxyz cho điểm A(1;0;0), B(2;-1;2), C(-1;1;3) và đường thẳng x1 y z2 : 12 2    . Viết phương trình mặt cầu có tâm thuộc đường thẳng  , đi qua điểm A và cắt mặt phẳng (ABC) theo một đường tròn sao cho đường tròn có bán kính nhỏ nhất Câu VIIa. (1,0 điểm) Tìm số phức z thoả mãn z3i 1iz   và 9 z z  là số thuần ảo. b. Theo chương trình nâng cao Câu VIb(2,0 điểm ) 1. Trong mặt phẳng toạ độ Oxy cho đường tròn (C): 22 xy4x2y150  . Gọi I là tâm đường tròn (C). Đường thẳng  đi qua M(1;-3) cắt (C) tại hai điểm A và B. Viết phương trình đường thẳng  biết tam giác IAB có diện tích bằng 8 và cạnh AB là cạnh lớn nhất. 2. Trong không gian toạ độ Oxyz cho điểm M(1;-1;0) và đường thẳng x2 y1 z1 : 211     và mặt phẳng (P): x + y + z - 2 = 0. Tìm toạ độ điểm A thuộc mặt phẳng (P) biết đường thẳng AM vuông góc với  và khoảng cách từ A đến đường thẳng  bằng 33 2 . Câu VIIb.(1,0 điểm ) Cho các số phức z 1 , z 2 thoả mãn 12 1 2 zz z z 0   . Tính 44 12 21 zz A zz     www.MATHVN.com www.mathvn.com - Page6/16 TRƯỜNG ĐẠI HỌC VINH TRƯỜNG THPT CHUYÊN ĐÁP ÁN ĐỀ KHẢO SÁT CHẤT LƯỢNG LỚP 12 LẦN 2, NĂM 2011 MÔN: TOÁN; Thời gian làm bài: 180 phút Câu Đáp án Điểm 1. (1,0 điểm) a. Tập xác định: }.2{\D b. Sự biến thiên: * Chiều biến thiên: Ta có 2,0 )2( 1 ' 2    x x y . Suy ra hàm số đồng biến trên các khoảng )2;(   và );2(   . * Giới hạn: 1 2 1 limlim      x x y xx và 1 2 1 limlim       x x y xx ;       2 1 limlim 22 x x y xx và        2 1 limlim 22 x x y xx . * Tiệm cận: Đồ thị có đường tiệm cận ngang là 1   y ; đường tiệm cận đứng là 2x . 0,5 *Bảng biến thiên: x  2   'y   y  1 1   c. Đồ thị: Đồ thị hàm số cắt trục hoành tại (1; 0), cắt trục tung tại ) 2 1 ;0(  và nhận giao điểm )1;2( I của hai tiệm cận làm tâm đối xứng. 0,5 2. (1,0 điểm) Vì đường thẳng AB vuông góc với x y  nên phương trình của AB là m x y   . Hoành độ của A, B là nghiệm của phương trình mx x x     2 1 , hay phương trình 2,012)3( 2  xmxmx (1) Do phương trình (1) có mmmmm  ,052)12(4)3( 22 nên có hai nghiệm phân biệt 21 , xx và cả hai nghiệm đều khác 2. Theo định lí Viet ta có 12;3 2121      mxxmxx 0,5 I. (2,0 điểm) Theo giả thiết bài toán ta có 16)()(16 2 12 2 12 2  yyxxAB .130328)12(4)3( 84)(8)(16)()( 22 21 2 21 2 12 2 12 2 12   mmmmmm xxxxxxmxmxxx * Với 3m phương trình (1) trở thành 23076 2  xxx . Suy ra hai điểm A, B cần tìm là )2;23(),2;23(  . * Với 1m ta có hai điểm A, B cần tìm là )22;21(  và )22;21(  . Vậy cặp điểm TM: )2;23(),2;23(  hoặc )22;21(  , )22;21(  . 0,5 1. (1,0 điểm) II. (2,0 Điều kiện:   kxx  62 3 2sin và ., 3  kkx   x O 1 1  2 y I www.MATHVN.com www.mathvn.com - Page7/16 Khi đó pt 32sin2)sin2(cos3cos2sin  xxxxx 0)2cos3)(sin3cos2( 0)2cos3)(3cos2()3cos2(sin 03cos2cos3sin32sin    xxx xxxx xxxx 0,5                               2 6 2 6 5 1 3 sin 2 3 cos kx kx x x Đối chiếu điều kiện, ta có nghiệm của phương trình là  kkx ,2 6 5   . 0,5 2. (1,0 điểm) Hệ         236)2( 10)2()2( 2 222 yyx yx Đặt .2,2 2  yvxu Khi đó hệ trở thành                  67,12 3,4 19)(4 10 23)2(6)4)(2( 10 2222 uvvu uvvu vuuv vu vvu vu 0,5 điểm) TH 1. 67,12  uvvu , hệ vô nghiệm. TH 2.      3 4 uv vu , ta có      3,1 1,3 vu vu * Với      1 3 v u ta có            3 1 3 1 2 y x y x * Với      3 1 v u ta có      3 1 2 y x , hệ vô nghiệm. Vậy nghiệm (x, y) của hệ là ).3;1(),3;1(  Chú ý: HS có thể giải theo phương pháp thế 2 x theo y từ phương trình thứ hai vào phương trình thứ nhất. 0,5 III. (1,0 điểm) Ta có phương trình         1 0 0 4 )2ln( 2 x x x xx . Suy ra hình phẳng cần tính diện tích chính là hình phẳng giới hạn bởi các đường .0,1,0, 4 )2ln( 2     xxy x xx y Do đó diện tích của hình phẳng là .d 4 )2ln( d 4 )2ln( 0 1 2 0 1 2         x x xx x x xx S . Đặt x x x vxu d 4 d),2ln( 2    . Khi đó 2 4, 2 d d xv x x u    . Theo công thức tích phân từng phần ta có .d 2 4 2ln2d 2 4 )2ln(4 0 1 2 0 1 2 1 0 2          x x x x x x xxS 0,5 www.MATHVN.com www.mathvn.com - Page8/16 Đặt .sin2 tx  Khi đó ttx dcos2d  . Khi ; 6 ,1   tx khi .0,0   tx Suy ra .3 3 2)cos(2d)sin1(2d 2sin2 cos4 d 2 4 0 6 6 0 0 6 2 0 1 2                ttttt t t x x x I Suy ra . 3 322ln2  S 0,5 +) Từ giả thiết suy ra ).(ABCDSH  Vẽ )( ACFACHF  ACSF  (định lí ba đường vuông góc). Suy ra .60 0 SFH Kẻ ).( ACEACBE  Khi đó . 32 2 2 1 a BEHF  Ta có  0 60tan.HFSH . 2 2a Suy ra . 3 . 3 1 3 . a SSHV ABCDABCDS  0,5 IV. (1,0 điểm +) Gọi J, r lần lượt là tâm và bán kính đường tròn ngoại tiếp tam giác AHC. Ta có . 24 33 2 4 a S ACHCAH S ACHCAH r ABCAHC  Kẻ đường thẳng  qua J và .// SH Khi đó tâm I của mặt cầu ngoại tiếp hình chóp AHCS. là giao điểm của đường trung trực đoạn SH và  trong mặt phẳng (SHJ). Ta có . 4 2 2 22 r SH JHIJIH  Suy ra bán kính mặt cầu là . 32 31 aR  Chú ý: HS có thể giải bằng phương pháp tọa độ. 0,5 Từ giả thiết ta có .)( 2 1 )()(3 222 zyxzyxzyx  Suy ra 6 zyx . 0,5 V. (1,0 điểm Khi đó, áp dụng BĐT Côsi ta có 2 2 11 4 2 8 2 8 )2( 88 )(                                    yzxyy y zxzx zxP .26 2 28 222 )2)(( 8 1212 4      zyxyzx Dấu đẳng thức xảy ra khi và chỉ khi 3,2,1    zyx . Vậy giá trị nhỏ nhất của P là 26, đạt được khi 3,2,1    zyx . 0,5 1. (1,0 điểm) Ta có ).8;3( A Gọi M là trung điểm BC AHIM // . Ta suy ra pt .072:    yxIM Suy ra tọa độ M thỏa mãn ).5;3( 09613 072 M yx yx       0,5 VIa. (2,0 điểm) Pt đường thẳng .011205)3(2:       yxyxBC   BCB ).211;( aaB  Khi đó 0,5 B A H M I C B A S D C E F J I K H www.MATHVN.com www.mathvn.com - Page9/16       2 4 086 2 a a aaIBIA . Từ đó suy ra )7;2(),3;4( CB hoặc ).3;4(),7;2( CB 2. (1,0 điểm) Ta có ).3;1;2(),2;1;1(  ACAB Suy ra pt .01:)(     zyxABC Gọi tâm mặt cầu I )22;2;1( tttI   . Khi đó bán kính đường tròn là .2 3 6)1(2 3 842 ))(,( 22 22      ttt ABCIdIAr Dấu đẳng thức xảy ra khi và chỉ khi .1   t 0,5 Khi đó .5),0;2;2(  IAI Suy ra pt mặt cầu .5)2()2( 222  zyx 0,5 Đặt ).,(  babiaz Ta có |1||3| ziiz    tương đương với |1||)3(||)(1||)3(| aibibabiaiiba         2)()1()3( 2222  babba . 0,5 VIIa. (1,0 điểm) Khi đó 4 )262(5 4 )2(9 2 2 9 2 9 2 23 2         a iaaa a ia ia ia ia z z là số ảo khi và chỉ khi 05 3  aa hay 5,0  aa . Vậy các số phức cần tìm là iziziz 25,25,2  . 0,5 1. (1,0 điểm) Đường tròn (C) có tâm ),1;2( I bán kính .52R Gọi H là trung điểm AB. Đặt ).520(  xxAH Khi đó ta có 2 4 1 .8 20 8 2(ktmvì ) 2 x IH AB x x x AH IA         nên .24  IHAH 0,5 Pt đường thẳng qua M: )0(0)3()1( 22  baybxa .03    abbyax Ta có baabaa ba ba IHABId 3 4 00)43(2 |2| 2),( 22     . * Với 0a ta có pt .03:  y * Với . 3 4 ba  Chọn 3b ta có 4  a . Suy ra pt .0534:     yx Vậy có hai đường thẳng  thỏa mãn là 03   y và .0534    yx 0,5 2. (1,0 điểm) Gọi (Q) là mặt phẳng qua M và vuông góc với  . Khi đó pt .032:)(   zyxQ Ta có ).1;1;1(),1;1;2( PQ nn  Từ giả thiết suy ra A thuộc giao tuyến d của (P) và (Q). Khi đó )3;1;2(],[  QPd nnu và dN  )1;0;1( nên pt của         tz ty tx d 31 21 : . Vì dA suy ra ).31;;21( tttA  0,5 VIb. (2,0 điểm) Gọi H là giao điểm của  và mặt phẳng (Q). Suy ra ). 2 1 ; 2 1 ;1(  H Ta có 7 8 1016214 2 33 ),( 2  ttttAHAd . Suy ra )4;1;1(  A hoặc ). 7 17 ; 7 8 ; 7 23 ( A 0,5 VIIb. (1,0 điểm) Đặt w z z  2 1 ta được 0|||||| 2222    zwzzwz . Hay 1|||1|    ww . Giả sử ),(  babiaw . Khi đó ta có 0,5 M H B I A www.MATHVN.com www.mathvn.com - Page10/16 [...]... ffn# di6m) Hilm s& dd sho c6 3 di6m cgc {=} x3 - 2 (3 ln + tri l)x - 0 c6 3 nghiQm Khi d6 3 di0rn cuc tri gi6c ABC € cria I'= 0 c6 3 nghiQm phfin bipt phAn bipt QM d6 le thi 1 a (1) J AQ;2m+2), B(- 6nt + 2; -9nr2 - 4m+ 1) va a !a+2!n - 0 Hay 2m+2+2(-9m'-4m+1)-0 egmz + 3m-2- 0 e fm Zl3 I L* -Il3 I(€t hqp vo'i (1) suy ra gifttri cua m|d m -+ 3 L (1,0 ili€m Diou kiqn: 1= x < 3 2 Khi do phuong trinh dd cho...1 3 (a  1) 2  b 2 www.MATHVN.comb   a 2  b 2  1 hay a  , 2 2 4 4 4   1 3 4 4 1  i sin * Với w   i  cos  i sin Ta có w 4  cos và    cos  i sin 2 2 3 3 3 3  w 4  1 3 1 3 * Với w   i , tương tự ta cũng có A  1 2 2 Chú ý: HS có thể giải theo cách biến đổi theo dạng đại số của số phức Do đó A  2 cos 3 3 0,5 www.mathvn.com - Page11/16 of xrrAo sAr cnArr,ugr\c... trudmg hqp Tu 2 (1,0 iti€nr "9 !pg!n @thfcsau4s6c;Anbi6nc6Anlingudithdngchung,cuQc;l;1ibi6n sdc ninn thing YIIb ;6 A; itt"ne te"rhi t; B auii5n Binh tht i, i :1,2 ,3, 4 Khi cl6 ta c6 "6 (1,0 tIi6m) li ngudi thdng chung cu6c vi.a, tiui6n c5 H=AwB; ' tt : 2 sdc vi s6c thfr tu An thing" w BtArAt) Ao ; = ([Azh w ArBrA, B : "Trong 3 s6c ciiu Binh thing 2 s6c vd s6c thri tu Binh thing" = (B1B2A3 v BrArB, w ArBrBt)... of xrrAo sAr cnArr,ugr\c t 6p tzr,An 3, NAna zorr www.MATHVN.com m0n: TOAN; Thli gian lim bhi: IBA phrtt r rHAN cHUNc cHo rAr cA rHi slr.{H 1z,o a$q TRIJONG EAI HQC VINH TRIIONG THPT CHUYTN 1 Ciu I 1Z,O ei6m; Cho him s6 y = 1*o -(3m+l)xz +2(m+l), m ldtham "4 s5 l Kh6o s6t sg bitin thi6 n vd vC dO thi hdm sb c16 cho khi z = 0 2 Tinr llr A6 A6 fti ham sii da cho co 3 tli6m cgc ti l$p thanh mQt tam gf6c... Page12/16 Ghi chrt: L Bfg n6t s€ trd bdi vdo cdc ngdy 21, 22/05/2AI phidu du thi cho BTC I DA nhSn iluqc bdi thi, thi sinh phdi ngp lqi -['ltu'*i\i{i S,{i l-it}C !'i}ili 'trR{i'#.}iil T'l-{P I' It BE K}IAO $AT CIL-{T L.u-'#io{G L{3P 12 LAN 3, i\.4,.h,{ www.MATHVN.com Thcri gian ihm bii: J8 i) pltfit M$F{: TO,LN; DAP il}"ILryEN EN+ ?{}11 fidn tin 1 (1,0 Khi I, (?,0 rr^ \ {ttcm) diint - 0 harn sd trcr thanh... trgng t6m ld g6c toa d0 CAu II (2,0 tti6m) I Giai phuorg trinh 2Iogo(l a ,l2y a1= logz (5 - r) + log , (3 - 1(:.1 x) ')L- 2 sin3x Gieiohuongtrinh lsinZx-cos2x)tanr* =sinr+cosx Ciu III (1,0 di6m) Tinh thc tich khdi trdn xoay tu":iah khi quay hinh phang gidi han boi d6 thi hem 2 s6 y = E,trqc hoanh vi A* dudmg thdng x = 1 xung quanh truc hoanh e- * -lttl t-4r Ciu IV (1,0 di6m) Cho hinh Hng tru dtmg... s6c ciiu Binh thing 2 s6c vd s6c thri tu Binh thing" = (B1B2A3 v BrArB, w ArBrBt) B o A "Trong3 ;# iildt ;l,r * s6c "i; tliu nn *ring i+ i,, ti,; :i :e' ;al' ; : r,;;,',i -' - "' -' - Theo c6ng thirc tinh x6c su6t ta c6 P(l) = 3. 19 ,412 0,6.0,4:0,11 52, (B) =3' 10,6;2'0'4'0'6 = 0'2592' P(H) - PtA)+ P(B) = 0 ,37 44P Suy ra www.mathvn.com - Page16/16 l*'!,4! Lrr.j:! ... d6 I(2;- 3; 1) +ffi.uE datgi6trinhonhAt e MInh6nhAtldo u' ? 4-44.bit'I qt'i9r-v'l-ole eeg gll+-{lt-"1-(1)'- - - - =lf khongd6i)' lx=2+2t +) Chqn t=-2* G =6 =(Z;-t;2) + tU:ll = -3- t I phuong trinh Thay vio phucrng trinh (P) suy ra 015 lz =l+2t M(-2;-1; -3) 0n chin g6m 4 chf s0 duo-c viet ra th6a mdn m6i chfr sd 16n hon chfi' s dung tru6c n6 Khi d6 6,8\\; :- Q = {abcd ' a + 0, d e {0, 2, 4, 3 www.mathvn.com... hqp sau ifil +) d =0 Trudng hqp niy c6 , j s6 (4 +) d e {2,4 ,6,8} Truong hqp niy "6 : efi.+ sA suyralol=4 ++(4-4>72221 _ _ ._ -._. _- _ pe tintr trubng hqp sau lQn I ,u x€t c6c +) d - 4 Truoug hqp niy cd I s6 +) d = 6 Truung hgp nay cd Ci s6 +) d :8 Truo'ng hqp nay c6 C; Suyra lCInl=t Do do l sS *Cl.+Cl -46- P(A)=l# -/ : :? r= 0, 02, ' lCIl 2296 (1,0 tti6m Ii}' | l (P) olai"l : yz - 4x c6 p :2 + ti6u... d,**=l B(l; 5; 2), C (3; 2; 4) Tim tqa d0 di6m MthuQc d sao ebo MA2 vitc6c . hay . 2 3 , 2 1  ba * Với . 3 sin 3 cos 2 3 2 1  iiw  Ta có 3 4 sin 3 4 cos 4  iw  và . 3 4 sin 3 4 cos 1 4  i w        Do đó 1 3 4 cos2   A . * Với iw 2 3 2 1 .      3 4 uv vu , ta có      3, 1 1 ,3 vu vu * Với      1 3 v u ta có            3 1 3 1 2 y x y x * Với      3 1 v u ta có      3 1 2 y x ,. 0)2cos3)(sin3cos2( 0)2cos3)(3cos2()3cos2(sin 03cos2cos3sin32sin    xxx xxxx xxxx 0,5                               2 6 2 6 5 1 3 sin 2 3 cos kx kx x x

Ngày đăng: 16/05/2015, 08:26

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w