Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 11 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
11
Dung lượng
660,5 KB
Nội dung
Chuyªn ®Ị ph¬ng tr×nh, bÊt ph¬ng tr×nh mò vµ logarit Chuyên đề 5: PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG CÓ CHỨA MŨ VÀ LOGARÍT TÓM TẮT GIÁO KHOA I. KIẾN THỨC CƠ BẢN VỀ HÀM SỐ MŨ 1. Các đònh nghóa: • n n thua so a a.a a= 123 (n Z ,n 1,a R) + ∈ ≥ ∈ • 1 a a= a∀ • 0 a 1= a 0∀ ≠ • n n 1 a a − = { } (n Z ,n 1,a R/ 0 ) + ∈ ≥ ∈ • m n m n a a= ( a 0;m,n N> ∈ ) • m n m n m n 1 1 a a a − = = 2. Các tính chất : • m n m n a .a a + = • m m n n a a a − = • m n n m m.n (a ) (a ) a= = • n n n (a.b) a .b= • n n n a a ( ) b b = 3. Hàm số mũ: Dạng : x y a= ( a > 0 , a ≠ 1 ) • Tập xác đònh : D R= • Tập giá trò : T R + = ( x a 0 x R> ∀ ∈ ) • Tính đơn điệu: * a > 1 : x y a= đồng biến trên R * 0 < a < 1 : x y a= nghòch biến trên R • Đồ thò hàm số mũ : Minh họa: 20 a>1 y=a x y x 1 0<a<1 y=a x y x 1 f(x)=2^x -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 x y f(x)=(1/2)^x -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 x y y=2 x y= 1 x y y x 1 O O I. KIẾN THỨC CƠ BẢN VỀ HÀM SỐ LÔGARÍT 1. Đònh nghóa: Với a > 0 , a ≠ 1 và N > 0 dn M a log N M a N= ⇔ = Điều kiện có nghóa: N a log có nghóa khi > ≠ > 0 1 0 N a a 2. Các tính chất : • a log 1 0= • a log a 1= • M a log a M= • log N a a N= • a 1 2 a 1 a 2 log (N .N ) log N log N= + • 1 a a 1 a 2 2 N log ( ) log N log N N = − • a a log N .log N α = α Đặc biệt : 2 a a log N 2.log N= 3. Công thức đổi cơ số : • a a b log N log b.log N= • a b a log N log N log b = * Hệ quả: • a b 1 log b log a = và k a a 1 log N log N k = * Công thức đặc biệt: a b c c b a loglog = 4. Hàm số logarít: Dạng a y log x= ( a > 0 , a ≠ 1 ) • Tập xác đònh : + =D R • Tập giá trò =T R • Tính đơn điệu: * a > 1 : a y log x= đồng biến trên + R * 0 < a < 1 : a y log x= nghòch biến trên + R • Đồ thò của hàm số lôgarít: Minh họa: 5. CÁC ĐỊNH LÝ CƠ BẢN: 21 0<a<1 y=log a x 1 x y O f(x) =ln(x)/ln(1/2 ) -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 x y y=log 2 x x y x y f(x)=ln(x)/ln(2) -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 x y xy 2 1 log= 1 O 1 O a>1 y=log a x 1 y x O 1. Đònh lý 1: Với 0 < a ≠ 1 thì : a M = a N ⇔ M = N 2. Đònh lý 2: Với 0 < a <1 thì : a M < a N ⇔ M > N (nghòch biến) 3. Đònh lý 3: Với a > 1 thì : a M < a N ⇔ M < N (đồng biến ) 4. Đònh lý 4: Với 0 < a ≠ 1 và M > 0;N > 0 thì : log a M = log a N ⇔ M = N 5. Đònh lý 5: Với 0 < a <1 thì : log a M < log a N ⇔ M >N (nghòch biến) 6. Đònh lý 6: Với a > 1 thì : log a M < log a N ⇔ M < N (đồng biến) III. CÁC PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ THƯỜNG SỬ DỤNG: 1. Phương pháp 1: Biến đổi phương trình về dạng cơ bản : a M = a N Ví dụ : Giải các phương trình sau : x 10 x 5 x 10 x 15 16 0,125.8 + + − − = 2. Phương pháp 2: Đặt ẩn phụ chuyển về phương trình đại số Ví dụ : Giải các phương trình sau : 1) 2x 8 x 5 3 4.3 27 0 + + − + = 2) x x x 6.9 13.6 6.4 0− + = 3) x x ( 2 3 ) ( 2 3 ) 4− + + = 4) 322 2 2 2 =− −+− xxxx 5) 027.21812.48.3 =−−+ xxxx 6) 07.714.92.2 22 =+− xxx 3. Phương pháp 3: Biến đổi phương trình về dạng tích số A.B = 0 Ví dụ : Giải phương trình sau : 1) 8.3 x + 3.2 x = 24 + 6 x 2) 0422.42 2 22 =+−− −+ xxxxx 3) 20515.33.12 1 =−+ +xxx ( 4. Phương pháp 4: Nhẩm nghiệm và sử dụng tính đơn điệu để chứng minh nghiệm duy nhất (thường là sử dụng công cụ đạo hàm) * Ta thường sử dụng các tính chất sau: • Tính chất 1: Nếu hàm số f tăng ( hoặc giảm ) trong khỏang (a;b) thì phương trình f(x) = C có không quá một nghiệm trong khỏang (a;b). ( do đó nếu tồn tại x 0 ∈ (a;b) sao cho f(x 0 ) = C thì đó là nghiệm duy nhất của phương trình f(x) = C) • Tính chất 2 : Nếu hàm f tăng trong khỏang (a;b) và hàm g là hàm một hàm giảm trong khỏang (a;b) thì phương trình f(x) = g(x) có nhiều nhất một nghiệm trong khỏang (a;b) . ( do đó nếu tồn tại x 0 ∈ (a;b) sao cho f(x 0 ) = g(x 0 ) thì đó là nghiệm duy nhất của phương trình f(x) = g(x)) Ví dụ : Giải các phương trình sau : 1) 3 x + 4 x = 5 x 2) 2 x = 1+ x 2 3 3) x 1 ( ) 2x 1 3 = + IV. CÁC PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH LOGARIT THƯỜNG SỬ DỤNG: 1. Phương pháp 1: Biến đổi phương trình về dạng cơ bản : a a log M log N= Ví dụ : Giải các phương trình sau : 1) + = x log (x 6) 3 2) x x 1 log (4 4) x log (2 3) 2 1 2 + + = − − 3) )3(log)4(log)1(log 2 1 2 2 1 2 2 xxx −=++− ) 2. Phương pháp 2: Đặt ẩn phụ chuyển về phương trình đại số. Ví dụ : Giải các phương trình sau : 1) 3 3 2 2 4 log x log x 3 + = 2) 051loglog 2 3 2 3 =−++ xx 3. Phương pháp 3: Biến đổi phương trình về dạng tích số A.B = 0 Ví dụ : Giải phương trình sau : 2 7 2 7 log x 2.log x 2 log x.log x+ = + 4. Phương pháp 4: Nhẩm nghiệm và sử dụng tính đơn điệu để chứng minh nghiệm duy nhất. 22 (thường là sử dụng công cụ đạo hàm) * Ta thường sử dụng các tính chất sau: • Tính chất 1: Nếu hàm số f tăng ( hoặc giảm ) trong khỏang (a;b) thì phương trình f(x) = C có không quá một nghiệm trong khỏang (a;b). ( do đó nếu tồn tại x 0 ∈ (a;b) sao cho f(x 0 ) = C thì đó là nghiệm duy nhất của phương trình f(x) = C) • Tính chất 2 : Nếu hàm f tăng trong khỏang (a;b) và hàm g là hàm một hàm giảm trong khỏang (a;b) thì phương trình f(x) = g(x) có nhiều nhất một nghiệm trong khỏang (a;b) . ( do đó nếu tồn tại x 0 ∈ (a;b) sao cho f(x 0 ) = g(x 0 ) thì đó là nghiệm duy nhất của phương trình f(x) = g(x)) Ví dụ : Giải các phương trình sau : 2 2 2 log (x x 6) x log (x 2) 4− − + = + + V. CÁC PHƯƠNG PHÁP GIẢI BẤT PHƯƠNG TRÌNH MŨ THƯỜNG SỬ DỤNG: 1. Phương pháp 1: Biến đổi phương trình về dạng cơ bản : a M < a N ( , , ≤ > ≥ ) Ví dụ : Giải các bất phương trình sau : 1) 2 x x 1 x 2x 1 3 ( ) 3 − − − ≥ 2) 2 x 1 x 2x 1 2 2 − − ≥ 2. Phương pháp 2: Đặt ẩn phụ chuyển về bất phương trình đại số. Ví dụ : Giải các phương trình sau : 1) 2x x 2 2 3.(2 ) 32 0 + − + < 4) 52428 11 >+−+ ++ xxx 2) x 3 x 2 2 9 − + ≤ 5) 11 21212.15 ++ +−≥+ xxx 3) 2 1 1 x x 1 1 ( ) 3.( ) 12 3 3 + + > 6) 0449.314.2 ≥−+ xxx VI. CÁC PHƯƠNG PHÁP GIẢI BẤT PHƯƠNG TRÌNH LOGARIT THƯỜNG SỬ DỤNG: 1. Phương pháp 1: Biến đổi phương trình về dạng cơ bản : a a log M log N< ( , ,≤ > ≥ ) Ví dụ : Giải các bất phương trình sau : 1) 2 x log (5x 8x 3) 2− + > 2) − < 2 3 3 log log x 3 1 3) 2 3x x log (3 x) 1 − − > 4) x x 9 log (log (3 9)) 1− ≤ 5) )12(log12log4)1444(log 2 555 ++<−+ −xx 2. Phương pháp 2: Đặt ẩn phụ chuyển về bất phương trình đại số. Ví dụ : Giải các phương trình sau : 1) x x 2 3 2 log (3 2) 2.log 2 3 0 + + + − > 2) 2 2x x log 64 log 16 3+ ≥ D¹ng c¬ b¶n: I. KiÕn thøc cÇn nhí: 1. D¹ng ( ) 0,1 )()( >≠= baba xgxf a. NÕu a=b th× f(x)=g(x). b. NÕu a≠b th× logarit ho¸ c¬ sè a hc b 2 vÕ. 23 2. D¹ng ( ) 0,1)(log)(log >≠= baxgxf ba . a. NÕu a=b th× f(x)=g(x)>0. b. NÕu a≠b vµ (a-1)(b-1)<1 th× t×m nghiÖm duy nhÊt vµ chøng minh. c. NÕu a≠b vµ (a-1)(b-1)>1 th× mò ho¸ 2 vÕ. II. C¸c bµi tËp ¸p dông: 99. 125.3.2 21 = −− xxx 100. xx 3322 loglogloglog = 101. xx 234432 loglogloglogloglog = 102. xxx 332332 loglogloglogloglog =+ 103. 2loglog3loglog 32 xx ≥ 104. 2 )4(log 8 2 xx x ≥ 105. xxx x lg25,4lg3lg 10 22 −−− = 106. 2)1( 11 log)1(log ≤−+ ++ − xx xx xx 107. 5lglg 505 x x −= 108. 126 6 2 6 loglog ≤+ xx x 109. x x = + )3(log 5 2 110. 1623 3 2 3 loglog =+ xx x 111. x x x − + = 2 2 3.368 112. 2 65 3 1 3 1 2 + −+ > x xx 113. xx 31 1 13 1 1 − ≥ − + 114. 13 1 12 1 22 + − ≥ x x 115. 2551 2 << −xx 116. ( ) ( ) 12log log 5,0 5,0 2 25 08,0 − − − ≥ x x x x 117. 48loglog 22 ≤+ x x 118. 1log 5 log 2 55 =+ x x x 119. ( ) 15log.5log 22 5 = x x 120. 5log5log xx x −= 121. 42log.4log 2 sin sin = x x 122. 12log.4log 2 cos cos = x x 24 123. 5)1(log2)1(4log 2 1)1(2 =+++ ++ xx xx 124. 03loglog 33 <−− xx 125. ( ) [ ] 05loglog 2 43/1 >−x 126. 3log2/5log 3/1 x x ≥+ 127. 14log.2log.2log 22 >x xx 128. 0 5 34 log 2 2 3 ≥ −+ +− xx xx 129. 0 2 1 loglog 2 3 6 > + − + x x x 130. 6log 1 2log.2log 2 16/ − > x xx 131. 12log 2 ≥x x 132. ( ) 193loglog 9 ≤− x x 133. 1 2 23 log > + + x x x 134. ( ) 13log 2 3 >− − x xx 135. ( ) 2385log 2 >+− xx x 136. ( ) [ ] 169loglog 3 =− x x 137. xx x 216 log2log416log3 =− 138. 364log16log 2 2 =+ x x 139. ( ) 1log 1 132log 1 3/1 2 3/1 + > +− x xx 140. ( ) 101 log1 log1 2 ≠<> + + a x x a a 141. ( ) ( ) 103 5log 35log 3 ≠<> − − avíi x x a a 142. 05 10 1 2 1cos2sin2 7lgsincos 1cos2sin2 =+ − +− −− +− xx xx xx 143. ( ) ( ) 0 352 114log114log 2 3 2 11 2 2 5 ≥ −− −−−−− xx xxxx 144. ( ) ( ) 31log1log2 2 32 2 32 =−++++ −+ xxxx 145. xxxxxx 532532 loglogloglogloglog =++ 25 146. 02)5(log6)5(log3)5(log 25/1 55 2 5/1 +++ xxx 147. Với giá trị nào của m thì bất phơng trình ( ) 32log 2 2/1 >+ mxx có nghiệm và mọi nghiệm của nó đều không thuộc miền xác định của hàm số ( ) 2log1log 1 3 += + xxy xx 148. Giải và biện luận theo m: 0100log 2 1 100log > mx 149. ( ) ( ) >+ +<++ + 22log )122.7lg()12lg(2lg1 1 x x x xx 150. Tìm tập xác định của hàm số ( ) 10 2 5 2 log 2 1 2 < + + = a x x y a III. Các bài tập tự làm: 151. 3log29log4log 33 2 3 + xxx 152. ( ) 4 162 2 2/1 log42log4log xxx <+ 153. ( ) 0log213log 2 22 2 ++ xxx 154. xx x x coslogsinlog 2sin cos Dạng bậc hai: I. Kiến thức cần nhớ: 1. Dạng ( ) 01,00 13 )( 2 )(2 1 >=++ aaaaaaa xfxf đa về phơng trình bậc hai nhờ phép đặt ẩn phụ )(xf at = >0. 2. Dạng ( ) 01,00)(log))(.(log 132 2 1 >=++ aaaxfaxfa aa đa về phơng trình bậc hai nhờ phép đặt ẩn phụ )(log xft a = . 3. Với bất phơng trình mũ và logarit cũng có phép đặt tơng ứng, lu ý khi gặp phơng trình hay bất phơng trình logarit mà cha phải dạng cơ bản thì cần đặt điều kiện. II. Các bài tập áp dụng: 155. 0455 1 =+ xx 156. 0103.93 <+ xx 157. 8log2 16 1 4 1 4 1 > xx 158. 12 3 1 .9 3 1 /12/2 > + + xx 159. 01228 332 =+ + x x x 160. xxx 5555 12 +<+ + 26 161. 16 5 202222 22 =+++ −− xxxx 162. ( ) ( ) 10245245 =−++ xx 163. ( ) ( ) 3 2531653 + =−++ x xx 164. ( ) ( ) 02323347 =+−−+ xx 165. ( ) ( ) 14347347 ≥++− xx 166. ( ) ( ) 43232 =++− xx 167. ( ) ( ) 10625625 tantan =−++ xx 168. xxx /1/1/1 964 =+ 169. 104.66.139.6 =+− xxx 170. 010.725.24.5 ≤−+ xxx 171. 3 33 8154154 x xx ≥++− 172. 02515.349 12212 222 ≥+− +−−+− xxxxxx 173. 2log cos2sin sin22sin3 log 22 77 xx xx xx −− = − 174. ( ) 2/1213log 2 3 =+−− + xx x 175. ( ) 2log2log 2 2 =++ + xx x x 176. ( ) ( ) ( ) 1log2 2log 1 13log 2 3 2 ++=+− + xx x 177. ( ) ( ) 32log44log 1 2 12 −−=+ +xx x 178. ( ) 1323.49log 1 3 +=−− + x xx 179. ( ) 4log1log1 12 − =−+ x x 180. ( ) ( ) 8 1 log14log.44log 2/1 2 1 2 =++ + xx 181. ( ) ( ) 222log12log 1 2/12 −>−− +xx 182. ( ) ( ) 1 1 1 2525 + − − −≥+ x x x 183. 0 12 122 1 ≤ − +− − x xx 184. 02cos 2 sinlogsin 2 sinlog 3 13 = ++ − x x x x 27 185. ( ) ( ) 2 9 3 3 2 27 3log 2 1 log 2 1 65log + =+ x x xx 186. Tìm m để tổng bình phơng các nghiệm của phơng trình ( ) ( ) 02log422log2 22 2 1 22 4 =+++ mmxxmmxx lớn hơn 1. 187. Tìm các giá trị của m để phơng trình sau có nghiệm duy nhất: ( ) 0log1log 25 2 25 =++++ + xmmxx . 188. Tìm m để phơng trình ( ) ( ) 02log422log2 22 2/1 22 4 =+++ mmxxmmxx có 2 nghiệm u và v thoả mãn u 2 +v 2 >1 III. Các bài tập tự làm: 91. Tìm m để mọi nghiệm của bất phơng trình 12 3 1 3 3 1 1 12 > + + xx cũng là nghiệm của bất phơng trình (m-2) 2 x 2 -3(m-6)x-(m+1)<0. (*) 92. ( ) ( ) 025353 2 22 21 22 ++ + xx xxxx 93. ( ) ( ) 312223 +=+ xx 94. 1 23 23.2 2 + xx xx 95. 04.66.139.6 222 222 + xxxxxx 96. ( ) ( ) 022log.2log 2 2 2 + x x 97. 2 222 4log6log2log 3.24 xx x = 98. ( ) ( ) 421236log4129log 2 32 2 73 =+++++ ++ xxxx xx Sử dụng tính đơn điệu: I. Kiến thức cần nhớ: 1. Hàm số x ay = đồng biến khi a>1 và nghịch biến khi 0<a<1. 2. Hàm số xy a log= đồng biến khi a>1 và nghịch biến khi 0<a<1. 3. Hàm số f(x) đơn điệu trên D và u, v thuộc D thì f(u)=f(v) tơng đơng u=v. 4. Nếu hàm số f(x) liên tục và đơn điệu trên (a, b) thì phơng trình f(x)=0 có tối đa 1 nghiệm trên đó. II. Các bài tập áp dụng: 189. x x 4115 =+ 190. 132 2 += x x 191. x xxx 202459 ++= 192. 2112212 532532 +++ ++=++ xxxxxx 193. 9,2 5 2 2 5 /1 = + xx (*) 194. xxx 6321 11 <++ ++ 28 195. ( ) xxx 2 3 3 log21log3 =++ 196. 2 2 2 )1( 12 log262 + =+ x x xx 197. x x x x x x 2 2 22 22 2 211 = 198. ( ) ( ) 021223 2 =+ xx xx 199. 255102.25 >+ xxx 200. 20515.33.12 1 =+ +xxx 201. log 2 x+2log 7 x=2+log 2 x.log 7 x 202. xx coslogcotlog2 23 = 203. ( ) 5,1lg1log =+x x 204. =+ =+ )sin3(logcos31log )cos3(logsin31log 32 32 xy yx 205. ( ) ( ) ( ) ( ) +=+ +=+ 21log131log 21log131log 2 3 2 2 2 3 2 2 xy yx 206. ( ) ( ) xxxxxx 33lg36lg 22 ++=+++ 207. Chứng minh rằng nghiệm của phơng trình ( ) xxx 4 4 6 loglog2 =+ thoả mãn bất đẳng thức x x 16 sin 16 cos < . 208. Tìm x sao cho bất phơng trình sau đây đợc nghiệm đúng với mọi a: ( ) 014log 2 >++ xaa x III. Các bài tập tự làm: 107. ( ) )2lg(46lg 2 ++=+ xxxx 108. )3(log)2(log)1(loglog 5432 +++=++ xxxx 109. Tìm nghiệm dơng của bất phơng trình 12 1036 1 > + xx x (*) 110. ( ) ( ) =+ =+ 246log 246log xy yx y x 111. ( ) 0log213log 2 22 2 ++ xxx Dạng tổng hợp: I. Một vài lu ý: II. Các bài tập áp dụng: 209. ( ) 016)1(log)1(4)1(log2 3 2 3 =+++++ xxxx 29 [...]... nghiệm có tổng x+2y lớn nhất 2 5 x 3 x 2 + 2 x > 2 x.3 x 2 5 x 3 x 2 + 4 x 2 3 x t +1 ( ) 2 Tìm t để bất phơng trình sau nghiệm đúng với mọi x: log 2 t + 2 x + 3 > 1 ( ) 2 Tìm a để bất phơng trình sau thoả mãn với mọi x: log 1 +1 x + 2 a > 0 a x 2 log 2 a 2 + 2 x + log a 2 Tìm a để bất phơng trình sau nghiệm đúng với mọi x: x x 2 e x 1 8 ) 4 x 2 + 3 x x + 31+ x < 2.3 x x 2 + 2 x + 6 ln ( 2 x 3) + ln 4 x 2 = ln( 2 x 3) + ln( 4 x 2 ) ( ( ) 2 x ) 216 2 + x 2 7 x + 12 1 III Các bài tập tự làm: ( ) 14 x 2 x 2 24 + 2 log x 2 x Trong các nghiệm (x, y) của bất phơng trình log . ®Ị ph¬ng tr×nh, bÊt ph¬ng tr×nh mò vµ logarit Chuyên đề 5: PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG CÓ CHỨA MŨ VÀ LOGARÍT TÓM TẮT GIÁO KHOA I. KIẾN THỨC CƠ BẢN VỀ HÀM SỐ MŨ 1. Các đònh nghóa: • n n thua so a. CÁC PHƯƠNG PHÁP GIẢI BẤT PHƯƠNG TRÌNH LOGARIT THƯỜNG SỬ DỤNG: 1. Phương pháp 1: Biến đổi phương trình về dạng cơ bản : a a log M log N< ( , ,≤ > ≥ ) Ví dụ : Giải các bất phương trình. nhất của phương trình f(x) = g(x)) Ví dụ : Giải các phương trình sau : 2 2 2 log (x x 6) x log (x 2) 4− − + = + + V. CÁC PHƯƠNG PHÁP GIẢI BẤT PHƯƠNG TRÌNH MŨ THƯỜNG SỬ DỤNG: 1. Phương pháp